Hidden diversity: 3 new species of land flatworms from the Brazilian Araucaria forest

A huge invertebrate diversity is hidden on the forest floor in areas of the Araucaria moist forest, Brazil. Land flatworms constitute a numerous group among these invertebrates occurring in the Neotropical region. Flatworms are considered to be top predators within the soil ecosystem, preying on other invertebrates.

fig_1_c_aureomaculataThe Araucaria moist forest is part of the Brazilian Atlantic Rain Forest and is considered a hotspot of land flatworm diversity, harboring many yet undescribed species. Study recently published in the open access journal ZooKeys describes three new species from areas covered by Araucaria moist forest in South Brazil, which belong to the Neotropical genus Cratera.

Land flatworms lack a water retention mechanism and have a low tolerance to intense changes in temperature and humidity. Their low vagility leads to the existence of a high number of endemic species. Thus, they are considered good bioindicators of the degree of impact on their habitat.

The new species are named after characteristics of their color pattern and are probably endemic for the study areas. Besides differing from each other, as well as from other species of the genus, by their characteristic color pattern, they also show other distinguishing features in the reproductive system. The study provides an identification key to the species of the genus.

The work was conducted by the south Brazilian research group on triclads, led by Dr. Ana Leal-Zanchet, of the Universidade do Vale do Rio dos Sinos (UNISINOS), in southern Brazil. The study was supported by the Brazilian Research Council (CNPq).fig_2_c_nigrimarginata

###

Original source:

Rossi, I, Leal-Zanchet, A. (2017) Three new species of Cratera Carbayo et al., 2013 from Araucaria forests with a key to species of the genus (Platyhelminthes, Continenticola). ZooKeys 643 (2017): 1-32. doi: 10.3897/zookeys.643.11093

A colorful yet little known snout moth genus from China with 5 new species

A group of beautiful snout moths from China was revised by three scientists from the Institute of Zoology at the Chinese Academy of Sciences.

In their study, recently published in the open access journal Zookeys, entomologists Dr. Mingqiang Wang, Dr. Fuqiang Chen and Prof. Chunsheng Wu describe five new species and two newly recorded for the country.

Despite being morphologically interesting, the snout moth genus Lista remains little known. Usually, its members have bright-coloured wings, often pink, orange, or yellow, which makes them strikingly different from the rest in their subfamily (Epipaschiinae). In fact, it is because of the beautiful coloration that these moths are sometimes favourably compared to butterflies. However, these moths are indifferentiable from one another on the outside.

image-1As a result of the present study, there are now ten species of Lista snout moths known from China, with their world fauna amounting to thirteen. Mostly distributed in the south the East-Asian country, the genus likely originates from there.

###

Original source:

Wang M, Chen F, Wu C (2017) A review of Lista Walker, 1859 in China, with descriptions of five new species (Lepidoptera, Pyralidae, Epipaschiinae). ZooKeys 642: 97-113. 10.3897/zookeys.642.7157

It’s a girl! Tweaking the names of a pest fanworm group

The largest group of fanworm species with rigid chalky (calcareous) tubes belong to the Hydroides genus, and are easily recognised thanks to the shape of their beautifully ornate tube plugs. Hydroides is economically important as its members have the potential to cover immersed marine structures with massive nuisance settlements of chalky biofouling. The best-known example is Hydroides elegans, which settles on boat hulls so readily that colonies of it are perpetually in transit around the world, hitch-hiking to new places.

Latin names of animals mostly do not change over the decades because they are kept stable by a code book of naming rules. However, a mistake has recently been discovered regarding Hydroides. It turns out that it is a feminine genus rather than masculine, thus requiring each of the 107 Hydroides species names, described since 1768, to be re-examined so that the appropriate spelling, determined by the derivation of each name, can be used consistently by all biologists in future.

Scientists Geoffrey Read, National Institute of Water and Atmospheric Research, New Zealand, Harry ten Hove, Naturalis Biodiversity Center, the Netherlands, Yanan Sun and Elena Kupriyanova, Australian Museum, have carefully compiled the data on original Hydroides names, and published a checklist paper in the open access journal ZooKeys.

‘Detective’ work has often been required to get the details, as early biologists have been remarkably vague about the names they created and where their worms had come from. Fortunately, the Biodiversity Heritage Library has digitised many of the legacy taxonomic works required and it was possible to find out some unexpected information such as that species H. floridana actually did not come from Florida, although its name suggests it did.

three_hydroidesminaxSome Hydroides names have a descriptive basis that fits how the worms look, such as H. bulbosa, H. elegantula and H. longispinosa, others are named after people or places, for example, H. dafnii (after its collector, Yaacob Dafni) and H. sanctaecrucis (after Saint Croix Island). Yet, there are others, whose names are of quite tricky origin. It turns out that H. dianthus was actually named after a group of popular garden flowers, and H. euplaeana and H. stoichadon commemorate the long-forgotten names of tiny Mediterranean islands.

A few 19th century Hydroides descriptions are so bad that taxonomists have given up on using the names. However, one of these discarded names was revived last century by American biologists and was then used in often-cited research on sperm biology. Now, we can only guess what the actual species was.

Hydroides itself is a very old name, but it arose in a somewhat accidental and misleading way (in a letter to Linnaeus), because the worms have absolutely no connection to true hydroids, the well-known group of colonial animals related to corals.

The Hydroides species original descriptions are mostly accessible via the checklist because one third of the reports cited in the checklist are linked to the open access Biodiversity Heritage Library, and a large proportion are matched to an online source. While in the past one could only expect to find recorded the geolocations (the latitudes and longitudes) of worms collected during ship voyages, now the original localities of all the Hydroides are finally mapped. Further information on the taxonomy of all Hydroides, including many now regarded as synonyms, is available via links to the World Register of Marine Species Polychaeta web pages.

###

Original source:

Read GB, ten Hove HA, Yanan Sun Y, Kupriyanova EK (2017) Hydroides Gunnerus, 1768 (Annelida, Serpulidae) is feminine: a nomenclatural checklist of updated names. ZooKeys 642: 1-52. https://doi.org/10.3897/zookeys.642.10443

Biodiversity project in Azores delivers detailed abundance data for 286 arthropod species

In 1999, a long-term biodiversity project started at the Azores Islands (Portugal, Atlantic Ocean), the Biodiversity of Arthropods from the Laurisilva of the Azores (BALA) project (1999-2004). Its aim was to obtain detailed distributional and abundance data for a large fraction of arthropod fauna, living in all remaining native forests at seven of the Azores Islands.

After the first successful sampling of 100 sites at 18 native forest fragments over those five years, a second survey was accomplished in 2010-2011, where two sites per fragment were re-sampled. Now, Dr Paulo A.V. Borges and colleagues publish the complete list of the 286 species identified, including many species described as new to science in the open access journal Biodiversity Data Journal. They have also added detailed information on their distribution and abundance.

The resulting database has inspired the publication of many studies in the last ten years, including macroecological studies evaluating the abundance, spatial variance and occupancy of arthropods, the effects of disturbance and biotic integrity of the native forests on arthropod assemblages and the performance of species richness estimators.

image-2Moreover, these data allowed the ranking of conservation priorities for the fauna of the Azores, and allowed the estimation of extinction debt (the species likely to be wiped out because of past events) in the Azores. The present study has also inspired the development of the Azorean Biodiversity Portal and the Azores Island Lab.

The study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and, more importantly, to other less thoroughly surveyed taxonomic groups (e.g. Diptera and Hymenoptera).

“These steps are fundamental for getting a more accurate assessment of the biodiversity in the Azores archipelago, and we hope that can inspire similar biodiversity surveys at other islands,” say the authors.

###

Original source:

Borges P, Gaspar C, Crespo L, Rigal F, Cardoso P, Pereira F, Rego C, Amorim I, Melo C, Aguiar C, André G, Mendonça E, Ribeiro S, Hortal J, Santos A, Barcelos L, Enghoff H, Mahnert V, Pita M, Ribes J, Baz A, Sousa A, Vieira V, Wunderlich J, Parmakelis A, Whittaker R, Quartau J, Serrano A, Triantis K (2016) New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests. Biodiversity Data Journal 4: e10948. https://doi.org/10.3897/BDJ.4.e10948

Assassins on the rise: A new species and a new tribe of endemic South African robber flies

Discovery of a new species of assassin flies led to the redescription of its genus. This group of curious predatory flies live exclusively in South Africa, preferring relatively dry habitats. Following the revisit, authors Drs Jason Londt, KwaZulu-Natal Museum, South Africa, and Torsten Dikow, Smithsonian Institution National Museum of Natural History, USA, publish updated information about all species within the genus, now counting a total of seven species, and also establish a new tribe. Their study is published in the open access journal African Invertebrates.

The family of assassin flies (Asilidae), also known as robber flies, are curious insects, which have received their common name due to their extremely predatory behavior. The assassin flies prey on a great variety of insects, including beetles, moths, butterflies, wasps, other flies, as well as some spiders, as early as their juvenile stage of development. When hunting, they would ambush their prey and catch it in flight. Then, they would pierce the victim with a short and strong proboscis, while injecting venom. Once in the body of the prey, it quickly dissolves the insides, so that the assassin fly can suck them out.

The published study was spawned by the collection of new specimens of previously described assassin flies of the species Trichoura tankwa by the junior author in December 2015. These specimens could not be easily identified and so the authors started to look at all available specimens in natural history museums.

image-2The new species, called Trichoura pardeos, was discovered in Tierberg Nature Reserve by the authors in 2004, a small conservation area located on the north banks of the Gariep River in the Northern Cape province of South Africa. The habitat comprises almost entirely a large rocky hill, where the vegetation is scarce and dominated by drought-resistant plants, such as aloes. The fly is predominantly red-brown in colour, with silvery, white and yellowish markings.

Having noted morphological variation between the species inhabiting areas with differently timed yearly rainfalls, the entomologists suggest that two groups within the studied genus have adapted to these different patterns in western and eastern South Africa. They also expect that species representing Trichoura could be also dwelling in Namibia, Botswana, Mozambique and possibly Zimbabwe.

###

Original source:

Londt J, Dikow T (2016) A review of the genus Trichoura Londt, 1994 with the description of a new species from the Northern Cape Province of South Africa and a key to world Willistonininae (Diptera, Asilidae). African Invertebrates 57 (2): 119-135. https://doi.org/10.3897/AfrInvertebr.57.10772

Efficiency of insect biodiversity monitoring via Malaise trap samples and DNA barcoding

The massive decline of over 75% insect biomass reported from Germany between 1989 and 2013 by expert citizen scientists proves the urgent need for new methods and standards for fast and wide-scale biodiversity assessments. If we cannot understand species composition, as well as their diversity patterns and reasons behind them, we will fail not only to predict changes, but also to take timely and adequate measures before species go extinct.

An international team of scientists belonging to the largest and connected DNA barcoding initiatives (iBOL, GBOL, BFB), evaluated the use of DNA barcode analysis applied to large samples collected with Malaise traps as a method to rapidly assess the arthropod fauna at two sites in Germany between May and September.

One Malaise trap (tent-like structure designed to catch flying insects by attracting them to its walls and then funneling them into a collecting bottle) was set in Germany’s largest terrestrial protected natural reserve Nationalpark Bayerischer Wald in Bavaria. Located in southeast Germany, from a habitat perspective, the park is basically a natural forest. The second trap was set up in western Germany adjacent to the Middle River Rhine Valley, located some 485 kilometers away from the first location. Here, the vegetation is eradicated annually due to St. Martin’s fires, which occur every November. Their findings are published in the open access Biodiversity Data Journal.

DNA barcoding enables the identification of a collected specimen by comparing its BIN (Barcode Index Number) against the BOLD database. In contrast to evaluation using traditional morphological approaches, this method takes significantly less experience, time and effort, so that science can easily save up on decades of professional work.

However, having analyzed DNA barcodes for 37,274 specimens equal to 5,301 different BINs (i.e., species hypotheses), the entomologists managed to assign unambiguous species names to 35% of the BINs, which pointed to the biggest problem with DNA barcoding for large-scale insect inventories today, namely insufficient coverage of DNA barcodes for Diptera (flies and gnats) and Hymenoptera (bees and wasps) and allied groups. As the coverage of the reference database for butterflies and beetles is good, the authors showcase how efficient the workflow for the semi-automated identification of large sample sizes to species and genus level could be.

In conclusion, the scientists note that DNA barcoding approaches applied to large-scale samplings collected with Malaise traps could help in providing crucial knowledge of the insect biodiversity and its dynamics. They also invite their fellow entomologists to take part and help filling the gaps in the reference library. The authors also welcome taxonomic experts to make use of the unidentified specimens they collected in the study, but also point out that taxonomic decisions based on BIN membership need to be made within a comparative context, “ideally including morphological data and also additional, independent genetic markers”. Otherwise, the grounds for the decision have to be clearly indicated.

The study is conducted as part of the collaborative Global Malaise Trap Program (GMTP), which involves more than 30 international partners. The aim is to provide an overview of arthropod diversity by coupling the large-scale deployment of Malaise traps with the use of specimen-based DNA barcoding to assess species diversity.

Sequence analyses were partially defrayed by funding from the government of Canada through Genome Canada and the Ontario Genomics Institute in support of the International Barcode of Life project. The German Barcode of Life project (GBOL) is generously supported by a grant from the German Federal Ministry of Education and Research (FKZ 01LI1101 and 01LI1501) and the Barcoding Fauna Bavarica project (BFB) was supported by a 10-year grant from the Bavarian Ministry of Education, Culture, Research and Art.

 

 

Original source:

Geiger M, Moriniere J, Hausmann A, Haszprunar G, Wägele W, Hebert P, Rulik B (2016) Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Biodiversity Data Journal 4: e10671. https://doi.org/10.3897/BDJ.4.e10671

35 years of work: More than 1000 leaf-mining pygmy moths classified & catalogued

The leaf-mining pygmy moths (family Nepticulidae) and the white eyecap moths (family Opostegidae) are among the smallest moths in the world with a wingspan of just a few millimetres. Their caterpillars make characteristic patterns in leaves: leaf mines. For the first time, the evolutionary relationships of the more than 1000 species have been analysed on the basis of DNA, resulting in a new classification.

Today, a team of scientists, led by Dr Erik J. van Nieukerken and Dr. Camiel Doorenweerd, Naturalis Biodiversity Center, Leiden, The Netherlands, published three inter-linked scientific publications in the journal Systematic Entomology and the open access journal ZooKeys, together with two online databases, providing a catalogue with the names of all species involved.image-2

The evolutionary study, forming part of the PhD thesis of Doorenweerd, used DNA methods to show that the group is ancient and was already diverse in the early Cretaceous, ca. 100 million years ago, partly based on the occurrence of leaf mines in fossil leaves. The moths are all specialised on some species of flowering plants, also called angiosperms, and could therefore diversify when the angiosperms diversified and largely replaced ecologically other groups of plants in the Cretaceous. The study lead to the discovery of three new genera occurring in South and Central America, which are described in one of the two ZooKeys papers, stressing the peculiar character and vastly undescribed diversity of the Neotropic fauna.

Changing a classification requires a change in many species names, which prompted the authors to simultaneously publish a full catalogue of all 1072 valid species names that are known worldwide and the many synonymic names from the literature from the past 150 years.

Creating such a large and comprehensive overview became possible from the moths and leaf-mine collections of the world’s natural history museums, and culminates the past 35 years of research that van Nieukerken has spent on this group. However, a small, but not trivial, note in one of the publications indicates that we can expect at least another 1000 species of pygmy leafminer moths that are yet undiscovered.image-3

###

Original sources:

Doorenweerd C, Nieukerken EJ van, Hoare RJB (2016) Phylogeny, classification and divergence times of pygmy leafmining moths (Lepidoptera: Nepticulidae): the earliest lepidopteran radiation on Angiosperms? Systematic Entomology, Early View. doi: 10.1111/syen.1221.

Nieukerken EJ van, Doorenweerd C, Nishida K, Snyers C (2016) New taxa, including three new genera show uniqueness of Neotropical Nepticulidae (Lepidoptera). ZooKeys 628: 1-63. doi: 10.3897/zookeys.628.9805.

Nieukerken EJ van, Doorenweerd C, Hoare RJB, Davis DR (2016) Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera: Nepticuloidea). ZooKeys 628: 65-246. doi: 10.3897/zookeys.628.9799.

Nieukerken EJ van (ed) (2016) Nepticulidae and Opostegidae of the world, version 2.0. Scratchpads, biodiversity online.

Nieukerken EJ van (ed) (2016). Nepticuloidea: Nepticulidae and Opostegidae of the World (Oct 2016 version). In: Species 2000 & ITIS Catalogue of Life, 31st October 2016 (Roskov Y., Abucay L., Orrell T., Nicolson D., Flann C., Bailly N., Kirk P., Bourgoin T., DeWalt R.E., Decock W., De Wever A., eds). Digital resource at http://www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858. http://www.catalogueoflife.org/col/details/database/id/172

Unfamiliar bloodline: New family for an earthworm genus with exclusive circulatory system

New earthworm family, named Kazimierzidae, has been established for a South African indigenous genus of 21 species. Although the circulatory system in the group has been regarded as exclusive upon their original description in 2006, their raising to a family status have only recently been confirmed by a research team from South Africa.

Scientists Mrs Thembeka Nxele, Dr Danuta Plisko (original discoverer of the genus Kazimierzus, now known as family Kazimierzidae), affiliated with Natal Museum (NMSA), Oliver Tendayi Zishiri, affiliated with University of KwaZulu-Natal, and Dr Taro Mwabvu, University of Mpumalanga, looked into the earthworm collection at the NMSA, as well as the type material and the available literature. Their study is published in the open access journal African Invertebrates.

When compared to the rest of the members in the family Microchaetidae, where the former genus had been placed, the studied earthworms show a number of distinct characters, including an “exclusive” circulatory system. In these species it is a simple single tube stretching along the whole body.

All 21 earthworm species, now members of the newly established family, can only be found in small areas restricted in the western and south-western Atlantic coast of South Africa. These locations have long been known for their endemic invertebrates and diverse flora.

In their paper, the authors note that it is actually the restricted range, and therefore the specific ecological requirements, that might have led these earthworms to become that different from other species. Their distribution and, hence, poor dispersal ability, are also the reason why the newly established group would be particularly vulnerable if the habitat is transformed.

“The species distribution of earthworms in Southern Africa is presently poorly known hence the urgency for extended study on earthworm diversity and their distribution patterns,” point out the scientists. “Extensive earthworm collection in the western Atlantic coast may bring more data on this and other taxa.”

###

Original source:

Nxele TC, Plisko JD, Mwabvu T, Zishiri TO (2016) A new family Kazimierzidae for the genus Kazimierzus, earlier recorded to the composite Microchaetidae (Annelida, Oligochaeta). African Invertebrates 57(2): 111-117. doi: 10.3897/AfrInvertebr.57.10042

In the belly of the Devil: New rare ant species found in the stomach of a poison frog

While new ant species are usually discovered in surveys involving researchers searching through leaf litter, it turns out that sifting through the stomach contents of insect-eating frogs might prove no less effective, especially when it comes to rare species. Such is the case of a new species of rarely collected long-toothed ant, discovered in the belly of a Little Devil poison frog in Ecuador.

The international team of Drs Christian Rabeling and Jeffrey Sosa-Calvo, both affiliated with University of Rochester, USA, Lauren A. O’Connell, Harvard University, USA, Luis A. Coloma, Fundación Otonga and Universidad Regional Amazónica Ikiam, Ecuador, and Fernando Fernández, Universidad Nacional de Colombia, have their study published in the open access journal ZooKeys.

The new ant species, named Lenomyrmex hoelldobleri after renowned myrmecologist Bert Hölldobler on the occasion of his 80th birthday, was described based on a single individual – a female worker, recovered from a Little Devil poison frog. It is the seventh known species in this rarely collected Neotropical genus.  

Similarly to its relatives within the group, this ant amazes with its slender and elongate mouthpart, yet it is larger than all of them. The remarkable jaws speak of specialised predatory habits, however, so far, nothing is known about these ants’ feeding behavior.in-full-face

The amphibian, whose diet majorly consists of ants, was collected from the Ecuadorian region Choco, which, unfortunately, despite being one of the most biologically diverse areas in the world with exceptionally high levels of endemism, is also one of Earth’s most threatened areas.

In conclusion, the authors point out that “studying vertebrate stomach contents is not only a way of studying the trophic ecology” (meaning the feeding relationships between organisms), “but also an interesting source of cryptic and new arthropod species, including ants.”

Furthermore, the scientists note that nowadays there is no need to kill a frog, in order to study its stomach. “Stomach flushing methods have been developed and successfully applied in numerous studies, which avoids killing individuals.”

 

Original source:

Rabeling C, Sosa-Calvo J, O’Connell LA, Coloma LA, Fernández F (2016) Lenomyrmex hoelldobleri: a new ant species discovered in the stomach of the dendrobatid poison frog, Oophaga sylvatica (Funkhouser). ZooKeys 618: 79-95. doi: 10.3897/zookeys.618.9692

Crab from the Chinese pet market turns out to be a new species of a new genus

Shimmering carapaces and rattling claws make colourful freshwater crabs attractive to pet keepers. To answer the demand, fishermen are busy collecting and trading with the crustaceans, often not knowing what exactly they have handed over to their client.

oo_102037Luckily for science and nature alike, however, such ‘stock’ sometimes ends up in the hands of scientists, who recognise their peculiarities and readily dig into them to make the next amazing discovery. Such is the case of three researchers from University of New South Wales, Australia, The Australian Museum, Sun Yat-sen University, China, and National Chung Hsing University, Taiwan, who have found a new species and even a new genus of freshwater crab, and now have it published in the open access journal ZooKeys.

Knowing about the growing demand for eye-catching freshwater crabs from southern China, the authors took a look at the ornamental fish market to eventually identify an individual with unusually structured male gonopod, which in crustaceans is a swimming appendage modified to serve as a reproductive organ. Having their interest drawn by the peculiar crab, lead author Chao Huang managed to persuade the fish dealer to let them survey the collection site located in northern Guangdong, southern China.

Despite superficial resemblance to an already existing freshwater crab genus, at second glance, the crab turned out to be quite distinct thanks to a unique set of features including the carapace, the gonopod and the relatively long and slender legs. Once the molecular analyses’ results were also in, the authors had enough evidence to assign the freshwater crab as a species and even a genus new to science.

oo_102036Being a primarily aquatic species, the new crab prefers the pools of limestone hillstreams, therefore its name Yuebeipotamon calciatile, where calciatile means ‘living on limestone’. To adapt to the habitat, the species seems to have developed its characteristic slender legs, which make it easier for the crab to climb and move around whenever the short-lived limestone hillstreams make it search for a new home.

The carapace of the new crab is usually coloured in maroon to dark brown, while the claws and legs are reddish to purplish. Interestingly, the adults are much more vivid compared to the juveniles.

###

Original source:

Citation: Huang C, Shih H-T, Mao SY (2016) Yuebeipotamon calciatile, a new genus and new species of freshwater crab from southern China (Crustacea, Decapoda, Brachyura, Potamidae). ZooKeys 615: 61-72. doi: 10.3897/zookeys.615.9964