Life in the fast flow: Tadpoles of new species rely on ‘suction cups’ to keep up

The frogs living in the rainforest of Sumatra also represent a new genus

Indonesia, a megadiverse country spanning over 17,000 islands located between Australia and mainland Asia, is home to more than 16% of the world’s known amphibian and reptile species, with almost half of the amphibians found nowhere else in the world. Unsurprisingly, biodiversity scientists have been feverishly discovering and describing fascinating new animals from the exotic island in recent years.

Sumatran forest

Such is the case of an international team from the University of Hamburg, Germany, University of Texas at Arlington, USA, University of Bern, Switzerland and Bandung Institute of Technology, Indonesia, who came across a curious tadpole while collecting amphibian larvae from fast-flowing streams as part of an arduous expedition in the remote forests on the island of Sumatra.

To the amazement of the scientists, it turned out that the tadpoles possess a peculiar cup-like structure on their bellies, in addition to the regular oral disk found in typical tadpoles. As a result, the team described two new species and a genus in the open access journal Zoosystematics and Evolution. A previously known, but misplaced in an unsuitable genus, frog was also added to the group, after it was proved that it takes advantage of the same modification.

This phenomenon where tadpoles display ‘belly suckers’ is known as gastromyzophory and, albeit not unheard of, is a rare adaptation that is only found in certain toads in the Americas and frogs in Asia,” explains lead author Umilaela Arifin.

The abdominal sucker, it is hypothesized, helps these tadpoles to exploit a very special niche – fast-flowing streams – where the water would otherwise be too turbulent and rapid to hang around. Gastromyzophorous species, however, rely on the suction provided by their modified bellies to secure an exclusive access to plentiful food, such as algae, while the less adapted are simply washed away.

When the scientists took a closer look at the peculiar tadpoles and their adult forms, using a powerful combination of molecular and morphological data, they realized that they had not only stumbled upon a rare amphibian trait, but had also discovered two brand new species of frogs in the process.

Sumaterana crassiovis

Moreover, the animals turned out so distinct in their evolutionary makeup, compared to all other frogs, that the scientists had to create a whole new genus to accommodate them. Formally named Sumaterana, the genus is to be commonly referred to as Sumatran Cascade Frogs.

We decided to call the new genus Sumaterana after Sumatra, to reflect the fact that these new species, with their rare evolutionary adaptation are endemic to Sumatra’s rainforests and, in a sense, are emblematic of the exceptional diversity of animals and plants on the island,” says co-author Dr. Utpal Smart. “Tragically, all of them are in peril today, given the current rate of deforestation.

The authors agree that much more taxonomic work is still needed to determine and describe Sumatra’s herpetofaunal diversity, some of which they fear, could be irreversibly lost well before biologists have the chance to discover it.

###

Original source:

Arifin U, Smart U, Hertwig ST, Smith EN, Iskandar DT, Haas A (2018) Molecular phylogenetic analysis of a taxonomically unstable ranid from Sumatra, Indonesia, reveals a new genus with gastromyzophorous tadpoles and two new species. Zoosystematics and Evolution 94(1): 163-193. https://doi.org/10.3897/zse.94.22120

Two new species of stone centipedes found hiding in larch forests in China

Scientists described two species of previously unknown stone centipedes from China. Now housed at the Hengshui University, China, where all members of the team work, the studied specimens were all collected in the leaf litter or under rocks in larch forests.

Having conducted their research across China, researchers Dr Sujian Pei, Yanmin Lu, Haipeng Liu, Dr Xiaojie Hou and Dr Huiqin Ma announced the two new species – Lithobius (Ezembius) tetraspinus and Hessebius luculentus – in two articles published in the open access journal ZooKeys.

Stone centipedes are the species which belong to the order Lithobiomorpha. These centipedes are anamorphic, meaning that they grow additional pair of legs as they moult and develop additional body segments. By the time they are fully grown, these count 15 in total. Unlike earlier predecessors, stone centipedes do not have the compound eyes we know from insects. Instead, stone centipedes see through simple eyes, sometimes a group of simple eyes, or, if living exclusively underground, they might have no eyes at all.19980 New centipede China L. tetraspinus

One of the newly discovered species, Lithobius (Ezembius) tetraspinus, is recorded from Hami City, Xinjiang Autonomous Region, northwestern China. The studied specimens were collected from moderately moist larch forest habitats at altitude of 950 to 1000. There, the small predominantly brown centipedes, measuring no more than about 13 mm in body length, were hiding under rodeside stones and leaf litter.

The second previously unknown centipede, Hessebius luculentus, discovered in Shandan County, Qinghai-Tibet Plateau, is slightly larger – reaching up to 20 mm. Its colours are a mix of yellow and brown with the odd grey or red hue. While it has the same preference for relatively moist habitats, this species lives at greater altitude. It has been reported from forest floor at about 1400 m above sea level.

In both papers, the authors point out that while the myriapod fauna of China remains generally poorly known, even less attention has been given to the order of stone centipedes.

The research articles are included in the special issue “Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand”. The congress, organised by Prof. Somsak Panha, Chulalongkorn University, Bangkok, was held in July 2017.

###

Original source:

Pei S, Lu Y, Liu H, Hou X, Ma H (2018) Lithobius (Ezembius) tetraspinus, a new species of centipede from northwest China (Lithobiomorpha, Lithobiidae). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 203-217. https://doi.org/10.3897/zookeys.741.19980

Ma H, Lu Y, Liu H, Hou X, Pei S (2018) Hessebius luculentus, a new species of the genus Hessebius Verhoeff, 1941 from China (Lithobiomorpha, Lithobiidae). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 193-202. https://doi.org/10.3897/zookeys.741.20061

New parasitoid wasp likely uses unique saw-like spines to break out of its host body

About the size of a sesame seed, a new species of wasp from Costa Rica, named Dendrocerus scutellaris, has elaborate branched antennae that could be used for finding mates. Or hosts.

The new insect is described by PhD candidate Carolyn Trietsch, Dr. István Mikó and Dr. Andrew Deans of the Frost Entomological Museum at Penn State, USA, together with Dr. David Notton of the Natural History Museum in London, UK. Their study is published in the open access Biodiversity Data Journal.

The wasp is a parasitoid, meaning that its larvae feed on a live host insect. There are two types of parasitoids: ectoparasitoids, which lay their eggs on or near the host, so that the hatchling larvae can attach to and feed on the insect from the outside; and endoparasitoids, which lay their eggs directly inside the host, so that the larvae can eat them from the inside out.

Unfortunately, to puzzle out the new wasp’s lifestyle, the researchers could only rely on specimens collected back in 1985, which had spent the past few decades stored in the collections of the Natural History Museum of London before being loaned to the Frost Museum at Penn State for research.

What can you learn about a wasp’s lifestyle from specimens that are over 30 years old? Even though the new species has never been observed in the wild, researchers managed to learn a lot by looking at the wasps’ morphology, concluding that the species is likely an endoparasitoid.

The larva of an endoparasitoid wasp needs a safe place to develop and mature, so when it is done feeding on its host, it may stay inside the host’s body where it can develop undisturbed. Once it is fully grown, the adult wasp either chews or pushes its way out, killing the host if it isn’t already dead.

Unlike its close relatives, the new species does not have pointed mandibles for chewing. Instead, it has a series of spines along its back. While the wasp is emerging, it may rub these spines against the host and use them like a saw to cut open the body. Once emerged, it flies off to mate and continue the cycle.

“While their lives may sound gruesome, parasitoid wasps are harmless to humans and can even be helpful,” explain the scientists. “Depending on the host they parasitize, parasitoids can benefit agriculture by controlling pest insects like aphids that damage crops.”

It is currently unknown what the new species feeds upon, but naming the species and bringing it to attention is the first step in learning more about it.

###

Original source:

Trietsch C, Mikó I, Notton D, Deans A (2018) Unique extrication structure in a new megaspilid, Dendrocerus scutellaris Trietsch & Mikó (Hymenoptera: Megaspilidae). Biodiversity Data Journal 6: e22676. https://doi.org/10.3897/BDJ.6.e22676

Spider eat spider: Scientists discover 18 new spider-hunting pelican spiders in Madagascar

In 1854, a curious-looking spider was found preserved in 50 million-year-old amber. With an elongated neck-like structure and long mouthparts that protruded from the “head” like an angled beak, the arachnid bore a striking resemblance to a tiny pelican. A few decades later when living pelican spiders were discovered in Madagascar, arachnologists learned that their behavior is as unusual as their appearance, but because these spiders live in remote parts of the world they remained largely unstudied–until recently.

At the Smithsonian’s National Museum of Natural History, curator of arachnids and myriapods Hannah Wood has examined and analyzed hundreds of pelican spiders both in the field in Madagascar and through study of pelican spiders preserved in museum collections. Her analysis, focused on spiders of the Eriauchenius and Madagascarchaea genera, sorted the spiders she studied into 26 different species–18 of which have never before been described. Wood and colleague Nikolaj Scharff of the University of Copenhagen describe all 26 pelican spider species in the Jan. 11 issue of the journal Zookeys.

159795_webWood says pelican spiders are well known among arachnologists not only for their unusual appearance, but also for the way they use their long “necks” and jaw-like mouthparts to prey on other spiders. “These spiders attest to the unique biology that diversified in Madagascar,” she said.

Pelican spiders are active hunters, prowling the forest at night and following long silk draglines that lead them to their spider prey. When a pelican spider finds a victim, it swiftly reaches out and impales it on its long, fang-tipped “jaws,” or chelicerae. Then it holds the capture away from its body, keeping itself safe from potential counterattacks, until the victim dies.

Today’s pelican spiders are “living fossils,” Wood says–remarkably similar to species found preserved in the fossil record from as long as 165 million years ago. Because the living spiders were found after their ancestors had been uncovered in the fossil record and presumed extinct, they can be considered a “Lazarus” taxon. In addition to Madagascar, modern-day pelican spiders have been found in South Africa and Australia–a distribution pattern that suggests their ancestors were dispersed to these landmasses when the Earth’s supercontinent Pangaea began to break up around 175 million years ago.

Madagascar is home to vast numbers of plant and animal species that exist only on the island, but until recently, only a few species of pelican spiders had been documented there. In 2000, the California Academy of Sciences launched a massive arthropod inventory in Madagascar, collecting spiders, insects and other invertebrates from all over the island.159828_web

Wood used those collections, along with specimens from other museums and spiders that she collected during her own field work in Madagascar, to conduct her study. Her detailed observations and measurements of hundreds of specimens led to the identification of 18 new species–but Wood says there are almost certainly more to be discovered. As field workers continue to collect specimens across Madagascar, “I think there’s going to be a lot more species that haven’t yet been described or documented,” she said.

The spiders Wood personally collected, including holotypes (the exemplar specimens) for several of the new species, will join the U.S. National Entomological Collection at the Smithsonian, the second-largest insect collection in the world, where they will be preserved and accessible for further research by scientists across the globe.

All of the pelican spiders that Wood described live only in Madagascar, an island whose tremendous biodiversity is currently threatened by widespread deforestation. The new species add to scientists’ understanding of that biodiversity, and will help Wood investigate how pelican spiders’ unusual traits have evolved and diversified over time. They also highlight the case for conserving what remains of Madagascar’s forests and the biodiversity they contain, she says.

###

Funding for this study was provided by the Danish National Research Foundation and the National Science Foundation.

###

Original source:

Wood HM, Scharff N (2018) A review of the Madagascan pelican spiders of the genera Eriauchenius O. Pickard-Cambridge, 1881 and Madagascarchaea gen. n. (Araneae, Archaeidae). ZooKeys 727: 1-96. https://doi.org/10.3897/zookeys.727.20222

Seven new spider species from Brazil named after 7 famous fictional spider characters

Several literary classics from the fantasy genre are further immortalised and linked together thanks to a Brazilian research team who named seven new spiders after them.

Spider characters from A Song of Ice and Fire, Harry Potter, The Lord of the Rings, The Silmarillion, H. P. Lovecraft’s The Call of Cthulhu and the children’s favourite Charlotte’s Web and Little Miss Spider each gave a name to a new small cave-dwelling six-eyed spider inhabiting northern Brazil.

Discovered in iron caves across the state of Pará, northern Brazil, the new species belong to the same Neotropical genus Ochyrocera. They are described in a new research article published in the open access journal ZooKeys by Dr Antonio Brescovit, Dr Igor Cizauskas and Leandro Mota – all affiliated with Instituto Butantan, Sao Paulo.

Interestingly, while all seven previously unknown species prefer staying in the shadows underground, none of them has the adaptations characteristic for exclusively cave-dwelling organisms, such as loss of pigmentation and reduced or missing eyes. They are classified as edaphic troglophile species, which means that they are capable of completing their life cycle away from sunlight, but are not bound to the deepest recesses. Often crawling near the surface, they can even be spotted outside the caves. To describe the species, the scientists collected about 2,000 adult specimens following a 5-year series of field collection trips.

Ochyrocera varys predating on a fly [Fig. 21 A]The list of ‘fantasy’ spiders begins with Ochyrocera varys named after Lord Varys from George R. R. Martin’s book series A Song of Ice and Fire. Lord Varys is also known as the Spider because of his manipulative skills and ability to ‘weave’ and command his networks of eyes-and-ears across two continents.

The name of Ochyrocera atlachnacha refers to the Spider God Atlach-Nacha from the universe created by H. P. Lovecraft. Atlach-Nacha is a giant spider with a human-like face which lives in the caves beneath a mountain and spins a web believed to link the world with the Dreamlands.

Two species are named after spider characters from the classic works by J. R. R. Tolkien. Ochyrocera laracna is a species named after the well-known giant spider Laracna (Shelob in English) who attacks main characters Frodo and Sam on their way to Mordor in The Lord of the Rings’ second volume – The Two Towers.

On the other hand, the Brazilian spider’s sibling – Ochyrocera ungoliant – is linked to Laracna’s mother. Ungoliant appears in Tolkien’s book The Silmarillion, whose events take place prior to those of The Lord of the Rings’ second volume The Two Towers. According to the story, Ungoliant translates to Dark Spider in Elvish.

Another staple in the 20th-century fantasy literature, the Harry Potter series, written by J. K. Rowling, also enjoys the attention of the researchers. The species Ochyrocera aragogue is an explicit reference to the talking Aragog, who lives in the dark recesses of the Forbidden Forest. In the second volume of the series, Harry Potter and the Chamber of Secrets, he confronts Harry Potter and Ron Weasley.

The authors do not fail to pay tribute to much less violent spiders known from popular children books. David Kirk’s Little Miss Spider inspires the name of Ochyrocera misspider. The character is remembered with her words: “We have to be good to bugs; all bugs.”A couple of Ochyrocera misspider [Fig. 21 C]

The Ochyrocera charlotte species refers to Charlotte, the spider from E. B. White’s classic Charlotte’s Web who befriends the main character – Wilbur the pig.

It is highly likely that there are many species and populations of this group of spiders yet to be discovered in the Neotropics, since the lack of previous studies in the region. However, the area and its biodiversity are impacted by mining.

###

Original source:

Brescovit AD, Cizauskas I, Mota LP (2018) Seven new species of the spider genus Ochyrocera from caves in Floresta Nacional de Carajás, PA, Brazil (Araneae, Ochyroceratidae). ZooKeys 726: 87-130. https://doi.org/10.3897/zookeys.726.19778

New butterfly species discovered in Russia with an unusual set of 46 chromosomes

What looked like a population of a common butterfly species turned out to be a whole new organism, and, moreover – one with a very peculiar genome organisation.

Discovered by Vladimir Lukhtanov, entomologist and evolutionary biologist at the Zoological Institute in St. Petersburg, Russia, and Alexander Dantchenko, entomologist and chemist at the Moscow State University, the startling discovery was named South-Russian blue (Polyommatus australorossicus). It was found flying over the northern slopes of the Caucasus mountains in southern Russia. The study is published in the open access journal Comparative Cytogenetics.

“This publication is the long-awaited completion of a twenty-year history,” says Vladimir Lukhtanov.

In the mid-nineties, Vladimir Lukhtanov, together with his students and collaborators, started an exhaustive study of Russian butterflies using an array of modern and traditional research techniques. In 1997, Alexander Dantchenko who was mostly focused on butterfly ecology, sampled a few blue butterfly specimens from northern slopes of the Caucasus mountains. These blues looked typical at first glance and were identified as Azerbaijani blue (Polyommatus aserbeidschanus).

However, when the scientists looked at them under a microscope, it became clear that they had 46 chromosomes – a very unusual number for this group of the blue butterflies and exactly the same count as in humans.

Having spent twenty years studying the chromosomes of more than a hundred blue butterfly species and sequencing DNA from all closely related species, the researchers were ready to ascertain the uniqueness of the discovered butterfly and its chromosome set.

Throughout the years of investigation, it has become clear that caterpillars of genetically related species in the studied butterfly group feed on different, but similar plants. This discovery enables entomologists to not only discover new butterfly species with the help of botanic information, but also protect them.

“We are proud of our research,” says Vladimir Lukhtanov. “It contributes greatly to both the study of biodiversity and understanding the mechanisms of biological evolution.”

###

Original source:

Lukhtanov VA, Dantchenko AV (2017) A new butterfly species from south Russia revealed through chromosomal and molecular analysis of the Polyommatus (Agrodiaetus) damonides complex (Lepidoptera, Lycaenidae). Comparative Cytogenetics 11(4): 769-795. https://doi.org/10.3897/CompCytogen.v11i4.20072

Heat-loving Australian ants believe in diversity, hint 74 species new to science

The ‘furnace ants’ or ‘honeypot ants’ present a very large genus of ants, Melophorus, confined to Australia. Long believed to be megadiverse, some scientists have even suggested that the group may contain ‘well over 1000 species’. However, to this point, only 32 species and subspecies had been described.

Scientists Dr Brian Heterick of Curtin UniversityDr Mark Castalanelli of Ecodiagnostics Pty Ltd and Dr Steve Shattuck of the Australian National University, funded by an internationally competitive Australian Biological Resources (ABRS) grant, set out to find the true facts.

As a result, they discovered as many as 74 new species belonging to Melophorus. In their study, published in the open access journal ZooKeys, they also provide a taxonomic key to the workers of a total of 93 species in the genus.

Among the studied ants, there are quite bizarre ones, including a species (Melophorus hirsutus) whose eyes are strangely protruding out of his head to a varying degree. In the extreme cases, the eyes are so pointy that could be likened to ice-cream cones. Named many years ago, this ant appears to be older than the rest of the examined living species. Furthermore, unlike most of them, it does not seem adapted to heat. It is confined to the wet eastern coast of Australia.

Dr Heterick spent two weeks collecting specimens in the often rugged and forbidding terrain of Western Australia, while the team also asked a number of major museum collections to loan them specimens.

The newly collected ants were placed in alcohol and subjected to genetic tests using one mitochondrial and four nuclear genes. The findings were then compared with those from physical examinations to prepare the taxonomic key – a set of distinctive features per species that can be used to differentiate within the group.

Given the generally complex nature of these ants, the authors expect for the genus to further expand in future. They speculate that even though the numbers may increase to around 100 species, not the ‘well over 1000’ previously predicted, they still illustrate an incredible diversity.

The authors estimate that Melophorus arose around 35 million years ago. The closest relatives of the genus are also confined to the Australasian region with the exception of a single genus living in South America.

Furthermore, the genus is also quite astonishing thanks to another trait shared among the species.

“By the way, this group of ants has a thing or two to tell those of us who get lost easily!” comments lead author Dr Brian Heterick.

“They can find their way home in a featureless landscape by means of an internal compass influenced by information gathered on earlier journeys. We are not the first species to use a computing system!”

###

Original source:

Heterick B, Castalanelli M, Shattuck S (2017) Revision of the ant genus Melophorus (Hymenoptera, Formicidae). ZooKeys 700: 1-420. https://doi.org/10.3897/zookeys.700.11784

An overlooked and rare new gall-inducing micromoth from Brazil

A new species and genus (Cecidonius pampeanus) of primitive monotrysian micromoth from the Brazilian Pampa biome has been recently discovered to induce scarcely noticeable galls under the swollen stems of the Uruguayan pepper tree.

Gall-inducing moths lay their eggs in the tree bark, where the larvae form the characteristic roundish swellings as they grow larger. In their turn, these galls attract various parasitoids and inquiline wasps – wasps that have lost the ability to form galls for their own eggs – and so they take advantage of the galls of other species, while under development. The inquilines modify the galls into larger ones which subsequently last longer and attract even more attention. As a result, even though abundant as young, the new moth’s larvae rarely survive and their density in the field later in life is low.

Moreiraetal_PressRelease_Image2While free-living gall moths are generally rare, the studied genus pupates on the ground, resulting in its being overlooked for over a century. Furthermore, the galls fall to the ground where the last instar larvae undergo a period of suspended development for months. They stay motionless within their gall until pupation and emerge as adults in the next growing season.

After all this time, this species has finally been recognised in the open access journal ZooKeys by an international research team, led by Dr. Gilson Moreira, Universidade Federal do Rio Grande do Sul, Brazil. In their paper, the scientists describe the gall, immature stages and adults of the moth. They also provide information on its natural history in conjunction with one of the associated parasitoid and inquiline wasps.

“It took several years to obtain a small number of C. pampeanus pupae and adults to use for the description,” say the authors.

“The existence of these galls has been known for more than a century. However, biologists believed they are induced by the inquiline wasps,” they explain. “Consequently, it turned out that the wasps do not induce galls, but rather modify them early in development into large and colourful, visually appealing galls.”

The study also provides strong evidence that the species is under threat of extinction and the scientists suggest that protective measures need to be taken to conserve it.

In fact, they found strikingly low levels of gene flow amongst populations of C. pampeanus. In their paper, the team also emphasises that, in case of extinction of the primary gall inducer, a whole insect community associated with their galls will follow. This could happen even before science becomes familiar with all of these species.

Open savannahs of southern Brazil, where populations of the new moth’s host plant (the Uruguayan pepper tree) are found, have been suffering from anthropic impact for decades, mostly caused by agriculture and cattle ranching.

Curiously, the present study is the first in Brazil to suggest that a micromoth and its associated fauna should be subjected to conservation measures.

Extant populations of the new species are distant and isolated from each other, being restricted to a small geographic area in the northeast Southern Brazilian “Campos” (= Pampean savannah), a neglected biome from a nature preservation perspective. Most of the moths have retreated to higher elevations, such as hilltops and hill slopes interspersed with small bushes, where they get shelter from the anthropic influence.

###

Original source:

Moreira GRP, Eltz RP, Pase RB, Silva GT, Bordignon SAL, Mey W, Gonçalves GL (2017) Cecidonius pampeanus, gen. et sp. n.: an overlooked and rare, new gall-inducing micromoth associated with Schinus in southern Brazil (Lepidoptera, Cecidosidae). ZooKeys 695: 37-74. https://doi.org/10.3897/zookeys.695.13320

3D avatars for three new rare ant species from Africa including the Obama ant

Three new, rare ant species recently discovered in Africa were named after important figures for the African biodiversity conservation – the former United States president Barack Obama, the Nigerian writer and environmental activist Ken Saro-Wiwa, and the world-renowned biologist Edward O. Wilson.

The scientists from the Okinawa Institute of Science and Technology Graduate University (OIST), who had their discovery published in the open access journal ZooKeys, used a new, revolutionary method to compile scans of the ants and create 3D avatars allowing for a unique and detailed visualisation of the insects’ insides.

https://skfb.ly/6sPvr

Curiously, the Obama ant, Zasphinctus obamai, was collected from the Kakamega Forest National Park, Kenya, located near Barack Obama’s ancestral family village. The 44th President of the United States of America is famous for his numerous initiatives towards the conservation of fragile natural habitats around the globe.

Ken Saro-Wiwa, who also has his name perpetualised in the new ant species Zasphinctus sarowiwai, was a Nigerian writer and environmental activist who, after campaigning against irresponsible oil development, was executed in 1995.

“By naming a species from threatened rainforest habitats after him, we want to acknowledge his environmental legacy and draw attention to the often-problematic conservation situation in most Afrotropical rainforests,” explain the biologists in their paper.

The third new species, Zasphinctus wilsoni, bares the name of the biologist Edward O. Wilson, whose foundation has contributed greatly to the resurrection of the Gorongosa National Park in Mozambique.

The 3D avatars were created with the help of X-ray microtomography, or micro-CT, which is a technology similar to the one used in hospitals for CT scans, but relying on much higher resolution. The three-dimensional reconstructions made it possible for the scientists to look into details as tiny as the ants’ mouthparts and even their legs and hairs. Moreover, this method does not require damaging the rare specimens.

“We saw things that nobody ever looked at,” says Dr. Hita Garcia, first author on the study and a member of the Biodiversity and Biocomplexity Unit at OIST.

While closely related ants had already been known as predators of other ant species, the scientists needed to study the data provided by the scans to confirm that the new species are top predators as well.

“Normally when you describe a new species, you don’t know much about its biology,” further explains Dr. Hita Garcia, “but with the 3D reconstructions researchers can discover details right away.”

To the biologists, these reconstructions hint at a future of virtual taxonomy with the potential to alleviate issues of time, money, and specimen damage.

Furthermore, the 3D models also allow for the data to be easily accessible from anywhere. To show this, the scientists have uploaded the reconstructions to the open access Dryad Digital Repository.

“If someone wants to see the Obama ant, they can download it, look at it, and 3D print it,” Dr. Hita Garcia points out.

“Since these ants are from very threatened habitats in Africa, we wanted to pick names that draw attention to the environment, and not just the ants,” he concludes.  “The rainforests in equatorial Africa, as well as the savannah in Mozambique, needs to be protected before the habitats and animals living within them are destroyed.”

 

###

Find the original public announcement available via the OIST’s website: https://www.oist.jp/news-center/news/2017/8/29/say-hello-3d-obama-ant

###

Reference:

Hita Garcia F, Fischer G, Liu C, Audisio TL, Economo EP (2017) Next-generation morphological character discovery and evaluation: an X-ray micro-CT enhanced revision of the ant genus Zasphinctus Wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics. ZooKeys 693: 33-93. https://doi.org/10.3897/zookeys.693.13012

New species of crab with unusual outgrowths has its name written in the stars

A new species of crab with star-shaped tubercles all over its body has been collected from red coral beds during a survey at a small seamount by Peng-Chia-Yu Island, Taiwan. It has also been found in the Philippines. It is described in the open access journal ZooKeys.

This astonishing creature is distinct with its carapace and chelipeds covered in pointy protrusions. Interestingly, these change with age, becoming shorter, blunter and mushroom-shaped to resemble wart-like outgrowths and granules. Regardless of their sex, as the crabs grow larger, their carapaces also get proportionately rounder and wider.

The curious protuberances on the bodies reminded the research team of Dr. Peter Ng, National University of Singapore, and Dr. Ming-Shiou Jeng, Biodiversity Research CenterAcademia Sinica, Taiwan, of stars. Hence, the crab was given the name Pariphiculus stellatus, where stellatus translates as ‘starry’ from Latin.

The colouration of P. stellatus varies among specimens. While predominantly orange with white patches, their shade could be either dull, pale or intense. The white spots might cover some of the protrusions or extend over most of the body. The underside of the body is dirty white to light brown.

Acanthodromia margaritaAnother rare crab species, Acanthodromia margarita, has been reported for the first time from Taiwan in the same study, having previously been known from the Andaman Sea in the eastern Indian Ocean, Japan and the Philippines. The collected female specimen is one of the largest representatives of the species known so far.

“With their bright orange to pink bodies, these hedgehog-like crabs are truly striking in life!” says Dr. Peter Ng.

 

###

Original source:

Ng PKL, Jeng M-S (2017) Notes on two crabs (Crustacea, Brachyura, Dynomenidae and Iphiculidae) collected from red coral beds in northern Taiwan, including a new species of Pariphiculus Alcock, 1896. ZooKeys 694: 135-156. https://doi.org/10.3897/zookeys.694.14871