Volunteer “community scientists” do a pretty darn good job generating usable data

When museum-goers did a community science activity in an exhibit at the Field Museum (USA), the data they produced were largely accurate.

Left: Cuong Pham, Jimmy Crigler, and Joshua Torres working on a community science platform in an exhibit at the Field Museum (photo by Melanie Pivarski, Roosevelt University).
Right: The microscopic leaves of a liverwort, a primitive plant that helps scientists track climate change (photo by Lauren Johnson, Field Museum).
Original publication by the Field Museum

Ask any scientist — for every “Eureka!” moment, there’s a lot of less-than-glamorous work behind the scenes. Making discoveries about everything from a new species of dinosaur to insights about climate change entails some slogging through seemingly endless data and measurements that can be mind-numbing in large doses.

Community science shares the burden with volunteers who help out, for even just a few minutes, on collecting data and putting it into a format that scientists can use. But the question remains how useful these data actually are for scientists. 

A new study, authored by a combination of high school students, undergrads and grad students, and professional scientists showed that when museum-goers did a community science activity in an exhibit, the data they produced were largely accurate, supporting the argument that community science is a viable way to tackle big research projects.

“It was surprising how all age groups from young children, families, youth, and adults were able to generate high-quality taxonomic data sets, making observations and preparing measurements, and at the same time empowering community scientists through authentic contributions to science,”

says Matt von Konrat (Field Museum, USA), an author of the paper in the journal Research Ideas and Outcomes (RIO Journal) and the head of plant collections at Chicago’s Field Museum.

“This study demonstrates the wonderful scientific outcomes that occur when an entire community comes together,”

says Melanie Pivarski, an associate professor of mathematics at Roosevelt University (USA) and the study’s lead author.

“We were able to combine a small piece of the Field Museum’s vast collections, their scientific knowledge and exhibit creation expertise, the observational skills of biology interns at Northeastern Illinois University (USA), led by our collaborator Tom Campbell, and our Roosevelt University student’s data science expertise. The creation of this set of high-quality data was a true community effort!” 

The study focuses on an activity in an exhibition at the Field Museum, in which visitors could partake in a community science project. In the community science activity, museumgoers used a large digital touchscreen to measure the microscopic leaves photographs of plants called liverworts. 

These tiny plants, the size of an eyelash, are sensitive to climate change, and they can act like a canary in a coal mine to let scientists know about how climate change is affecting a region. It’s helpful for scientists to know what kinds of liverworts are present in an area, but since the plants are so tiny, it’s hard to tell them apart. The sizes of their leaves (or rather, lobes — these are some of the most ancient land plants on Earth, and they evolved before true leaves had formed) can hint at their species. But it would take ages for any one scientist to measure all the leaves of the specimens in the Field’s collection. Enter the community scientists.

“Drawing a fine line to measure the lobe of a liverwort for a few hours can be mentally strenuous, so it’s great to have community scientists take a few minutes out of their day using fresh eyes to help measure a plant leaf. A few community scientists who’ve helped with classifying acknowledged how exciting it is knowing they are playing a helping hand in scientific discovery,”  

says Heaven Wade, a research assistant at the Field Museum who began working on the MicroPlants project as an undergraduate intern.

Community scientists using the digital platform measured thousands of microscopic liverwort leaves over the course of two years.

“At the beginning, we needed to find a way to sort the high quality measurements out from the rest. We didn’t know if there would be kids drawing pictures on the touchscreen instead of measuring leaves or if they’d be able to follow the tutorial as well as the adults did. We also needed to be able to automate a method to determine the accuracy of these higher quality measurements,”

says Pivarski.

To answer these questions, Pivarski worked with her students at Roosevelt University to analyze the data. They compared measurements taken by the community scientists with measurements done by experts on a couple “test” lobes; based on that proof of concept, they went on to analyze the thousands of other leaf measurements. The results were surprising.

“We were amazed at how wonderfully children did at this task; it was counter to our initial expectations. The majority of measurements were high quality. This allowed my students to create an automated process that produced an accurate set of MicroPlant measurements from the larger dataset,”

says Pivarski.

The researchers say that the study supports the argument that community science is valuable not just as a teaching tool to get people interested in science, but as a valid means of data collection.

“Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss, yet efforts to fully leverage collections are impeded by a lack of trained taxonomists. Crowd-sourced data collection projects like these have the potential to greatly accelerate biodiversity discovery and documentation from digital images of scientific specimens,”

says von Konrat.
Research article:

Pivarski M, von Konrat M, Campbell T, Qazi-Lampert AT, Trouille L, Wade H, Davis A, Aburahmeh S, Aguilar J, Alb C, Alferes K, Barker E, Bitikofer K, Boulware KJ, Bruton C, Cao S, Corona Jr. A, Christian C, Demiri K, Evans D, Evans NM, Flavin C, Gillis J, Gogol V, Heublein E, Huang E, Hutchinson J, Jackson C, Jackson OR, Johnson L, Kirihara M, Kivarkis H, Kowalczyk A, Labontu A, Levi B, Lyu I, Martin-Eberhardt S, Mata G, Martinec JL, McDonald B, Mira M, Nguyen M, Nguyen P, Nolimal S, Reese V, Ritchie W, Rodriguez J, Rodriguez Y, Shuler J, Silvestre J, Simpson G, Somarriba G, Ssozi R, Suwa T, Syring C, Thirthamattur N, Thompson K, Vaughn C, Viramontes MR, Wong CS, Wszolek L (2022) People-Powered Research and Experiential Learning: Unravelling Hidden Biodiversity. Research Ideas and Outcomes 8: e83853. https://doi.org/10.3897/rio.8.e83853

Follow RIO Journal on Twitter and Facebook.

Citizen scientists from three continents help discover a new, giant slug from Europe

The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

You might think that Europe is so well studied that no large animals remain undiscovered. Yet today, a new species of giant keelback slug from Montenegro was announced in the open-access Biodiversity Data Journal. The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

A living specimen of Limax pseudocinereoniger on a researcher’s hand.

The international team of citizen scientists from Italy, the Netherlands, Serbia, South Africa, and the United States found the slug in July 2019 while exploring the spectacular Tara Canyon, Europe’s deepest gorge, on inflatable rafts. The brownish-grey animals, with a sharp ridge along the back, and 20 cm in length when fully stretched, were hiding under rocky overhangs in the narrowest part of the ravine.

A living specimen of Limax pseudocinereoniger seen from the side. Photo by Pierre Escoubas

At first, the newly discovered slugs seemed superficially indistinguishable from the ash-black keelback slug (Limax cinereoniger), which also lives in the Tara Canyon. The team had to use a portable DNA lab to work out that there is a 10% difference between the two slugs in the so-called DNA barcode. Moreover, when they dissected a few of them, they found differences in the reproductive organs as well. This was enough to decide that a new species had been discovered, and they named it Limax pseudocinereoniger to indicate its similarity to L. cinereoniger.

The field trip was run by Taxon Expeditions, which organises real scientific expeditions for the general public, with the aim to make scientific discoveries. Rick de Vries, a web editor and illustrator from Amsterdam who found the first specimen of L. pseudocinereoniger, says: “It’s an incredible thrill to hold an animal in your hands and to know that it is still unknown to science”.

Citizen scientists studying specimens in the team’s field lab in Montenegro.

Zoologist Iva Njunjić, one of the authors of the paper, thinks that more unknown species are likely to be found in Tara Canyon and the Durmitor National Park, of which it is part. “Using a combination of DNA analysis and anatomy will probably reveal more species that are identical on the outside but actually belong to different species,” she says.

In 2023, Taxon Expeditions plans to take a new team of citizen scientists to Montenegro with a mission to discover new species and document the hidden biodiversity.

Taxon Expeditions was founded by Iva Njunjić and Menno Schilthuizen of Naturalis Biodiversity Center and specialises in ‘taxonomy tourism’ trips in Brunei, Italy, Montenegro, Panama, and the Netherlands.

Original source:

Schilthuizen M, Thompson CG, de Vries R, van Peursen ADP, Paterno M, Maestri S, Marcolongo L, Esposti CD, Delledonne M, Njunjić I (2022) A new giant keelback slug of the genus Limax from the Balkans, described by citizen scientists. Biodiversity Data Journal 10: e69685. https://doi.org/10.3897/BDJ.10.e69685

Citizen science data crucial to understand wildlife roadkill

In a first for science, researchers set out to analyze over 10 years of roadkill records in Flanders, Belgium, using data provided by citizen scientists.

The road is a dangerous place for animals: they can easily get run over, which can seriously affect wildlife diversity and populations in the long term. There is also a human economic cost and possible injury or even death in these accidents, while crashing into heavier animals or trying to avoid them on the road.

Making roads safer for both animals and people starts with a simple first step: understanding when, where, and how many animals get run over. This knowledge can help protect specific species, for example by using warning signs, preventing access to the roads for animals, creating overpasses and underpasses, or closing roads. Wildlife roadkill data can also help monitor other trends, such as population dynamics, species distribution, and animal behavior.

Thanks to citizen science platforms, obtaining this kind of data is no longer a task reserved for scientists. There are now dozens of free, easy-to-use online systems, where anyone can record wildlife collision accidents or roadkill, contributing to a fuller picture that might later be used to inform policy measures.

One such project is the Flemish Animals under wheels, where users can register the roadkill they saw, adding date, time and geolocation online or by using the apps. The data is stored in the online biodiversity database Waarnemingen.be, the Flemish version of the international platform Observation.org

Between 2008 and 2020, the project collected almost 90,000 roadkill records from Flanders, Belgium, registered by over 4,000 citizen scientists. Roadkill recording is just a small part of their nature recording activities – the multi-purpose platform which also allows the registration of living organisms. This is probably why the volunteers have remained engaged with the project for over 6 years now.

In a first for science, researchers from Natuurpunt Studie, the scientific institute linked to the largest Nature NGO in Flanders, with support from the Department of Environmental and Spatial Development, set out to analyze over 10 years of roadkill records in the region, using data provided by citizen scientists. In their study, published in the peer-reviewed journal Nature Conservation, they focused on 17 key species of mammals and their fate on the roads of Flanders. 

The researchers analyzed data on 145,000 km of transects monitored, which resulted in records of 1,726 mammal and 2,041 bird victims. However, the majority of the data – over 60,000 bird and mammal roadkill records – were collected opportunistically, where opportunistic data sampling favors larger or more “enigmatic” species. Hedgehogs, red foxes and red squirrels were the most frequently registered mammal roadkill victims.  

In the last decade, roadkill incidents in Flanders have diminished, the study found, even though search effort increased. This might be the result of effective road collision mitigation, such as fencing, crossing structures, or animal detection systems. On the other hand, it could be a sign of declining populations among those animals that are most prone to being killed by vehicles. More research is needed to understand the exact reason. Over the last 11 years, roadkill records of the European polecat showed a significant relative decrease, while seven species, including the roe deer and wild boar, show a relative increase in recorded incidents.

There seems to be a clear influence of the COVID-19 pandemic on roadkill patterns for some species. Restrictions in movement that followed likely led simultaneously to fewer casualties and a decrease in the search effort. 

The number of new observations submitted to Waarnemingen.be continues to increase year after year, with data for 2021 pointing to about 9 million. Even so, the scientists warn that those recorded observations “are only the tip of the iceberg.”

 “Citizen scientists are a very valuable asset in investigating wildlife roadkill. Without your contributions, roadkill in Flanders would be a black box,”

the researchers conclude.

***

Research paper:

Swinnen KRR, Jacobs A, Claus K, Ruyts S, Vercayie D, Lambrechts J, Herremans M (2022) ‘Animals under wheels’: Wildlife roadkill data collection by citizen scientists as a part of their nature recording activities. In: Santos S, Grilo C, Shilling F, Bhardwaj M, Papp CR (Eds) Linear Infrastructure Networks with Ecological Solutions. Nature Conservation 47: 121-153. https://doi.org/10.3897/natureconservation.47.72970

***

The research article is part of the Special Issue: “Linear Infrastructure Networks with Ecological Solutions“, which collates 15 research papers reporting on studies presented at the IENE2020 conference.

***

Follow Nature Conservation on Twitter and Facebook.

Invasive alien species? Isn’t there an app for that?

Scientists review 41 invasive species reporting apps and provide recommendations for future development.

Invasive alien species (IAS) are a leading contributor to biodiversity loss, and they cause annual economic damage in the order of hundreds of billions of US dollars in each of many countries around the world. Smartphone apps are one relatively new tool that could help monitor, predict, and ideally prevent their spread. But are they living up to their full potential?

A team of researchers from the University of Montana, the Flathead Lake Biological Station and the University of Georgia River Basin Center tried to answer that in a recent research paper in the open access, peer-reviewed journal NeoBiota. Going through nearly 500 peer-reviewed articles, they identified the key features of the perfect IAS reporting app and then rated all known English-language IAS reporting apps available to North America users against this ideal.

Smartphone apps have the potential to be powerful reporting tools. Citizen scientists the world around have made major contributions to the reporting of biodiversity using apps like iNaturalist and eBird. But apps for reporting invasive species never reached that level of popularity; Howard and his team investigated why.

Smartphone apps like the soon-to-be-released new EDDmapS platform are promising tools for monitoring, predicting, and reducing the spread of invasive species. However, the same explosion of reports has not been realized as that which has been experienced by biodiversity-wide platforms. Howard et al. investigate why there has not been the same boom in use observed for these invasive species-specific apps. Image by Leif Howard and Charles van Rees

User uptake and retention are just as important as collecting data. Howard and colleagues found that apps tend to do a good job with one of these, and rarely with both. In their paper, they emphasize that making apps user-friendly and fun to use, involving games and useful functions like species identification and social media plug-ins is a major missing piece among current apps.

“The greatest advancement in IAS early detection would likely result from app gamification,” they write.

Another feature they would like to see more of is artificial intelligence or machine learning for photo identification, which they believe would greatly enhance species identification and might increase public participation.

The authors also make suggestions for future innovations that could make IAS reporting apps even more effective. Their biggest suggestion is coordination. 

“Currently, most invasive species apps are developed by many separate organizations, leading to duplicated effort and inconsistent implementation”, they say. “The valuable data collected by these apps is also sent to different databases, making it harder for scientists to combine them for useful research.”

A more efficient way to implement these technologies might be providing open-source code and app templates, with which local organizations can make regional apps that contribute data to centralized databases. 

Overall, this research shows how with broader participation, more complete and informative reporting forms, and more consistent and structured data management, IAS reporting apps could make much larger contributions to invasive species management worldwide. This, in turn, could save local, regional, and national economies hundreds of millions or billions of dollars annually, while protecting valuable ecological and agricultural systems for future generations.

Research article:

Howard L, van Rees C, Dahquist Z, Luikart G, Hand B (2022) A review of invasive species reporting apps for citizen science and opportunities for innovation. NeoBiota 71: 165-188. https://doi.org/10.3897/neobiota.71.79597

Follow NeoBiota on Twitter and Facebook.

Citizen scientists help expose presence of invasive Asian bamboo longhorn beetle in Europe

A worryingly high number of Asian bamboo longhorn beetles turn out to have been emerging across Europe for about a century already, finds an international research team. Curiously, the records of the invasive, non-native to the Old Continent species are mostly sourced from citizen scientists and online platforms, which proves the power of involving the public in species monitoring. The study is published in the open-access, peer-reviewed scientific journal BioRisk.

A worryingly high number of Asian bamboo longhorn beetles (Chlorophorus annularis) turn out to have been emerging across Europe for about a century already, finds an international research team, headed by researchers from the Center of Natural History, University of Hamburg, Germany. Curiously, the recent records of the invasive, non-native to the Old Continent species are mostly sourced from citizen scientists and online platforms, which proves the power of involving the public in species monitoring. The study is published in the open-access, peer-reviewed scientific journal BioRisk.

In our globalised world, which has already become victim to climate change and biodiversity loss, non-native species present a further threat to our ecosystems. Thus, the rising accounts of newly recorded alien species are of serious concern to both scientists and (inter)national institutions. However, surveying non-native species remains limited to a small fraction of species: those known to be particularly invasive and harmful.

One of the multitude of non-native species that are currently lacking efficient and coordinated surveying efforts is the Asian bamboo longhorn beetle (Chlorophorus annularis). Naturally occurring in temperate and tropical Southeast Asia, the insect feeds on a variety of plants, but prefers bamboo. Thus, due to the international trade of bamboo and the insects ‘travelling’ with the wood, the species has continuously been expanding its distribution around the world. Its first appearance in Europe was recorded back in 1924, when it was identified in England.

Bamboo longhorn beetle captured in Braintree, United Kingdom
Photo by Stephen Rolls

Back to our days, during a fieldwork practice for students at the University of Hamburg, held within the city because of the COVID-19 travelling restrictions, the team stumbled across a longhorn beetle, later identified by scientists as the Asian bamboo borer. Furthermore, it became clear that there were even more recent records published across different citizen science platforms, such as iNaturalist, iRecord and Waarneming.nl. Having taken the contacts of the citizen scientists from there, the researchers approached them to ask for additional collection details and images, which were readily provided. As a result, the researchers formally confirmed the presence of the Asian bamboo borer in Belgium and the Netherlands. In total, they reported thirteen new introductions of the species in Europe, which translates to a 42% increase of the records of the species for the continent.

“In light of the warming climate and a growing abundance of ornamental bamboo plants in Europe, the beetle might get permanently established. Not only could it become a garden pest, but it could also incur significant costs to the bamboo-processing industry,”

comments Dr Matthias Seidel, lead author of the study.

Having realised the potential of citizen science for bridging the gaps in invasive species monitoring, the researchers now propose for specialised platforms to be established with the aim to familiarise non-professional scientists with non-native species of interest and provide them with more sophisticated reporting tools. The aim is to speed up the identification of important alien species by collating records of specific species of interest, which are flagged and regularly exported from other citizen science databases and platforms. 

Bamboo longhorn beetle captured in Lincoln, United Kingdom
Photo by Sheena Cotter

Original source: 

Seidel M, Lüttke M, Cocquempot C, Potts K, Heeney WJ, Husemann M (2021) Citizen scientists significantly improve our knowledge on the non-native longhorn beetle Chlorophorus annularis (Fabricius, 1787) (Coleoptera, Cerambycidae) in Europe. BioRisk 16: 1–13. https://doi.org/10.3897/biorisk.16.61099

Citizen scientists discover a new snail and name it after Greta Thunberg

A new to science species of land snail was discovered by a group of citizen scientists working together with scientists from Taxon Expeditions, a company that organises scientific field trips for teams consisting of both scientists and laypeople. Having conducted a vote on how to name the species, the expedition participants and the local staff of the National Park together decided to name the mollusc Craspedotropis gretathunbergae. The species name honors the young Swedish activist Greta Thunberg for her efforts to raise awareness about climate change. The study is published in the open-access journal Biodiversity Data Journal.

“The newly described snail belongs to the so-called caenogastropods, a group of land snails known to be sensitive to drought, temperature extremes and forest degradation”,

says snail expert and co-founder of Taxon Expeditions, Dr. Menno Schilthuizen.

All individuals were found very close to the research field station (Kuala Belalong Field Studies Centre) at the foot of a steep hill-slope, next to a river bank, while foraging at night on the green leaves of understorey plants.

Citizen scientist J.P. Lim, who found the first specimen of Greta Thunberg’s snail says:

“Naming this snail after Greta Thunberg is our way of acknowledging that her generation will be responsible for fixing problems that they did not create. And it’s a promise that people from all generations will join her to help”.


Taxon Expeditions participant J.P. Lim collecting snails.
Credit: Taxon Expeditions – Pierre Escoubas
License: CC-BY 4.0

The expedition team approached Ms. Thunberg who said that she would be “delighted” to have this species named after her. 

Video about Taxon Expeditions & Greta Thunberg snail
Credit: Taxon Expeditions

However, this is not the first time that Taxon Expeditions team names a species in honour of an environmental advocate. In 2018, they named a new species of beetle after famous actor and climate activist Leonardo DiCaprio. Mr. DiCaprio temporarily changed his profile photo on Facebook to the photo of “his” beetle to acknowledge this honour.


View of the Ulu Temburong National Park in Brunei from the canopy bridge.
Credit: Taxon Expeditions – Pierre Escoubas
License: CC-BY 4.0

Original source:

Schilthuizen M, Lim JP, van Peursen ADP, Alfano M, Jenging AB, Cicuzza D, Escoubas A, Escoubas P, Grafe U, Ja J, Koomen P, Krotoski A, Lavezzari D, Lim L, Maarschall R, Slik F, Steele D, Ting Teck Wah D, van Zeeland I, Njunjić I (2020) Craspedotropis gretathunbergae, a new species of Cyclophoridae (Gastropoda: Caenogastropoda), discovered and described on a field course to Kuala Belalong rainforest, Brunei. Biodiversity Data Journal 8: e47484. https://doi.org/10.3897/BDJ.8.e47484

On the edge between science & art: historical biodiversity data from Japanese “gyotaku”

Japanese cultural art of ‘gyotaku’, which means “fish impression” or “fish rubbing”, captures accurate images of fish specimens. It has been used by recreational fishermen and artists since the Edo Period. Distributional data from 261 ‘Gyotaku’ rubbings were extracted for 218 individual specimens, roughly representing regional fish fauna and common fishing targets in Japan through the years. The results of the research are presented in a paper published by Japanese scientists in open-access journal Zookeys.

Japanese cultural art of ‘gyotaku’, which means “fish impression” or “fish rubbing”, captures accurate images of fish specimens. It has been used by recreational fishermen and artists since the Edo Period. Distributional data from 261 ‘Gyotaku’ rubbings were extracted for 218 individual specimens, roughly representing regional fish fauna and common fishing targets in Japan through the years. The results of the research are presented in a paper published by Japanese scientists in open-access journal Zookeys.

Historical biodiversity data is being obtained from museum specimens, literature, classic monographs and old photographs, yet those sources can be damaged, lost or not completely adequate. That brings us to the need of finding additional, even if non-traditional, sources. 

In Japan many recreational fishers have recorded their memorable catches as ‘gyotaku’ (魚拓), which means fish impression or fish rubbing in English. ‘Gyotaku’ is made directly from the fish specimen and usually includes information such as sampling date and locality, the name of the fisherman, its witnesses, the fish species (frequently its local name), and fishing tackle used. This art has existed since the last Edo period. Currently, the oldest ‘gyotaku’ material is the collection of the Tsuruoka City Library made in 1839.

Traditionally, ‘gyotaku’ is printed by using black writing ink, but over the last decades colour versions of ‘gyotaku’ have become better developed and they are now used for art and educational purposes. Though, the colour prints are made just for the means of art and rarely include specimen data, sampling locality and date.

In the sense of modern technological progress, it’s getting rarer and rarer that people are using ‘gyotaku’ to save their “fishing impressions”. The number of personally managed fishing-related shops is decreasing and the number of original ‘gyotaku’ prints and recreational fishermen might start to decrease not before long.

Smartphones and photo cameras are significantly reducing the amount of produced ‘gyotaku’, while the data from the old art pieces are in danger of either getting lost or diminished in private collections. That’s why the research on existing ‘gyotaku’ as a data source is required.

A Japanese research team, led by Mr. Yusuke Miyazaki, has conducted multiple surveys among recreational fishing shops in different regions of Japan in order to understand if ‘gyotaku’ information is available within all the territory of the country, including latitudinal limits (from subarctic to subtropical regions) and gather historical biodiversity data from it.

In total, 261 ‘gyotaku’ rubbings with 325 printed individual specimens were found among the targeted shops and these data were integrated to the ‘gyotaku’ database. Distributional data about a total of 235 individuals were obtained within the study.

The observed species compositions reflected the biogeography of the regions and can be representative enough to identify rare Red-listed species in particular areas. Some of the studied species are listed as endangered in national and prefectural Red Lists which prohibits the capture, holding, receiving and giving off, and other interactions with the species without the prefectural governor’s permission. Given the rarity of these threatened species in some regions, ‘gyotaku’ are probably important vouchers for estimating historical population status and factors of decline or extinction.

“Overall, the species composition displayed in the ‘gyotaku’ approximately reflected the fish faunas of each biogeographic region. We suggest that Japanese recreational fishers may be continuing to use the ‘gyotaku’ method in addition to digital photography to record their memorable catches” , concludes author of the research, Mr. Yusuke Miyazaki.


Gyotaku rubbing from the fish store in Miyazaki Prefecture
Credit: Yusuke Miyazaki
License: CC-BY 4.0

Gyotaku rubbing of the specimen from Kanagawa found in the shop in Tokyo
Credit: Yusuke Miyazaki
License: CC-BY 4.0

###

Original source:

Miyazaki Y, Murase A (2019) Fish rubbings, ‘gyotaku’, as a source of historical biodiversity data. ZooKeys 904: 89-101. https://doi.org/10.3897/zookeys.904.47721

Living room conservation: Gaming & virtual reality for insect and ecosystem conservation

Gaming and virtual reality could bridge the gap between urban societies and nature, thereby paving the way to insect conservation by the means of education and participation. This is what an interdisciplinary team at Florida International University strive to achieve by developing a virtual reality game (desktop version also available) dedicated to insect and plant species. Focused on imperiled butterflies, their innovative idea: Butterfly World 1.0, is described in the open-access journal Rethinking Ecology.

Participant playing the virtual reality version of Butterfly World 1.0.
Photo by Jaeson Clayborn.

Players explore and search for butterflies using knowledge gained through gameplay

Gaming and virtual reality (VR) could bridge the gap between urban societies and nature, thereby paving the way to insect conservation by the means of education, curiosity and life-like participation.

This is what Florida International University‘s team of computer scientist Alban Delamarre and biologist Dr Jaeson Clayborn strive to achieve by developing a VR game (desktop version also available) dedicated to insect and plant species. Focused on imperiled butterflies, their innovative idea: Butterfly World 1.0, is described in the open-access journal Rethinking Ecology.


When playing, information about each butterfly species is accessed on the player’s game tablet. Image by
Alban Delamarre and Dr Jaeson Clayborn.

Butterfly World 1.0 is an adventure game designed to engage its users in simulated exploration and education. Set in the subtropical dry forest of the Florida Keys (an archipelago situated off the southern coast of Florida, USA), Butterfly World draws the players into an immersive virtual environment where they learn about relationships between butterflies, plants, and invasive species. While exploring the set, they interact with and learn about the federally endangered Schaus’ swallowtail butterfly, the invasive graceful twig ant, native and exotic plants, and several other butterflies inhabiting the dry forest ecosystem. Other nature-related VR experiences, including conservation awareness and educational programs, rely on passive observations with minimal direct interactions between participants and the virtual environment.

According to the authors, virtual reality and serious gaming are “the new frontiers in environmental education” and “present a unique opportunity to interact with and learn about different species and ecosystems”.


In the real world, Spanish needles (Bidens alba) is considered a weed in South Florida. However, it is an excellent nectar source for butterflies.
Photo by Alban Delamarre.

The major advantage is that this type of interactive, computer-generated experience allows for people to observe phenomena otherwise impossible or difficult to witness, such as forest succession over long periods of time, rare butterflies in tropical dry forests, or the effects of invasive species against native wildlife.

“Imagine if, instead of opening a textbook, students could open their eyes to a virtual world. We live in a time where experiential learning and stories about different species matter, because how we feel about and connect with these species will determine their continued existence in the present and future. While technology cannot replace actual exposure to the environment, it can provide similar, near-realistic experiences when appropriately implemented,” say the scientists.

In conclusion, Delamarre and Clayborn note that the purpose of Butterfly World is to build knowledge, reawaken latent curiosity, and cultivate empathy for insect and ecosystem conservation.

###

The game is accessible online at: http://ocelot.aul.fiu.edu/~adela177/ButterflyWorld/.

Original source:

Clayborn J, Delamarre A (2019) Living room conservation: a virtual way to engage participants in insect conservation. Rethinking Ecology 4: 31-43. https://doi.org/10.3897/rethinkingecology.4.32763

Citizen scientists discover 6 new species of beetles in Borneo

Scientists estimate that 80% of the world’s animal and plant species are still unknown. Although the work of taxonomists (whose job is to describe and name those) is appreciated by the general public, funding for taxonomy is dwindling. Moreover, while the areas hosting most of the unknown biodiversity are under threat, time is running out.

To help solve this problem, Taxon Expeditions has become the first organisation in the world to initiate field courses for citizen scientists in biodiversity hotspots, with the aim of discovering, describing, naming, and publishing new species under the slogan “You can be Darwin too”.

“Relying on extra hands means that unknown species can be discovered faster and,” says Taxon Expeditions director and biologist Dr. Iva Njunjic, “for some of that work, you don’t even need to be a trained taxonomist.”

Taxon Expedition’s first field course to the remote 30-kilometre-wide Maliau Basin in Malaysian Borneo, yielded six new species. Three of those, all tiny beetles living in rainforest leaf litter, are published today in the Biodiversity Data Journal. The other three, belonging to the family Elmidae (riffle beetles) will be published next year.

Citizen scientists discovered these species during a field exercise employing the method of ‘Winkler extraction’. Using this technique, dead leaves are collected from the rainforest floor before being sieved, so that hundreds of tiny soil-dwelling insects can be revealed.

Professor Menno Schilthuizen recognised three of those as new species. Under his guidance, the participants studied, photographed and drew the specimens in the expedition’s field lab, extracted their DNA and finalised a draft ready for publication.

The participants also came up with the original names for the three new species. English teacher Sean Otani from Japan decided to name Colenisia chungi after Malaysian entomologist Arthur Chung. The names for Clavicornaltica sabahensis and Dermatohomoeus maliauensis referring to the studied sites were suggested by staff and rangers of Maliau Conservation Area during the farewell party for the course.

All collected samples are deposited in the insect collection of Universiti Malaysia Sabah and the rest of the results – in online databases. This way, these discoveries will help other biologists working on Borneo’s biodiversity.

In March 2018, Taxon Expeditions will again head for Maliau Basin with a new group of participants, hopefully discovering more new species for science. Meanwhile, this year’s team look back on having contributed to real scientific discoveries.

“I had no idea how different, how exciting, how interesting it was going to be. It has been an amazing experience,” says retired corporate account manager Mary Erickson from Canada.

###

Original source:

Schilthuizen M, Seip LA, Otani S, Suhaimi J, Njunjic I (2017) Three new minute leaf litter beetles discovered by citizen scientists in Maliau Basin, Malaysian Borneo (Coleoptera: Leiodidae, Chrysomelidae). Biodiversity Data Journal 5: e21947. https://doi.org/10.3897/BDJ.5.e21947

Nature Conservation Special: Guidelines for the monitoring of beetles protected in Europe

In a follow-up to a recent special issue, 8 research articles outline a set of verified guidelines for the monitoring of 5 saproxylic beetle species listed in the Habitats Directive

In a set of eight research publications, scientists tested various methods for the monitoring of five European saproxylic (i.e. dependent on dead wood) beetle species protected by the Habitats Directive. The aim of their work was to test and propose a standard method for each species. A key role in this conservation initiative was played by citizen scientists who made it possible for sufficient data to be collected within a significantly shorter time frame.

The special issue “Guidelines for the monitoring of the saproxylic beetles protected in Europe” is the second in succession published in the open access journal Nature Conservation. Both are produced within the framework of the European Union’s LIFE Programme Project “Monitoring of insects with public participation” (LIFE11 NAT/IT/000252 MIPP) and were presented at the European Workshop held in Mantova in May 2017. Colonel Franco Mason, project manager of the MIPP project, notes that the workshop was aimed primarily at monitoring of saproxylic beetles.

While the first article collection focused on reporting recent findings derived from monitoring surveys across the European Union, the papers in the latest issue are devoted to testing various methods for the monitoring of five selected species of protected beetles, in order to determine the most efficient methods and, subsequently, to propose them as standard methods.

12761_Public participation 2nd tweetCuriously, the public participation in the project was not limited to ecology and entomology semi-experts and aficionados. The team specifically targeted children when recruiting volunteers. One of the dissemination activities of the MIPP project was the “MIPP-iacciono gli insetti” (translated to “I like insects” from Italian), where 3000 students from primary to high school undertook 60 activities per year in order to learn how to locate and identify the target insects.

“Participation by children in environmental education programmes seems to have a great impact on their attitude and behaviour,” notes Giuseppe Carpaneto, Roma Tre University and his co-authors in their introductory article.

“Some studies have shown that children who participate in such programmes are more concerned about nature, want to learn more about environmental issues and are more prone to follow pro-environmental behaviour (e.g. waste recycling) than children who did not participate”.

In another article, included in the special issue, Fabio Mosconi of the Italian Agricultural Research Council and Sapienza University of Rome and his co-authors tested whether a specially trained Golden Retriever could locate the threatened hermit beetle faster and more efficiently than scientists using the standard “wood mould sampling” method.

###

Additional information:

About the Life project MIPP

The main objective of the project MIPP is to develop and test methods for the monitoring of five beetle species listed in Annexes II and IV of the Habitats Directive (Osmoderma eremitaLucanus cervusCerambyx cerdoRosalia alpinaMorimus funereus).