The Widow Next Door: Where is the globally invasive Noble False Widow settling next?

Noble false widow spider (Steatoda nobilis) at a public bus stop in the seaside resort of Lyme Regis, southern England. Photo by Rainer Breitling.

Spiders are one of the most successful groups of ‘invaders’ on the planet. Out of over 47,000 species of spiders known today, there are some that tend to follow humans across the globe and settle in habitats far away from their native homelands. A particularly notorious example is the species Steatoda nobilis, the Noble False Widow spider.

Originating from Madeira (Portugal) and the Canary Islands (Spain), the Noble False Widow has been rapidly spreading around the globe over the last few decades. While the species is already well established in Western Europe and large parts of the Mediterranean area, it has recently spread into California, South America and Central Europe. Meanwhile, its populations in England, where the spider used to be restricted to the very southern parts of the country, are now seen to experience a sudden expansion northwards.

As its name suggests, this is a relatively large species that resembles the well-known Black Widow and can inflict a painful – yet mostly harmless to humans – bite. Naturally, its ‘arrival’ causes widespread concerns and public disruptions. Specifically, the Noble False Widow poses a threat to native faunas, since it can prey on nearly every smaller animal thanks to its potent venom and sturdy webs.

Recently, experts and non-professional citizen scientists joined forces to reconstruct the invasion path of the Noble False Widow in Europe and the Americas, so that they could identify patterns and predict which regions are likely to be the next colonised by the spider.

By combining data from museum collections and the Spider and Harvestman Recording Scheme of the British Arachnological Society with published literature and their own observations from England, Germany, France and Ecuador, the researchers provided an unprecedented detailed view of the expansion of the Noble False Widow. The study, conducted by Tobias Bauer (State Museum of Natural History Karlsruhe), Stephan Feldmeier (Trier University), Henrik Krehenwinkel (Trier University and University of California Berkeley), Rainer Breitling (University of Manchester) and citizen scientists Carsten Wieczorrek and Nils Reiser, is published in the open-access journal Neobiota.

While it had largely been assumed that the Noble False Widow turned up in Europe along with bananas traded from the Canary Islands, a new look at the data revealed that the spiders have most likely been transported via imports of ornamental plants. Further, rather than the result of climate change, the establishment of the species across new, large territories is rather linked to the fact that these habitats all share similar conditions to the spider’s native localities.

“Similar suitable False Widow habitats occur in quite specific regions all around the globe,” explain the researchers. “Most importantly, South Africa, some areas in southern Australia, and a large part of New Zealand turn out to be highly likely targets for future invasions, unless appropriate import control measures are implemented.”

Global prediction of suitable regions for the Noble False Widow (Steatoda nobilis). Image by Stephan Feldmeier & Tobias Bauer.

In conclusion, the authors call for enhanced monitoring of the Noble False Widow as well as its still little known ecological impact on the environment in newly colonised areas. They also urge scientists in the predicted potential invasion target regions to search for specimens, especially in coastal cities.

 

Original source:

Bauer T, Feldmeier S, Krehenwinkel H, Wieczorrek C, Reiser N, Breitling R (2019) Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota 42: 19-43. https://doi.org/10.3897/neobiota.42.31582

Scientists forecast where is the highly invasive fall armyworm to strike next

The fall armyworm is the larvae of the fall armyworm moth species Spodoptera frugiperda. Photo by Centre for Agriculture and Bioscience International (CABI).

Staple and economically important crops throughout the world could be at serious risk if efficient measures are not taken soon

Known to be feeding on many economically important crops cultured across the world, including maize, rice, sugarcane, sorghum, beet, tomato, potato, cotton and pasture grasses, the larvae of the native to the Americas fall armyworm moth seem to have already found a successful survival strategy in a diverse and changing world.

Furthermore, having taken no longer than 2 years to invade and spread throughout most of sub-Saharan Africa, the pest has already demonstrated its huge potential in severely affecting livelihoods around the globe.

A recent study in the open-access journal NeoBiota, conducted by Dr Regan Early of Exeter University, United Kingdom and her colleagues at the Centre for Agriculture and Bioscience International: Dr Pablo González-Moreno, Sean T. Murphy and Roger Day, looks into the factors and likelihood for the fall armyworm (Spodoptera frugiperda) to spread to other regions and continents.

Invasion progress

The alarming reports started in January 2016 when major outbreaks of fall armyworms were registered in Nigeria and Ghana, preceding signals from Benin, Sao Tomé and Togo shortly after. By September 2017, the pest had already been confirmed in 28 sub-Saharan African countries, with nine states expected to follow suit.

While unaided dispersal of the species in Africa is considered unlikely, it is speculated that the pest had arrived on a passenger flight from America. To back this theory, the researchers point out that the first countries to house the invader are also the major air transportation hubs in Africa and have warm, moist climate similar to those in the pest’s natural habitat.

In the aftermath, recent estimates point to up to 50% maize yield loss in Africa attributed to the fall armyworm. However, scientists believe that the species is far from finished spreading and is highly likely to invade new continents.

Who’s next?

To find what makes a region an inviting new habitat for the fall armyworm, hence which countries face the highest threat of future invasions, the researchers looked into both the native and African distributions of the species, and the effects different temperatures and precipitation levels have on it.

Having concluded that the lowest temperatures and the maximum amount of rain play the main role in determining whether the fall armyworm is to establish in a certain region, the scientists concluded that South and Southeast Asia, as well as Australia face the most serious risk, since their climate is very similar to the one preferred by the pest.

However, the authors of the study remind that this forecast shall in no way be taken with a sigh of relief by countries with milder climatic conditions. While the moth needs particular temperature and precipitation amplitudes at its year-round habitat, it could easily travel back and forth up to several hundred kilometres during its seasonal migrations. Therefore, if the fall armyworm establishes in North Africa, it could migrate to Europe during the warmer months, just like it has already been observed to travel from its year-round localities in Argentina, Texas and Florida all the way to Canada’s Québec and Ontario in the north.

The increasing transportation and international trade are also likely to facilitate the further spread of the fall armyworm outside Africa. The scientists conclude that, given the current travel air routes, it is Australia, China, India, Indonesia, Malaysia, Philippines and Thailand which are at high risk of becoming the pest’s new habitat.

The map illustrates the likelihood of the establishment of the fall armyworm if introduced at different parts of the world. Image by Regan Early.

What’s next?

Having concluded that there is a considerable potential for near global invasion and seasonal migration of fall armyworm, the scientists call for vigilance from farmers and programme managers alike. They remind that early detection of small larvae is crucial, since it is only at this stage that chemical insecticides would work effectively.

“As fall armyworm has huge potential to affect staple and economic crops globally, we urgently need information on the pest’s potential distribution and environmental limitations,” comment the researchers.

“Management decisions would be improved by further research on fall armyworm’s seasonal migration and population dynamics and the environmental dependency of interactions with other species.”

###

Original source:

Early R, González-Moreno P, Murphy ST, Day R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40: 25-50. https://doi.org/10.3897/neobiota.40.28165

A preprint of the study was published earlier on bioRxiv.

Tiny moth from Asia spreading fast on Siberian elms in eastern North America

In 2010, moth collector James Vargo began finding numerous specimens of a hitherto unknown pygmy moth in his light traps on his property in Indiana, USA. When handed to Erik van Nieukerken, researcher at Naturalis Biodiversity Center (Leiden, the Netherlands) and specialist in pygmy moths (family Nepticulidae), the scientist failed to identify it as a previously known species.

These are male specimens of the studied leaf mining moth Stigmella multispicata collected from Iowa, USA.

Then, Erik found a striking similarity of the DNA barcodes with those of a larva he had recently collected on Siberian elm in Beijing’s botanical garden. At the time, the Chinese specimen could not be identified either.

In October 2015, Daniel Owen Gilrein, entomologist at Cornell Cooperative Extension of Suffolk County (New York, USA), received samples of green caterpillars seen to descend en masse from Siberian elm trees in Sagaponack, New York. He also received leafmines from the same trees.

Once they joined forces, the researchers did not take long to find out that the specimens from James Vargo and the caterpillars from New York belonged to one and the same species. The only thing left was its name.

Following further investigation, the scientists identified the moth as Stigmella multispicata – a pygmy moth described in 2014 from Primorye, Russia, by the Lithuanian specialists Agne Rociene and Jonas Stonis.

“Apparently, this meant that we were dealing with a recent invasion from East Asia into North America,” explains Erik.

Once the researchers had figured out how to identify the leafminer, they were quick to spot its existence in plenty of collections and occurrence reports from websites, such as BugGuide and iNaturalist.

With the help of Charley Eiseman, a naturalist from Massachusetts specializing in North American leafminers, the authors managed to conclude the moth’s existence in ten US states and two Canadian provinces. In most cases, the species was found on or near Siberian elm – another species transferred from Asia to North America.

Their study is published in the open access journal ZooKeys.

Despite the oldest records dating from 2010, it turned out that the species had already been well established at the time. The authors suspect that the spread has been assisted by transport of plants across nurseries.

“Even though Stigmella multispicata does not seem to be a real problem, it would be a good idea to follow its invasion over North America, and to monitor whether the species may also attack native elm species,” the researchers point out.

Distribution in North America.

Interestingly, in addition to the newly identified moth, the Siberian elms in North America have been struggling with another, even more common, invasive leafminer from Asia: the weevil species Orchestes steppensis. The beetle had been previously misnamed as the European elm flea weevil.

###

Original source:

van Nieukerken EJ, Gilrein DO, Eiseman CS (2018) Stigmella multispicata Rociene & Stonis, an Asian leafminer on Siberian elm, now widespread in eastern North America (Lepidoptera, Nepticulidae). ZooKeys 784: 95-125. https://doi.org/10.3897/zookeys.784.27296

How did coyotes conquer North America?

Coyotes now live across North America, from Alaska to Panama, California to Maine. But where they came from, and when, has been debated for decades.

Using museum specimens and fossil records, researchers from the North Carolina Museum of Natural Sciences and North Carolina State University have produced a comprehensive (and unprecedented) range history of the expanding species that can help reveal the ecology of predation as well as evolution through hybridization. Their findings are published in the open access journal ZooKeys.

The geographic distribution of coyotes has dramatically expanded since 1900, spreading across much of North America in a period when most other mammal species have been declining. Although this unprecedented expansion has been well-documented at the state/provincial scale, continent-wide picture of coyote spread been coarse and largely anecdotal. A more thorough compilation of available records was needed.

“We began by mapping the original range of coyotes using archaeological and fossil records,” says co-author Dr. Roland Kays, Head of the Museum’s Biodiversity Lab and Research Associate Professor in NC State’s Department of Forestry and Environmental Resources. “We then plotted their range expansion across North America from 1900 to 2016 using museum specimens, peer-reviewed reports, and game department records.”

In all, Kays and lead author James Hody, a graduate student at NC State University, reviewed more than 12,500 records covering the past 10,000 years for this study.

 Their findings indicate that coyotes historically occupied a larger area of North America than generally suggested in the literature. Previous maps, as it turns out, had ancient coyotes only located across the central deserts and grasslands. However, fossils from across the arid west link the distribution of coyotes from 10,000 years ago to specimens collected in the late 1800s, proving that their geographic range was not only broader but had been established for hundreds, perhaps thousands of years, which also contradicts some widely-cited descriptions of their historical distribution.

 It wasn’t until approximately 1920 that coyotes began their expansion across North America. This was likely aided by an expansion of human agriculture, forest fragmentation, and hybridization with other species. Eastern expansion, in particular, was aided by hybridization with wolves and dogs, resulting in size and color variation among eastern coyotes.

Before too long, coyotes may no longer be just a North American species. Kays notes that coyotes are continually expanding their range in Central America, having crossed the Panama Canal in 2010. Active camera traps are now spotting coyotes approaching the Darien Gap, a heavily forested region separating North and South America, suggesting that they are at the doorstep of South America.

 “The expansion of coyotes across the American continent offers an incredible experiment for assessing ecological questions about their roles as predators, and evolutionary questions related to their hybridization with dogs and wolves,” adds Hody.

“By collecting and mapping these museum data we were able to correct old misconceptions of their original range, and more precisely map and date their recent expansions.”

“We hope these maps will provide useful context for future research into the ecology and evolution of this incredibly adaptive carnivore,” he concludes.

 

###

(Originally published on Eurekalert! by North Carolina Museum of Natural Sciences.)

 

Original source:

Hody JW, Kays R (2018) Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys 759: 81–97. https://doi.org/10.3897/zookeys.759.15149

Scientists dive into museum collections to reveal the invasion route of a small crustacean

Biological invasions are widely recognised as one of the most significant components of global change. Far-reaching and fast-spreading, they often have harmful effects on biodiversity.

Therefore, acquiring knowledge of potentially invasive non-native species is crucial in current research. In particular, it is important that we enhance our understanding of the impact of such invasions.

To do so, Prof Sabrina Lo Brutto and Dr Davide Iaciofano, both working at the Taxonomy Laboratory of the University of Palermo, Italy, performed research on an invasive alien crustacean (Ptilohyale littoralis) known to have colonised the Atlantic European Coast. Their findings are published in the open access journal ZooKeys.

The studied species belongs to a group of small-sized crustaceans known as amphipods. These creatures range from 1 to 340 mm in length and feed on available organic matter, such as dead animals and plants. Being widely distributed across aquatic environments, amphipods have already been proven as excellent indicators of ecosystem health.

While notable for their adaptability and ecological plasticity, which secure their abundance in various habitats, these features also make amphipods especially dangerous when it comes to playing the role of invaders.

Having analysed specimens stored at the Museum of Natural History of Verona and the Natural History Museum in Paris, the scientists concluded that the species has colonised European waters 24 years prior to the currently available records.

The problem was that, back in 1985, when the amphipod was first collected from European coasts, it was misidentified as a species new to science instead of an invader native to the North American Atlantic coast.

A closer look into misidentified specimens stored in museum collections revealed that the species has been successfully spreading along the European coastlines.

Male of the invasive amphipod species (Ptilohyale littoralis), sampled in October 2015, from Bay of Arcachon, France.

Moreover, it was predicted that the amphipod could soon reach the Mediterranean due to the high connectivity between the sea and the eastern Atlantic Ocean through the Straits of Gibraltar – a route already used by invasive marine fauna in the past.

In the event that the invader reaches the Mediterranean, it is highly likely for the crustacean to meet and compete with a closely related “sister species” endemic to the region. To make matters worse, the two amphipods are difficult to distinguish due to their appearance and behaviour both being extremely similar.

However, in their paper, the scientists have also provided additional information on how to distinguish the two amphipods – knowledge which could be essential for the management of the invader and its further spread.

The authors believe that their study demonstrates the importance of taxonomy – the study of organism classification – and the role of natural history collections and museums.

“Studying and monitoring biodiversity can acquire great importance in European aquatic ecosystems and coastal Mediterranean areas, where biodiversity is changing due to climate change and invasions of alien species,” Prof Lo Brutto says. “In this context, specific animal groups play a crucial role in detecting such changes and they, therefore, deserve more attention as fundamental tools in biodiversity monitoring.”

“Regrettably, the steadily diminishing pool of experts capable of accurately identifying species poses a serious threat in this field.”

###

Original source:

Lo Brutto S, Iaciofano D (2018) A taxonomic revision helps to clarify differences between the Atlantic invasive Ptilohyale littoralis and the Mediterranean endemic Parhyale plumicornis(Crustacea: Amphipoda). ZooKeys, 754: 47-62. https://doi.org/10.3897/zookeys.754.22884

Double trouble: Invasive insect species overlooked as a result of a shared name

An invasive leaf-mining moth, feeding on cornelian cherry, has been gradually expanding its distributional range from its native Central Europe northwards for a period likely longer than 60 years. During that period, it has remained under the cover of a taxonomic confusion, while going by a name shared with another species that feeds on common dogwood.

To reproduce, this group of leaf-mining moths lay their eggs in specific plants, where the larvae make tunnels or ‘mines’, in the leaves. At the end of these burrows, they bite off an oval section, in which they can later pupate. These cutouts are also termed ‘shields’, prompting the common name of the family, the shield-bearer moths.

During a routine study into the DNA of leaf-mining moths, Erik van Nieukerken, researcher at Naturalis Biodiversity Center, Leiden, the Netherlands, discovered that the DNA barcodes of the species feeding on common dogwood and cornelian cherry were in fact so different that they could only arise from two separate species. As a result, Erik teamed up with several other scientists and amateur entomologists to initiate a more in-depth taxonomic study.

Curiously, it turned out that the two species had been first identified on their own as early as in 1899, before being described in detail by a Polish scientist in the 50s. Ironically, it was another Polish study, published in the 70s, that regarded the evidence listed in that description as insufficient and synonymised the two leaf-miners under a common name (Antispila treitschkiella).

Now, as a result of the recent study undertaken by van Nieukerken and his collaborators, the two moth species – Antispila treitschkiella and Antispila petryi – have their diagnostic features listed in a research article published in the open access journal Nota Lepidopterologica.

“We now establish that the species feeding on common dogwood, A. petryi, does not differ only in its DNA barcode, but also in characters of the larva, genitalia and life history,” explains Erik van Nieukerken. “A. petryi has a single annual generation, with larvae found from August to November, whereas A. treitschkiella, which feeds on cornelian cherry, has two generations, with larvae occurring in June-July and once again between September and November.”

While van Nieukerken and his team were working on the taxonomy of the moths, David C. Lees of the Natural History Museum, London, spotted a female leaf-miner in the Wildlife Garden of the museum. Following consultation with van Nieukerken, it turned out that the specimen in question was the first genuine A. treitschkiella ever to be found in Britain. Subsequently, the research groups decided to join forces, leading to the present discovery.

Despite the lack of data for the British Isles, it is already known that, in continental Europe, the cornelian cherry-feeding species had established in the Netherlands and much of Germany in the 1990s.

0.6 x 1.0

With common dogwood being widely planted, it is now suspected that A. petryi has recently reached Sweden and Estonia, even though there was no previous evidence of the leaf-miner expanding its range.

“This discovery should provoke the attention of gardeners and other members of the public alike to the invasive leafminers attacking some of our much admired trees and shrubs, as we have demonstrated for the cornelian cherry – a species well-known for its showy red berries in the autumn,” says David Lees.

“Especially in Britain, we hope that they check their photos for the conspicuous leaf mines, recognisable by those oval cutouts, to see if they can solve the mystery of when the invasion, which is now prominent on cornels around London, actually started, and how fast it progresses. Citizen scientists can help.”

###

Original source:

van Nieukerken EJ, Lees DC, Doorenweerd C, Koster S(JC), Bryner R, Schreurs A, Timmermans MJTN, Sattler K (2018) Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion. Nota Lepidopterologica 41(1): 39-86. https://doi.org/10.3897/nl.41.22264

A race against pine: Wood-boring wasp in North America threatened by a Eurasian invader

Invasive species have diverse impacts in different locations, including biodiversity loss, as a result of native species being outcompeted for similar resources. A U.S. research team, led by Dr. Ann Hajek, Cornell University, studied the case of an aggressive Eurasian woodwasp that has recently established in North America and poses a threat to a native species. Their study is published in the open-access journal NeoBiota.

Most woodwasps play an essential part in the forest ecosystem, as they decompose wood, preferring dying or felled trees. They do so by laying their eggs in the wood underneath the tree bark. Curiously, the wasps also deposit a symbiotic fungus and venom that shuts down the tree’s defenses. As the tree weakens, the fungal infestation begins and the the tree starts to rot. When the eggs hatch, the larvae feed on the rotten wood before they emerge. This relationship is called obligate since the survival of the wasp is impossible without the fungal infestation.

IMG_2322Originating from Eurasia, the presence of the invasive species is dangerous because it can kill healthier pines. It has long been established in the southern hemisphere causing economic issues due to its attacks on pines. While pines have been introduced to that part of the world, they are native to North America, where the invasive wasp could be far more devastating.

Now that the invasive woodwasp has already been identified in the States, the scientists seek to find a way to protect its frail competitor, reporting a rapid decline in the North American species.

“We would often observe both species emerging from the same infested pine trees, but the ratios changed with time,” explains Dr. Ann Hajek.

“Shortly after the invasive colonizes an area, the native wasps emerging from the trees would equal the invasive. However, a few years later, the natives started to get fewer and fewer.”

It turned out that the Eurasian woodwasp has larger venom glands and produces more eggs, thanks to its greater body size. Furthermore, it emerges earlier than the North American species, so that it can find and colonize the most suitable trees first. By the time the native species lays its eggs, the authors speculate, most of the preferred trees are already occupied by the invasive, leaving a reduced supply of habitat for the newcomer’s larvae.

“Woodwasps are difficult to study and their biologies are generally poorly understood,” note the authors. “While the native species appears to be outcompeted from pines that both species prefer, it is possible that populations of the native can be sustained in trees less desirable to the invasive or unavailable during the time and place that the invasive is present.”

The scientists call for additional research on the native woodwasp in southeastern pine forests in USA, before the invaders spread to that area with extensive pine forests.

###

Original source:

Hajek AE, Henry JC, Standley CR, Foelker CJ (2017) Comparing functional traits and abundance of invasive versus native woodwasps. NeoBiota 36: 39-55. https://doi.org/10.3897/neobiota.36.14953

Poison ivy an unlikely hero in warding off exotic invaders?

Dozens of studies have looked at the effects of Japanese knotweed on natural communities in Europe and North America. Yet Bucknell University professor Chris Martine still felt there was something important to learn about what the plant was doing along the river in his own backyard.

“The more time I spent in the forests along the Susquehanna River, the more it seemed like something was really going wrong there,” said Martine. “In addition to the prevalence of this single invasive species, it looked like the very existence of these forests was under threat.”

What Martine noticed was similar to what local nature lovers and biologists with the Pennsylvania Natural Heritage Program were also starting to see: these forests, specifically those classified as Silver Maple Floodplain Forests, were not regenerating themselves where knotweed had taken a foothold.

In a new study published in the open access Biodiversity Data Journal, Martine and two recent Bucknell alumni conclude that Japanese knotweed has not only excluded nearly all of the native understory plant species in these forests, but it has prevented the trees already established in the canopy from leaving behind more of themselves.

“If you were to fly over these forests, or even look at a Google Earth image, you’d see a nice green canopy along the river consisting of mature silver maples, river birches, and sycamores,” explained Martine. “But below that canopy there is almost nothing for tens of feet before you reach an eight-to-twelve-foot-tall thicket of knotweed. Few new trees have been able to grow through that in the last 50-60 years and our surveys found that seedlings of these species are quite rare.”

The authors suggest that as mature trees die of natural causes over the next several decades and are not replaced, these systems will shift from tree-dominated riverbank habitats to “knotweed-dominated herbaceous shrublands” incapable of supporting a rich diversity of insects, birds, and other wildlife. Loss of trees in these habitats could likely also lead to riverbank erosion and increase the severity of flood events.

The few places where knotweed has not taken over offer a bit of hope, however, from an unlikely hero: poison-ivy, which Martine calls “perhaps the least popular plant in America.”

“What we see in the data is that poison-ivy often trades understory dominance with knotweed. That is, when knotweed isn’t the big boss, poison-ivy usually is. The difference is that whereas knotweed knocks everyone else out of the system, poison-ivy is more of a team player. Many other native plants can co-occur with it and it even seems to create microhabitats that help tree seedlings get established.”

The prevalence of poison-ivy in these sites didn’t go unnoticed by undergraduate Anna Freundlich, who collected most of the plant community data — more than 1,000 data points — in a single summer as a research fellow.

“Anna developed a pretty serious methodology for avoiding a poison-ivy rash that included long sleeves, long pants, gloves, duct tape, and an intense wash-down protocol,” said her research advisor, “and even after crawling through the plant for weeks she managed to never once get a rash.”

Martine cautions against too much optimism regarding the chances of one itch-inducing native plant saving the day, however.

“Righting this ship is going to require eradicating knotweed from some of these sites, and that won’t be easy work. It will take some hard manual labor. But it’s worth doing if we want to avoid the imminent ecological catastrophe. These forests really can’t afford another half-century of us letting knotweed run wild.”

Freundlich is a now pursuing a Master’s degree in plant ecology at the University of Northern Colorado. Lead author Matt Wilson, a Bucknell Master’s student at the time of the study who analyzed the dataset, now works for the Friends of the Verde River in Cottonwood, AZ.

###

Original source:

Wilson M, Freundlich A, Martine C (2017) Understory dominance and the new climax: Impacts of Japanese knotweed (Fallopia japonica) invasion on native plant diversity and recruitment in a riparian woodland. Biodiversity Data Journal 5: e20577. https://doi.org/10.3897/BDJ.5.e20577

###

About Japanese knotweed:

Japanese knotweed is considered to be one of the toughest, most damaging and insidious plants in the world. Native to East Asia, the species has already established successfully in many parts throughout North America and Europe, where it can easily grow and invade private properties and homes. It is hardy enough to penetrate patios, house foundations and concrete. Given it spreads easily and can grow underground to a depth of 3 metres with a horizontal range of up to 7 metres, it is extremely difficult to eradicate and its treatment requires special attention. To find advice on recognition, hazards and treatment, you can check out The Ultimate Japanese Knotweed Guide.

Invasive alien plant control assessed for the Kruger National Park in South Africa

Along with urban and agricultural encroachment and pollution mitigation, managing invasive alien species is a key intervention needed to protect biodiversity. Unfortunately, on a global scale there are not enough funds to meet the requirements for effective conservation everywhere, which means that scarce funds need to be allocated where they can be used most efficiently.

In order to find out whether the historical measures undertaken at the Kruger National Park in South Africa have been effective and optimised, researchers led by Prof. Brian W. van Wilgen of Stellenbosch University assessed the invasive alien plant control operations in the protected area over several decades. Their findings and recommendations are published in the open access journal Neobiota.

While the first invasive alien plants in the national park, which stretches over two million hectares, were recorded back in 1937, it was not until the mid-1950s that attempts at controlling them began. By the end of the century, the invasive alien plant control program had expanded substantially.

Dense invasions of the West Indian Lantana (Lantana camara) along the Sabie River in the Kruger National Park have required intensive mechanical and chemical control to clear.
Dense invasions of the West Indian Lantana along the Sabie River in the Kruger National Park have required intensive mechanical and chemical control to clear.

However, the scientists found out that despite several invasive alien species having been effectively managed, the overall control effort was characterised by several shortcomings, including inadequate goal-setting and planning, the lack of a sound basis on which to apportion funds, and the absence of any monitoring of control effectiveness.

Furthermore, the researchers report that over one third (40%) of the funding has been spent on species of lower concern. Some of these funds have been allocated so that additional employment could be created onsite, or because of a lack of clear evidence about the impact of certain species.

As a result of their observations, the team concludes three major strategies when navigating invasive alien species control operations.

Firstly, a thorough assessment of the impact of individual species needs to be carried out prior to allocating substantial funds. On the other hand, in case of a new invasion, management needs to be undertaken immediately before any further spread of the population and the subsequent rise in control costs. Monitoring and assessments have to be performed regularly in order to identify any new threats that could potentially be in need of prioritisation over others.

Secondly, the scientists suggest that the criteria used to assign priorities to invasive alien species should be formally documented, so that management can focus on defensible priorities. They propose using a framework employing mechanisms of assessments used in the International Union for Conservation of Nature‘s Global Invasive Species Database.

The authors also point out that re-allocating current funds to species of greater concern is needed for species that cannot be managed via less expensive solutions such as biological control. Taking care of alien plant populations living outside of the park, but in close proximity, is also crucial for the prevention of re-invasions of already cleared areas.

Sunset Dam heavily infested with water lettuce (left). The population was effectively eliminated by a combination of biological and chemical control (right).
Sunset Dam heavily infested with water lettuce (left). The population was effectively eliminated by a combination of
biological and chemical control (right).

###

Original source:

van Wilgen BW, Fill JM, Govender N, Foxcroft LC (2017) An assessment of the evolution, costs and effectiveness of alien plant control operations in Kruger National Park, South Africa. NeoBiota 35: 35-59. https://doi.org/10.3897/neobiota.35.12391

Long-distance survival: Effects of storage time and environmental exposure on soil bugs

Contaminated soil frequently arrives at the borders through transported items, and is widely recognised as a vector for non-native species, potentially threatening the local agriculture, horticulture and natural ecosystems. However, although soil is the target of management practices that aim to minimise the spread of invasive alien species, crucial knowledge of the biosecurity hazards that can accompany transported soil is currently lacking. While not much is known about the relative survival rates of the transported soil organisms, nor about their establishment probabilities, this information is essential to support optimal policy and management decisions.

soil-trays-on-top-of-research-sea-containersA recent study, led by Mark McNeill from AgResearch’s Biosecurity and Biocontrol team at Lincoln, New Zealand, and published in the open access journal NeoBiota, shows that biosecurity risks from soil organisms are to increase with declining transport duration and increasing protection from environmental extremes. The scientists sought the answer of a simple question – are soil organisms still risky after a year in the sun?

To find out, Mark and his team collected soil from both a native forest and an orchard and stored it on, in and under sea containers, as well as in cupboards. They tested it after three, six and twelve months for bacteria, fungi, nematodes and seeds.

“Soil can carry unwanted microbes, insects and plants, and this study showed that some died faster when exposed, than when protected in a cupboard. This work shows some of the risks presented by soil contamination,” Mark says.

“The results showed that viability of certain bacteria, nematodes and plants declined over 12 months, irrespective of soil source and where the soil was stored. But mortality of most organisms was higher when exposed to sunlight, moisture and desiccation than when protected,” he explains. “However, bacterial and fungal numbers were higher in exposed environments, possibly due to ongoing colonisation of exposed soil by airborne propagules.”

“The results were consistent with previous observations that organisms in soil intercepted from seaports tend to carry less bugs than soil found on footwear,” McNeill notes.

img-1-real-world_contaminated-footwear-2“The research also raised wider questions, because some results were unexpected, including trying to understand why the microbe numbers went up and down like they did in the soil sitting on the sea containers when everything else died off. Was it the circle of life or just new microbe migrants creating new populations?

“We hope that the work will be useful for plant quarantine authorities to assess the risk presented by transported soil based partly on where the soil is found and the age of the soil. This would help authorities to optimally allocate management resources according to pathway-specific risks. Importantly, the study will assist in the development of recommendations for increasing management efficiency and efficacy at national borders.”

###

 

Original source:

McNeill MR, Phillips CB, Robinson AP, Aalders L, Richards N, Young S, Dowsett C, James T, Bell N (2017) Defining the biosecurity risk posed by transported soil: Effects of storage time and environmental exposure on survival of soil biota. NeoBiota 32: 65-88. https://doi.org/10.3897/neobiota.32.9784