New parasitoid wasp likely uses unique saw-like spines to break out of its host body

About the size of a sesame seed, a new species of wasp from Costa Rica, named Dendrocerus scutellaris, has elaborate branched antennae that could be used for finding mates. Or hosts.

The new insect is described by PhD candidate Carolyn Trietsch, Dr. István Mikó and Dr. Andrew Deans of the Frost Entomological Museum at Penn State, USA, together with Dr. David Notton of the Natural History Museum in London, UK. Their study is published in the open access Biodiversity Data Journal.

The wasp is a parasitoid, meaning that its larvae feed on a live host insect. There are two types of parasitoids: ectoparasitoids, which lay their eggs on or near the host, so that the hatchling larvae can attach to and feed on the insect from the outside; and endoparasitoids, which lay their eggs directly inside the host, so that the larvae can eat them from the inside out.

Unfortunately, to puzzle out the new wasp’s lifestyle, the researchers could only rely on specimens collected back in 1985, which had spent the past few decades stored in the collections of the Natural History Museum of London before being loaned to the Frost Museum at Penn State for research.

What can you learn about a wasp’s lifestyle from specimens that are over 30 years old? Even though the new species has never been observed in the wild, researchers managed to learn a lot by looking at the wasps’ morphology, concluding that the species is likely an endoparasitoid.

The larva of an endoparasitoid wasp needs a safe place to develop and mature, so when it is done feeding on its host, it may stay inside the host’s body where it can develop undisturbed. Once it is fully grown, the adult wasp either chews or pushes its way out, killing the host if it isn’t already dead.

Unlike its close relatives, the new species does not have pointed mandibles for chewing. Instead, it has a series of spines along its back. While the wasp is emerging, it may rub these spines against the host and use them like a saw to cut open the body. Once emerged, it flies off to mate and continue the cycle.

“While their lives may sound gruesome, parasitoid wasps are harmless to humans and can even be helpful,” explain the scientists. “Depending on the host they parasitize, parasitoids can benefit agriculture by controlling pest insects like aphids that damage crops.”

It is currently unknown what the new species feeds upon, but naming the species and bringing it to attention is the first step in learning more about it.

###

Original source:

Trietsch C, Mikó I, Notton D, Deans A (2018) Unique extrication structure in a new megaspilid, Dendrocerus scutellaris Trietsch & Mikó (Hymenoptera: Megaspilidae). Biodiversity Data Journal 6: e22676. https://doi.org/10.3897/BDJ.6.e22676

New ‘big-armed fly’ species named after former California governor Arnold Schwarzenegger

New species can be named for all types of attributes, but Natural History Museum of Los Angeles County entomologist Brian Brown knew exactly what name to give a bizarre new fly species he discovered in the Brazilian Amazon.

“As soon as I saw those bulging legs, I knew I had to name this one after Arnold,” says Brown. “Not only is he a major cultural icon and an important person in the political realm, his autobiography gave me some hope that I could improve my body as a skinny teenager.” For these reasons, Brown says, the former governor deserves to have the new fly named in his honor.

His research article is published in the open access Biodiversity Data Journal.

The fly is impressive in other ways, Brown explains. “It is known only from one female specimen that we almost overlooked because it is so incredibly small.”

In fact, it is the world’s smallest known fly, according to Brown, who should know, since he had previously described what was formerly the world’s smallest fly, at 0.400 mm in body length. The new fly, named Megapropodiphora arnoldi, is just a fraction smaller, coming in at 0.395 mm.

MegapropodiphoraHowever, unlike the enlarged forelegs that prompted the naming, the mid- and hind legs appear to be highly reduced, and the wings reduced to tiny stubs.

Even though the fly has not been observed in the wild, Brown concludes that it is clearly a parasitoid, probably of ants or termites, based on its pointed, sharp ovipositor. He further speculates that these flies probably grab onto the hosts and “hold on for dear life” until they reach a nest or colony where they can parasitize their victims more effectively.

Brown has had considerable success finding new species of tiny flies, which he says are “the continuing frontier for insect discovery.”

Some of the more obvious, larger insects might have already been described, but by looking at smaller specimens, especially from remote, tropical sites, the entomologist finds that almost everything is new.

Even in his home city of Los Angeles, Brown and collaborators found that almost half of the phorid flies were previously unknown.

For example, it was last year that they finally figured why a secretive fly had been observed around mushrooms with no clear explanation for nearly 30 years. The revelation occurred when L.A. Bed & Breakfast owners Patsy Carter and Lisa Carter-Davis decided to alert entomologists about a phenomenon happening in their yard.

Back in 2016, Brian and his team described at once a total of twelve scuttle fly species new to science after ‘field’ trips in the backyards of houses around the city of angels.

###

Original source:

Citation: Brown B (2018) A second contender for “world’s smallest fly” (Diptera: Phoridae). Biodiversity Data Journal 6: e22396. https://doi.org/10.3897/BDJ.6.e22396

Citizen scientists discover 6 new species of beetles in Borneo

Scientists estimate that 80% of the world’s animal and plant species are still unknown. Although the work of taxonomists (whose job is to describe and name those) is appreciated by the general public, funding for taxonomy is dwindling. Moreover, while the areas hosting most of the unknown biodiversity are under threat, time is running out.

To help solve this problem, Taxon Expeditions has become the first organisation in the world to initiate field courses for citizen scientists in biodiversity hotspots, with the aim of discovering, describing, naming, and publishing new species under the slogan “You can be Darwin too”.

“Relying on extra hands means that unknown species can be discovered faster and,” says Taxon Expeditions director and biologist Dr. Iva Njunjic, “for some of that work, you don’t even need to be a trained taxonomist.”

Taxon Expedition’s first field course to the remote 30-kilometre-wide Maliau Basin in Malaysian Borneo, yielded six new species. Three of those, all tiny beetles living in rainforest leaf litter, are published today in the Biodiversity Data Journal. The other three, belonging to the family Elmidae (riffle beetles) will be published next year.

Citizen scientists discovered these species during a field exercise employing the method of ‘Winkler extraction’. Using this technique, dead leaves are collected from the rainforest floor before being sieved, so that hundreds of tiny soil-dwelling insects can be revealed.

Professor Menno Schilthuizen recognised three of those as new species. Under his guidance, the participants studied, photographed and drew the specimens in the expedition’s field lab, extracted their DNA and finalised a draft ready for publication.

The participants also came up with the original names for the three new species. English teacher Sean Otani from Japan decided to name Colenisia chungi after Malaysian entomologist Arthur Chung. The names for Clavicornaltica sabahensis and Dermatohomoeus maliauensis referring to the studied sites were suggested by staff and rangers of Maliau Conservation Area during the farewell party for the course.

All collected samples are deposited in the insect collection of Universiti Malaysia Sabah and the rest of the results – in online databases. This way, these discoveries will help other biologists working on Borneo’s biodiversity.

In March 2018, Taxon Expeditions will again head for Maliau Basin with a new group of participants, hopefully discovering more new species for science. Meanwhile, this year’s team look back on having contributed to real scientific discoveries.

“I had no idea how different, how exciting, how interesting it was going to be. It has been an amazing experience,” says retired corporate account manager Mary Erickson from Canada.

###

Original source:

Schilthuizen M, Seip LA, Otani S, Suhaimi J, Njunjic I (2017) Three new minute leaf litter beetles discovered by citizen scientists in Maliau Basin, Malaysian Borneo (Coleoptera: Leiodidae, Chrysomelidae). Biodiversity Data Journal 5: e21947. https://doi.org/10.3897/BDJ.5.e21947

Chance record of an annual mass emergence of enigmatic mantis-flies

Being neither mantids nor flies, the peculiar mantis-flies are in fact predatory lacewings which use their mantis-like forelegs to catch prey. While most mantis-flies are known to feed on spider eggs in their immature stages, the larval lifestyle of one subfamily–the Drepanicinae–has remained a mystery.

That is until James Dorey, an accomplished insect photographer and student of entomology at the University of Queensland, encountered a mass emergence of rarely-seen adults in his father’s macadamia orchard in eastern Australia, as reported in the open access Biodiversity Data Journal.

Right before James’ eyes and camera, the pupae were coming out from under the ground to grasp hold of tree trunks and undergo the final moult to emerge as adults.

Not only did he take some beautiful photos of the insects, but he also managed to capture a stunning time-lapse video of the pupae moulting into the adult stage.

The young researcher then contacted his university lecturer, David Merritt, to find out more about the phenomenon he had encountered. Together, they approached experts on mantis-flies, including Trevor Lambkin who was able to identify the insects as belonging to the mystery group, whose immature stages have so long remained unknown.

James managed to obtain some eggs from a fertile female and observed them hatch to produce tiny larvae that were immediately photographed and described in detail for the first time in a scientific journal.

“It is likely that the immature stage of these mantis-flies’ life cycle takes place underground in moist or forested habitats, perhaps explaining why it has never been recorded before,” explain the authors.

Yet to answer is the question what the immature mantis-flies feed on: is it spider eggs just like their relatives or some other underground-dwelling insect or arachnid?

“Perhaps some digging around in the macadamia orchard at the right time of year will reveal the answer,” say the researchers.

James is currently at Flinders University in Adelaide, carrying out a genetic analysis of the diversification of Fiji’s native bees.

###

Original source:

Dorey JB, Merritt DJ (2017) First observations on the life cycle and mass eclosion events in a mantis fly (Family Mantispidae) in the subfamily Drepanicinae. Biodiversity Data Journal 5: e21206. https://doi.org/10.3897/BDJ.5.e21206

Poison ivy an unlikely hero in warding off exotic invaders?

Dozens of studies have looked at the effects of Japanese knotweed on natural communities in Europe and North America. Yet Bucknell University professor Chris Martine still felt there was something important to learn about what the plant was doing along the river in his own backyard.

“The more time I spent in the forests along the Susquehanna River, the more it seemed like something was really going wrong there,” said Martine. “In addition to the prevalence of this single invasive species, it looked like the very existence of these forests was under threat.”

What Martine noticed was similar to what local nature lovers and biologists with the Pennsylvania Natural Heritage Program were also starting to see: these forests, specifically those classified as Silver Maple Floodplain Forests, were not regenerating themselves where knotweed had taken a foothold.

In a new study published in the open access Biodiversity Data Journal, Martine and two recent Bucknell alumni conclude that Japanese knotweed has not only excluded nearly all of the native understory plant species in these forests, but it has prevented the trees already established in the canopy from leaving behind more of themselves.

“If you were to fly over these forests, or even look at a Google Earth image, you’d see a nice green canopy along the river consisting of mature silver maples, river birches, and sycamores,” explained Martine. “But below that canopy there is almost nothing for tens of feet before you reach an eight-to-twelve-foot-tall thicket of knotweed. Few new trees have been able to grow through that in the last 50-60 years and our surveys found that seedlings of these species are quite rare.”

The authors suggest that as mature trees die of natural causes over the next several decades and are not replaced, these systems will shift from tree-dominated riverbank habitats to “knotweed-dominated herbaceous shrublands” incapable of supporting a rich diversity of insects, birds, and other wildlife. Loss of trees in these habitats could likely also lead to riverbank erosion and increase the severity of flood events.

The few places where knotweed has not taken over offer a bit of hope, however, from an unlikely hero: poison-ivy, which Martine calls “perhaps the least popular plant in America.”

“What we see in the data is that poison-ivy often trades understory dominance with knotweed. That is, when knotweed isn’t the big boss, poison-ivy usually is. The difference is that whereas knotweed knocks everyone else out of the system, poison-ivy is more of a team player. Many other native plants can co-occur with it and it even seems to create microhabitats that help tree seedlings get established.”

The prevalence of poison-ivy in these sites didn’t go unnoticed by undergraduate Anna Freundlich, who collected most of the plant community data — more than 1,000 data points — in a single summer as a research fellow.

“Anna developed a pretty serious methodology for avoiding a poison-ivy rash that included long sleeves, long pants, gloves, duct tape, and an intense wash-down protocol,” said her research advisor, “and even after crawling through the plant for weeks she managed to never once get a rash.”

Martine cautions against too much optimism regarding the chances of one itch-inducing native plant saving the day, however.

“Righting this ship is going to require eradicating knotweed from some of these sites, and that won’t be easy work. It will take some hard manual labor. But it’s worth doing if we want to avoid the imminent ecological catastrophe. These forests really can’t afford another half-century of us letting knotweed run wild.”

Freundlich is a now pursuing a Master’s degree in plant ecology at the University of Northern Colorado. Lead author Matt Wilson, a Bucknell Master’s student at the time of the study who analyzed the dataset, now works for the Friends of the Verde River in Cottonwood, AZ.

###

Original source:

Wilson M, Freundlich A, Martine C (2017) Understory dominance and the new climax: Impacts of Japanese knotweed (Fallopia japonica) invasion on native plant diversity and recruitment in a riparian woodland. Biodiversity Data Journal 5: e20577. https://doi.org/10.3897/BDJ.5.e20577

###

About Japanese knotweed:

Japanese knotweed is considered to be one of the toughest, most damaging and insidious plants in the world. Native to East Asia, the species has already established successfully in many parts throughout North America and Europe, where it can easily grow and invade private properties and homes. It is hardy enough to penetrate patios, house foundations and concrete. Given it spreads easily and can grow underground to a depth of 3 metres with a horizontal range of up to 7 metres, it is extremely difficult to eradicate and its treatment requires special attention. To find advice on recognition, hazards and treatment, you can check out The Ultimate Japanese Knotweed Guide.

Artificial neural networks could power up curation of natural history collections

Deep learning techniques manage to differentiate between similar plant families with up to 99 percent accuracy, Smithsonian researchers reveal

Millions, if not billions, of specimens reside in the world’s natural history collections, but most of these have not been carefully studied, or even looked at, in decades. While containing critical data for many scientific endeavors, most objects are quietly sitting in their own little cabinets of curiosity.

Thus, mass digitization of natural history collections has become a major goal at museums around the world. Having brought together numerous biologists, curators, volunteers and citizens scientists, such initiatives have already generated large datasets from these collections and provided unprecedented insight.

Now, a study, recently published in the open access Biodiversity Data Journal, suggests that the latest advances in both digitization and machine learning might together be able to assist museum curators in their efforts to care for and learn from this incredible global resource.

A team of researchers from the Smithsonian Department of BotanyData Science Lab, and Digitization Program Office recently collaborated with NVIDIA to carry out a pilot project using deep learning approaches to dig into digitized herbarium specimens.

Smithsonian researchers classifying digitized herbarium sheets.
Smithsonian researchers classifying digitized herbarium sheets.

Their study is among the first to describe the use of deep learning methods to enhance our understanding of digitized collection samples. It is also the first to demonstrate that a deep convolutional neural network–a computing system modelled after the neuron activity in animal brains that can basically learn on its own–can effectively differentiate between similar plants with an amazing accuracy of nearly 100%.

In the paper, the scientists describe two different neural networks that they trained to perform tasks on the digitized portion (currently 1.2 million specimens) of the United States National Herbarium.

The team first trained a net to automatically recognize herbarium sheets that had been stained with mercury crystals, since mercury was commonly used by some early collectors to protect the plant collections from insect damage. The second net was trained to discriminate between two families of plants that share a strikingly similar superficial appearance.

Sample herbarium specimen image of stained clubmoss
Sample herbarium specimen image of stained clubmoss.

The trained neural nets performed with 90% and 96% accuracy respectively (or 94% and 99% if the most challenging specimens were discarded), confirming that deep learning is a useful and important technology for the future analysis of digitized museum collections.

“The results can be leveraged both to improve curation and unlock new avenues of research,” conclude the scientists.

“This research paper is a wonderful proof of concept. We now know that we can apply machine learning to digitized natural history specimens to solve curatorial and identification problems. The future will be using these tools combined with large shared data sets to test fundamental hypotheses about the evolution and distribution of plants and animals,” says Dr. Laurence J. Dorr, Chair of the Smithsonian Department of Botany.

 

###

Original source:

Schuettpelz E, Frandsen P, Dikow R, Brown A, Orli S, Peters M, Metallo A, Funk V, Dorr L (2017) Applications of deep convolutional neural networks to digitized natural history collections. Biodiversity Data Journal 5: e21139. https://doi.org/10.3897/BDJ.5.e21139

A Bed & Breakfast in L.A. reveals the lifestyle of a secretive fly species

For nearly 30 years, Dr. Brian Brown knew about a mysterious unidentified phorid fly species, whose females would often be spotted flying above mushrooms, while the males were nowhere to be found.

Little did anyone know that this years-long puzzle would be solved once and for all after a surprising call came in earlier this year, in April.

Los Angeles Bed & Breakfast owners Patsy Carter and Lisa Carter-Davis had decided to alert entomologists about the newly emerged numerous mushrooms in their yard.

The study is published in the open access Biodiversity Data Journal by Dr. Brian Brown and his colleague at the Natural History Museum of Los Angeles County, Emily A. Hartop. It is the latest in a series of publications resulting from the extensive BioScan Project, which surveys the biodiversity in the Los Angeles area and was launched in 2012 by the NHMLA.

It turned out that these mushrooms were hosting the mysterious flies. Females were ovipositing in the mushroom caps with the larvae subsequently developing and feeding on the lower surface of the fungi, deep within the gills. Later, the larvae would exit the mushroom to pupate into the soil underneath before emerging as adults.

Most importantly, the team managed to collect specimens of the previously unknown males, which allowed them to successfully identify the mysterious species as Megaselia marquezi. Over the span of the BioScan Project, the species had already been known to be the sixth most commonly collected one around Los Angeles, yet its lifestyle has remained a secret until now.

“About 100 species, mostly of Megaselia, are known from Los Angeles, but many were new to science and had nothing known of their lifestyle,” explain the authors. “Matching a lifestyle with a species previously known only from a name is a significant accomplishment.”

They also noted that, “We can do great things with the help of citizen scientists, who extend our reach into urban areas that are generally off-limits”.

“Possibly, the widespread irrigation of lawns allows fungal growth that supports an abundant fungivore community, but our ignorance of the fauna of the surrounding natural areas makes such statements highly speculative.”

###

Original source:

Brown B, Hartop E (2017) Mystery mushroom malingerers: Megaselia marquezi Hartop et al. 2015 (Diptera: Phoridae). Biodiversity Data Journal 5: e15052. https://doi.org/10.3897/BDJ.5.e15052

Beetle’s Best Friend: Trained dogs most efficient in monitoring hermit beetle larvae

Hermit beetles (Osmoderma eremita) are considered at risk, but in order to be effectively protected, they first need to be identified and consistently monitored.

However, this turns out to be a tough task, given that the species is only present for a short time as an adult while it is also extremely elusive. On the other hand, although it remains as a larva for up to three years, once again, it is difficult to spot as it hides inside hollow trees living in the wood mould.

The standard method for detecting hermit beetles involves wood mould sampling which is not only arguable in its overall efficiency, but is also unreasonably time-consuming and quite damaging to both the species communities and their habitat.

Searching for an alternative, Italian scientists, led by Dr. Fabio Mosconi of the Italian Agricultural Research Council and Sapienza University of Rome, suggested that trained dogs might be more successful. Such conservation detection dogs are currently being widely deployed when searching for mammals, reptiles and birds and have already been tested for locating a number of invertebrates.

In their paper, published in the open access journal Nature Conservation, the team tested a training programme before comparing it with the traditional method. The study has been conducted as part of the MIPP Project aimed at the development of non-invasive methods for monitoring selected saproxylic beetles.

Image 2Starting from the choice of a dog, the scientists carefully made their choice from a number of individuals as well as breeds. They settled on a Golden Retriever – a breed widely used in searches for biological targets. As for the particular dog, they chose Teseo – a six-month pup coming from a line with a strong background in locating illegally imported animals and animal parts.

The training of Teseo began with the assignment of a trainer/handler and some basic obedience training, involving teaching simple commands, search games and agility activities.

The next step was introducing the dog to various types of odours, since the hermit beetles might give off a different odour dependent on their habitats, such as the presence of fungi, sawdust and other organic materials. Immediately after detecting the target smell, the animal would be given a reward such as food or play, so that its behaviour could be positively reinforced.

Then, the dog was taught to differentiate between different odours. The researchers presented a number of targets to the animal where it needed to select the right one. At this stage, the dog was only rewarded for correct signalling. Should the dog be distant from the trainer, a special clicker was used to ‘announce’ the treat in advance. The researchers noted that it was at this stage when the relationship between the dog and the handler needed to be really strong, so that the training was as efficient as possible.

In conclusion, the scientists reported a significantly higher probability (73%) of Teseo successfully detecting a tree colonised by the larvae, as opposed to two people conducting the traditional wood mould sampling (34-50%). Moreover, the dog would cover a particular area in a very short time when compared to the traditional method – on average it would take it 6 minutes and 50 seconds to examine the whole tree, while the operators using wood mould sampling would need about 80 minutes. Additionally, searching for larvae with dogs poses no risk to either the insects or other organisms that might be living in the trees.

Furthermore, the researchers provided a list of precautions in order to increase the efficiency when searching for beetle larvae with the help of trained dogs. The list included familiarising the dog with the survey site beforehand, opting for the part of the day with the most favourable atmospheric conditions and carefully monitoring the dog for signs of fatigue.

“A conservation detection dog is a powerful tool for locating O. eremita and these results can be useful for other related European species of Osmoderma“, commented the scientists.Image 3

“In fact, the use of a trained dog is a fast, accurate and non-invasive method that allows the detection of a target species in an area and to identify the colonised trees; this means that a conservation detection dog can locate new populations, can confirm the presence of the target species and can assist in the mapping of colonised trees in an area, accurately and efficiently.”

###

Original source:

Mosconi F, Campanaro A, Carpaneto GM, Chiari S, Hardersen S, Mancini E, Maurizi E, Sabatelli S, Zauli A, Mason F, Audisio P (2017) Training of a dog for the monitoring of Osmoderma eremita. In: Carpaneto GM, Audisio P, Bologna MA, Roversi PF, Mason F (Eds) Guidelines for the Monitoring of the Saproxylic Beetles protected in Europe. Nature Conservation 20: 237-264. https://doi.org/10.3897/natureconservation.20.12688

A decade of monitoring shows the dynamics of a conserved Atlantic tropical forest

Characterised with its immense biodiversity and high levels of endemism, the Atlantic Tropical Forest has been facing serious anthropogenic threats over the last several decades, demanding for such activities and their effects to be closely studied and monitored as part of the forest dynamics.

Cattle farming, expanding agricultural land areas and mining have reduced the Atlantic Forest to many small patches of vegetation. As a result, important ecosystem services, such as carbon stock, are steadily diminishing as the biomass decreases.

Brazilian researchers, led by Dr. Écio Souza Diniz, Federal University of Viçosa, spent a decade monitoring a semi-deciduous forest located in an ecological park in Southeast Brazil. Their observations are published in the open access Biodiversity Data Journal.

The team surveyed two stands within the forest to present variations in the structure and diversity of the plants over time, along with their dynamics, including mortality and establishment rates. They based their findings on the most abundant tree species occurring within each stand.

At the forest stands, the most abundant and important species for biomass accumulation are concluded to be trees larger than 20 cm in diameter, which characterise advanced successional stage within the forest.

“It is fundamental that opportunities to monitor conserved sites of the Atlantic Forest are taken, so that studies about their dynamics are conducted in order to better understand how they work,” note the scientists.

“The information from such surveys could improve the knowledge about the dynamics at anthropised and fragmented sites compared with protected areas.”

In order to encourage further research into the composition, diversity and structure of the Atlantic Forest over time and the subsequent contributions to the preservation of this threatened ecosystem, the authors made their data publicly available. The datasets, including species occurrences, are now openly accessible via the Global Biodiversity Information Facility(GBIF) and the biodiversity informatics data standard Darwin Core.

###

Original source:

Diniz ES, Carvalho W, Santos R, Gastauer M, Garcia P, Fontes M, Coelho P, Moreira A, Menino G, Oliveira-Filho A (2017) Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest. Biodiversity Data Journal 5: e13564. https://doi.org/10.3897/BDJ.5.e13564

Effects of soil and drainage on the savanna vegetation in the northern Brazilian Amazonia

It is a well-known fact that environmental factors such as soil texture and drainage determine to a very large degree the vegetation appearance, richness and composition at any site. However, there has been little research on how these variables influence the flora in the marvellous savannas – large open areas characterised by a complex and unique network of natural resources and life forms.

Consequently, a Brazilian research team, led by Dr. Maria Aparecida de Moura Araújo, Universidade Federal de Roraima, investigated the hydro-edaphic conditions in the savanna areas in the northern Brazilian Amazonia. Their study, complete with an openly available and ready for re-use dataset, is published in the open access Biodiversity Data Journal.  

Image 1_Annonaceae_Xylopia aromatica_treeIn the course of the Program for Biodiversity Research, managed by the Brazilian government, the scientists sampled 20 permanent plots in two savanna areas in the state of Roraima, located in the northern of the Brazilian Amazon. As a result, the team reports a total of 128 plant species classified into 34 families from three savanna habitats with different levels of hydro-edaphic restrictions.

Amongst the various factors playing a role in the soil characteristics of the area, are the tectonic events and past climatic fluctuations which have occurred in the most recent period of the Cenozoic era. Paleo, as well as modern fires are likely to be other culprits for the specific conditions.

In conclusion, the authors suggest that the most restrictive savanna habitats – the wet grasslands, represent the home to less structurally complex plants, compared to the well-drained shrubby localities.

“The present study highlights the environmental heterogeneity and the biological importance of Roraima’s savanna regarding the conservation of natural resources from the Amazon,” say the scientists.

Image 2_Convolvulaceae_Merremia aturensis_herb“In addition, it points out the need for greater investment in floristic inventories associated with greater diversification of sites, since this entire ecosystem has been rapidly modified by agribusiness.”

Licensed under a Creative Commons License (CC-BY 4.0) and available in a Darwin Core Archive DwC-A format; the complete dataset is openly available via the Global Biodiversity Information Facility (GBIF).

 

Original source:
Araújo M, Rocha A, Miranda I, Barbosa R (2017) Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia. Biodiversity Data Journal 5: e13829. https://doi.org/10.3897/BDJ.5.e13829