A new species of black endemic iguanas in Caribbeans is proposed for urgent conservation

A newly discovered endemic species of melanistic black iguana (Iguana melanoderma), discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean) appears to be threatened by unsustainable harvesting (including pet trade) and both competition and hybridization from escaped or released invasive alien iguanas from South and Central America. Scientists call for urgent conservation measures in the article, recently published in the open-access journal Zookeys.

A newly discovered endemic species of melanistic black iguana (Iguana melanoderma), discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean), appears to be threatened by unsustainable harvesting (including pet trade) and both competition and hybridization from escaped or released invasive alien iguanas from South and Central America. International research group calls for urgent conservation measures in the article, recently published in the open-access journal Zookeys.

So far, there have been three species of iguana known from The Lesser Antilles: the Lesser Antillean iguana (Iguana delicatissima), a species endemic to the northernmost islands of the Lesser Antilles; and two introduced ones: the common iguana (Iguana iguana iguana) from South America and the green iguana (Iguana rhinolopha) from Central America.

The newly described species is characterised with private microsatellite alleles, unique mitochondrial ND4 haplotypes and a distinctive black spot between the eye and the ear cavity (tympanum). Juveniles and young adults have a dorsal carpet pattern, the colouration is darkening with aging (except for the anterior part of the snout). 

A basking iguana optimizing after different trials its warming by a curved position when the sun is low on the horizon on the Windward coast of Saba.
Сredit: M. Breuil
License: CC-BY 4.0

It has already occurred before in Guadeloupe that Common Green Iguana displaced the Lesser Antilles iguanas through competition and hybridization which is on the way also in the Lesser Antilles. Potentially invasive common iguanas from the Central and South American lineages are likely to invade other islands and need to be differentiated from the endemic melanistic iguanas of the area.

The IUCN Red List lists the green iguana to be of “Least Concern”, but failed to differentiate between populations, some of which are threatened by extinction. With the new taxonomic proposal, these endemic insular populations can be considered as a conservation unit with their own assessments.

“With the increase in trade and shipping in the Caribbean region and post-hurricane restoration activities, it is very likely that there will be new opportunities for invasive iguanas to colonize new islands inhabited by endemic lineages”,

shares the lead researcher prof. Frédéric Grandjean from the University of Poitiers (France).
Iguana melanoderma sunbathing at dawn on the Windward coast of Saba.
Сredit: M. Breuil
License: CC-BY 4.0

Scientists describe the common melanistic iguanas from the islands of Saba and Montserrat as a new taxon and aim to establish its relationships with other green iguanas. That can help conservationists to accurately differentiate this endemic lineage from invasive iguanas and investigate its ecology and biology population on these two very small islands that are subject to a range of environmental disturbances including hurricanes, earthquakes and volcanic eruptions.

“Priority actions for the conservation of the species Iguana melanoderma are biosecurity, minimization of hunting, and habitat conservation. The maritime and airport authorities of both islands must be vigilant about the movements of iguanas, or their sub-products, in either direction, even if the animals remain within the same nation’s territory. Capacity-building and awareness-raising should strengthen the islands’ biosecurity system and could enhance pride in this flagship species”,

concludes Prof. Grandjean.

The key stakeholders in conservation efforts for the area are the Dutch Caribbean Nature Alliance (DCNA), the Saba Conservation Foundation (SCF), the Montserrat National Trust (MNT) and the UK Overseas Territories Conservation Forum (UKOTCF), which, the research team hope, could take measures in order to protect the flagship insular iguana species, mainly against alien iguanas.

Geographical distribution of the three iguana groups identified by Lazell (1973) in the 1960s and new taxonomic proposition.
Credit: Breuil et al. (2020)
License: CC-BY 4.0

***

Original source:

Breuil M, Schikorski D, Vuillaume B, Krauss U, Morton MN, Corry E, Bech N, Jelić M, Grandjean F (2020) Painted black: Iguana melanoderma (Reptilia, Squamata, Iguanidae) a new melanistic endemic species from Saba and Montserrat islands (Lesser Antilles). ZooKeys 926: 95-131. https://doi.org/10.3897/zookeys.926.48679

Contact:

Frédéric Grandjean 
Email: frederic.grandjean@univ-poitiers.fr

Scientists discover bent-toed gecko species in Cambodia

Originally published by North Carolina Museum of Natural Sciences

A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been described from Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with North Carolina Museum of Natural Sciences‘ Herpetologist Bryan Stuart. This new species is described in ZooKeys.

The species was discovered by Thy Neang during Wild Earth Allies field surveys in June-July 2019 on an isolated mountain named Phnom Chi in the Prey Lang Wildlife Sanctuary when he encountered an unusual species of bent-toed gecko. “It was an extremely unexpected discovery. No one thought there were undescribed species in Prey Lang,” said Neang.

The geckos were found to belong to the C. irregularis species complex that includes at least 19 species distributed in south¬ern and central Vietnam, eastern Cambodia, and southern Laos. This is the first member of the complex to be found west of the Mekong River, demonstrating how biogeographic barriers can lead to speciation. Additionally, the geckos were unique in morphological characters and mitochondrial DNA, and distinct from C. ziegleri to which they are most closely related. Researchers have named the species Cyrtodactylus phnomchiensis after Phnom Chi mountain where it was found.

A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been discovered in Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with Bryan Stuart of the North Carolina Museum of Natural Sciences.
Photo by Thy Neang

Bent-toed geckos of the genus Cyrtodactylus are one of the most species-diverse genera of gekkonid lizards, with 292 recognized species. Much of the diversity within Cyrtodactylus has been described only during the past decade and from mainland Southeast Asia, and many of these newly recognized species are thought to have extremely narrow geographic ranges. As such, Cyrtodactylus phnomchiensis is likely endemic to Phnom Chi, which consists of an isolated small mountain of rocky outcrops (peak of 652 m elevation) and a few associated smaller hills, altogether encompassing an area of approximately 4,464 hectares in Kampong Thom and Kratie Provinces within the Prey Lang Wildlife Sanctuary, Cambodia.

The forest habitat in Phnom Chi remains in relatively good condition, but small-scale illegal gold extraction around its base threatens the newly discovered species. A second species of lizard, the scincid Sphenomorphus preylangensis, was also recently described from Phnom Chi by a team of researchers including Neang. These new discoveries underscore the importance of Prey Lang Wildlife Sanctuary for biodiversity conservation and the critical need to strengthen its management.

Habitat at Phnom Chi, the type locality of the newly described bent-toed gecko.
Photo by Thy Neang

Further, an assessment of C. phnomchiensis is urgently warranted by the IUCN Red List of Threatened Species (IUCN 2020) because of its small area of occupancy, status as relatively uncommon, and ongoing threats to its habitat.

“This exciting discovery adds another reptile species to science for Cambodia and the world. It also highlights the global importance of Cambodia’s biodiversity and illustrates the need for future exploration and biological research in Prey Lang,”

said Neang.

“When [Neang] first returned from fieldwork and told me that he had found a species in the C. irregularis group so far west of the Mekong River in Cambodia, I did not believe it. His discovery underscores how much unknown biodiversity remains out there in unexpected places. Clearly, Prey Lang Wildlife Sanctuary is important for biodiversity and deserves attention,”

said Neang’s co-author Stuart of the North Carolina Museum of Natural Sciences.

###

Original source:

Neang T, Henson A, Stuart BL (2020) A new species of Cyrtodactylus (Squamata, Gekkonidae) from Cambodia’s Prey Lang Wildlife Sanctuary. ZooKeys 926: 133-158. https://doi.org/10.3897/zookeys.926.48671

###

For more information on Wild Earth Allies, please visit: http://www.wildearthallies.org.

For more information on the North Carolina Museum of Natural Sciences, please visit:http://www.naturalsciences.org.

Acta Biologica Sibirica signs with Pensoft and moves to ARPHA

Acta Biologica Sibirica, an open-access, peer-reviewed journal of Altai State University, with its content on original research in the field of experimental and field biology, moves to Pensoft and the publisher’s scholarly platform ARPHA. The journal has been published since 2015 and follows all the standards in modern biological research and Open Access policy. The first papers published in 2020 are already available on a brand new user-friendly website, running on ARPHA publishing platform.

Acta Biologica Sibirica 
Credit: Acta Biologica Sibirica and Pensoft 
License: CC-BY 4.0
The first papers in 2020 of Acta Biologica Sibirica, journal of Altai State University, are published on the innovative ARPHA publishing platform and already available online on a user-friendly brand new website
Credit:Acta Biologica Sibirica and Pensoft
License: CC-BY 4.0

Acta Biologica Sibirica is an open-access, peer-reviewed journal on the biodiversity of Siberia and the adjacent lands by Altai State University. Since 2015, it has been publishing  original research in the field of experimental and field biology. 

Starting from 2020, Acta Biologica Sibirica moves to the full-featured technologically advanced platform ARPHA and will be published in collaboration with the scholarly publisher and technology provider Pensoft.

Pensoft’s original publishing system ARPHA allows Acta Biologica Sibirica to publish original research papers, reviews, short communications, letters and discussion papers, book reviews and memorial articles. The scholarly platform was designed to facilitate authors in the manuscript writing, submission and review process as end-to-end experience, including publication of the data and multimedia content in the form, suitable for both enhanced high-tech human and machine discoverability of the scholarly outputs.

Acta Biologica Sibirica accepts for publication papers in taxonomy, phylogeny, biogeography, faunistics, floristics, biological systematics, nature conservation and protected areas. In the fields of faunistics and floristics there are several types of articles, available for submission: floral and faunal lists on any region of the world, faunal and floral discoveries (e.g. species newly recorded in a particular region, additions to previously published inventories), papers on methodology of faunal and floral studies.

«Our basic task is to turn our journal into a high-quality world-class publication. Without the help of modern publishers, this is almost impossible. The choice of the publisher was perfectly logical – the reputation of Pensoft Publishers and its founder, the famous Bulgarian zoologist Lubomir Penev, is impeccable. To stand in one cohort with powerful publications with a long history is an honor for us. High standards of editing and reviewing manuscripts, the absolute level of originality and scientific novelty – these are the criteria on which we will rely»,

comments the Editor-in-Chief of the journal, Professor of Altai University Roman Yakovlev.

«At Pensoft, we are delighted to initiate this wonderful partnership with yet another renowned research institution in Russia, namely Altai State University. With our long-year experience in zoological and biodiversity research publishing and dissemination, I am certain that the journal has found a fitting place in the family of Pensoft and ARPHA»,

comments Prof. Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

The first papers of 2020 are already available online on the new website of Acta Biologica Sibirica.

Within the pioneering papers published in the renewed journal, there is a research article about the first result of DNA-studies on the Central Asiatic owlet moths in the genus Euchalcia. The studied specimens were collected in Kyrgyzstan and Kazakhstan during the expeditions of the Russian Entomological Society in 2017-2019. When comparing a specific mitochondrial gene (cytochrome C oxidase subunit I or COI) between various species, the scientists revealed that the difference amongst European Euchalcia species is smaller than the one amongst high-mountainous Central Asiatic species.

Another study records the first occurrence of the moorland clouded yellow in Altai Region. The butterfly was found to share a mitochondrial barcode with some specimens from mountain populations from the Alps and the Czech Republic.

Colias palaeno, male, vicinity of Ozerki village, Talmenskiy district, Altai region, Russia 
Credit: Nazar A. Shapoval
License: CC-BY 4.0
Colias palaeno, male, vicinity of Ozerki village, Talmenskiy district, Altai region, Russia
Credit: Nazar A. Shapoval
License: CC-BY 4.0

***

Follow Acta Biologica Sibirica on Twitter and Facebook.

***

Additional information

About Altai State University:

Altai State University is one of the leading Russian classical higher education institutions established in 1973. It is a major educational, research and cultural center located in the Asian part of the country, integrated into the international academic community, training the intellectual elite and conducting high-impact research.

The unique geographical position of Altai region, located in the center of Asia predestinates the University’s mission – to appear as an international research and educational center that integrates, develops and spreads the modern Western, Russian and Asian knowledge in education, science and culture within the Asian region.

About ARPHA:

ARPHA is the first end-to-end, narrative- and data-integrated publishing solution that supports the full life cycle of a manuscript, from authoring to reviewing, publishing and dissemination. ARPHA provides accomplished and streamlined production workflows that can be customized according to the journal’s needs. The platform enables a variety of publishing models through a number of options for branding, production and revenue models to choose from.

About Pensoft:

Pensoft is an independent academic publishing company, well-known worldwide for its innovations in the field of semantic publishing, as well as for its cutting-edge publishing tools and workflows. In 2013, Pensoft launched the first ever end to end XML-based authoring, reviewing and publishing workflow, as demonstrated by the Pensoft Writing Tool (PWT) and the Biodiversity Data Journal (BDJ), now upgraded to the ARPHA Publishing Platform. Flagship titles include: Research Ideas and Outcomes (RIO), One Ecosystem, ZooKeys, Biodiversity Data Journal, PhytoKeys, MycoKeys and many more.

Contacts:

Prof. Lyubomir Penev, founder and CEO at ARPHA and Pensoft
Email: penev@pensoft.net

Prof. Alex Matsyura, Editor-in-Chief of Acta Biologica Sibirica
Email: amatsyura@gmail.com

Prof. Roman Yakovlev, Editor-in-Chief of Acta biologica sibirica 
Email: yakovlev_asu@mail.ru


Open Science RIO Journal invites early research outcomes for the free-to-publish collection “Observations, prevention and impact of COVID-19”

Looking at today’s ravaging COVID-19 (Coronavirus) pandemic, which, at the time of writing, has spread to over 220 countries; its continuously rising death toll and widespread fear, on the outside, it may feel like scientists and decision-makers are scratching their heads more than ever in the face of the unknown. In reality, however, we get to witness an unprecedented global community gradually waking up to the realisation of the only possible solution: collaboration. 

On one hand, we have nationwide collective actions, including cancelled travel plans and mass gatherings; social distancing; and lockdowns, that have already proved successful at changing what the World Health Organisation (WHO) has determined as “the course of a rapidly escalating and deadly epidemic” in Hong Kong, Singapore and China. On the other hand, we have the world’s best scientists and laboratories all steering their expertise and resources towards the better understanding of the virus and, ultimately, developing a vaccine for mass production as quickly as possible. 

While there is little doubt that the best specialists in the world will eventually invent an efficient vaccine – just like they did following the Western African Ebola virus epidemic (2013–2016) and on several other similar occasions in the years before – the question at hand is rather when this is going to happen and how many human lives it is going to cost?

Again, it all comes down to collective efforts. It only makes sense that if research teams and labs around the globe join their efforts and expertise, thereby avoiding duplicate work, their endeavours will bear fruit sooner rather than later. Similarly to employees from across the world, who have been demonstrating their ability to perform their day-to-day tasks and responsibilities from the safety of their homes just as efficiently as they would have done from their conventional offices, in today’s high-tech, online-friendly reality, no more should scientists be restricted by physical and geographical barriers either. 

“Observations, prevention and impact of COVID-19”: Special Collection in RIO Journal

To inspire and facilitate collaboration across the world, the SPARC-recognised Open Science innovator Research Ideas and Outcomes (RIO Journal) decided to bring together scientific findings in an easy to discover, read, cite and build on collection of publications. 

Furthermore, due to its revolutionary approach to publishing, where early and brief research outcomes (i.e. ideas, raw data, software descriptions, posters, presentations, case studies and many others) are all considered as precious scientific gems, hence deserving a formal publication in a renowned academic journal, RIO places a special focus on these contributions. 

Accepted manuscripts that shall deal with research relevant to the COVID-19 pandemic across disciplines, including medicine, ethics, politics, economics etc. at a local, regional, national or international scale; and also meant to encourage crucial discussions, will be published free of charge in recognition of the emergency of the current situation. Especially encouraged are submissions focused on the long-term effects of COVID-19.

Why publish in RIO Journal? 

Launched in 2015, RIO Journal has since proved its place at the forefront of Open Science, which resulted in the SPARC’s Innovator Award in 2016. Supported by a renowned advisory board and subject editors, today the journal stands as a leading Open Science proponent. 

Furthermore, thanks to the technologically advanced infrastructure and services it provides, in addition to a long list of indexers and databases where publications are registered, the manuscripts submitted to RIO Journal are not only rapidly processed and published, but once they get online, they immediately become easy to discover, cite and built on by any researcher, anywhere in the world. 

On top of that, Pensoft’s targeted and manually provided science communication services make sure that published research of social value reaches the wider audience, including key decision-makers and journalists, by means of press releases and social media promotion.

***

More info about RIO’s globally unique features, visit the journal’s websiteFollow RIO Journal on Twitter and Facebook.

Plazi and Pensoft join forces to let biodiversity knowledge of coronaviruses hosts out

Pensoft’s flagship journal ZooKeys invites free-to-publish research on key biological traits of SARS-like viruses potential hosts and vectors; Plazi harvests and brings together all relevant data from legacy literature to a reliable FAIR-data repository

To bridge the huge knowledge gaps in the understanding of how and which animal species successfully transmit life-threatening diseases to humans, thereby paving the way for global health emergencies, scholarly publisher Pensoft and literature digitisation provider Plazi join efforts, expertise and high-tech infrastructure. 

By using the advanced text- and data-mining tools and semantic publishing workflows they have developed, the long-standing partners are to rapidly publish easy-to-access and reusable biodiversity research findings and data, related to hosts or vectors of the SARS-CoV-2 or other coronaviruses, in order to provide the stepping stones needed to manage and prevent similar crises in the future.

Already, there’s plenty of evidence pointing to certain animals, including pangolins, bats, snakes and civets, to be the hosts of viruses like SARS-CoV-2 (coronaviruses), hence, potential triggers of global health crises, such as the currently ravaging Coronavirus pandemic. However, scientific research on what biological and behavioural specifics of those species make them particularly successful vectors of zoonotic diseases is surprisingly scarce. Even worse, the little that science ‘knows’ today is often locked behind paywalls and copyright laws, or simply ‘trapped’ in formats inaccessible to text- and data-mining performed by search algorithms. 

This is why Pensoft’s flagship zoological open-access, peer-reviewed scientific journal ZooKeys recently announced its upcoming, special issue, titled “Biology of pangolins and bats”, to invite research papers on relevant biological traits and behavioural features of bats and pangolins, which are or could be making them efficient vectors of zoonotic diseases. Another open-science innovation champion in the Pensoft’s portfolio, Research Ideas and Outcomes (RIO Journal) launched another free-to-publish collection of early and/or brief outcomes of research devoted to SARS-like viruses.

Due to the expedited peer review and publication processes at ZooKeys, the articles will rapidly be made public and accessible to scientists, decision-makers and other experts, who could then build on the findings and eventually come up with effective measures for the prevention and mitigation of future zoonotic epidemics. To further facilitate the availability of such critical research, ZooKeys is waiving the publication charges for accepted papers.

Meanwhile, the literature digitisation provider Plazi is deploying its text- and data-mining expertise and tools, to locate and acquire publications related to hosts of coronaviruses – such as those expected in the upcoming “Biology of pangolins and bats” special issue in ZooKeys – and deposit them in a newly formed Coronavirus-Host Community, a repository hosted on the Zenodo platform. There, all publications will be granted persistent open access and enhanced with taxonomy-specific data derived from their sources. Contributions to Plazi can be made at various levels: from sending suggestions of articles to be added to the Zotero bibliographic public libraries on virus-hosts associations and hosts’ taxonomy, to helping the conversion of those articles into findable, accessible, interoperable and reusable (FAIR) knowledge.

Pensoft’s and Plazi’s collaboration once again aligns with the efforts of the biodiversity community, after the natural science collections consortium DiSSCo (Distributed System of Scientific Collections) and the Consortium of European Taxonomic Facilities (CETAF), recently announced the COVID-19 Task Force with the aim to create a network of taxonomists, collection curators and other experts from around the globe.

What is the Asian hornet invasion going to cost Europe?

Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet Vespa velutina nigrithorax is rapidly spreading through Europe. In a new paper, published in the open-access journal Neobiota, French scientists try to estimate the costs of the invasion regarding the potential damage to apiculture and pollination services.

Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet (Vespa velutina nigrithorax) is rapidly spreading through Europe. Both experts and citizen scientists keep on identifying the new invader spreading all over the Old Continent in the last decades. 

In a recent study, French scientists led by Prof. Franck Courchamp at the Université Paris-Saclay and the CNRS, tried to evaluate the first estimated control costs for this invasion. Supported by the INVACOST project, their findings are published in the open-access journal Neobiota.

Since its invasion to France in 2004 when it was accidentally introduced from China, the Asian hornet has been spreading rapidly, colonising most of France at an approximate rate of 60-80 km per year, and also invading other European countries: Spain in 2010, Portugal and Belgium in 2011, Italy in 2012, Germany in 2014 and the UK in 2016. In the recent paper, published in the open-access journal Evolutionary Systematics, Dr. Martin Hussemann from CeNaK, University of Hamburg has recorded the northernmost capture of the Asian hornet in Hamburg in September 2019.

These data show that the Asian hornet is spreading all around Europe faster and faster with every year, even in climatically less favourable regions. The rapid invasion of the species is not necessarily caused by human-mediated dispersal, the species can rapidly spread on its own, but nevertheless, it is not uncommon.

Within its native and invasive range, V. velutina nigrithorax actively preys on honeybees, thus, causing harm to apiculture. Due to its active praying on wild insects, the Asian hornet also has a negative impact on ecosystems in general and contributes to the global decline of pollination services and honey production. Furthermore, by nesting in urban areas, the Asian hornet, which is well known for its aggressive behaviour, is a potential threat to human activities.

Currently, the control of the invasion is mainly undertaken by nest destruction and bait trapping, but none of these methods is sufficient enough to achieve complete eradication.

To proceed with the further control of the invasion, there is the need to evaluate economic costs. Those costs are divided into 3 main categories: (1) prevention of the invasion, (2) fighting the invasion and (3) damage caused by the invasion.

The cost of fighting the invasion of the Asian hornet is the cost of nest destruction. To identify those costs, the research team has studied information about the companies providing the services in the nest destruction, extrapolated the cost of nest destruction spatially and modelled the potential distribution of the invasive.


Estimated yearly cost of nest destruction if climatically suitable areas are fully invaded. Grey bars represent countries invasion hasn’t reached yet.
Credit: Prof. Franck Courchamp
License: CC-BY 4.0

As the calculations show, at the moment, the estimated yearly costs for eradication would be €11.9M for France, €9.0M for Italy and €8.6M for the United Kingdom.

“In 2006, only two years after the hornet was first observed in France, three departments were already invaded and the cost of nest destruction was estimated at €408k. Since then, the estimated yearly costs have been increasing by ~€450k each year, as the hornet keeps spreading and invades new departments. Overall, we estimated €23M as the cost of nest destruction between 2006 and 2015. If this temporal trend can be extrapolated for the next few years (i.e. if the hornet keeps spreading at a similar rate), we expect the yearly cost of nest destruction to reach an estimated value of €11.9M (given all suitable areas are invaded) in just 12 years,”

shares Prof. Franck Courchamp.

In Japan and South Korea, where the species has already been observed, the total yearly cost of nest destruction is estimated at €19.5M and €11.9M respectively.

So far, nests eradication is the most effective way to fight the invasion, though, it is not sufficient enough. As a result, so far, only 30-40% of the detected nests are destroyed each year in France. Moreover, rather than the result of a controlled strategy, those destroyed nests are only the ones that have been determined of particular potential harm to human or beekeeping activities. The researchers point out that this is not enough.


Estimated yearly cost of nest destruction in France since the start of the invasion given the yearly invasive range.
Credit: Prof. Franck Courchamp
License: CC-BY 4.0

In conclusion, the scientists call for more active measures and research, related to the invasion of V. velutina nigrithorax. Provided that other countries, including the USA, Australia, Turkey and Argentina appear to be climatically suitable for the species, they are also in danger (e.g., €26.9M for the USA).

The current study presents only the first estimates of the economic costs resulting from the Asian hornet, but definitely more actions need to be taken in order to handle harmful invasive species – one of the greatest threats to biodiversity and ecosystem functioning.

Consensus climate suitability of the yellow-legged hornet predicted from species distribution modelling.
Credit: Prof. Franck Courchamp
License: CC-BY 4.0

***

Original source:

Barbet-Massin M, Salles J-M, Courchamp F (2020) The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55: 11-25. https://doi.org/10.3897/neobiota.55.38550

Tiny fly from Los Angeles has a taste for crushed invasive snails

Living individual of Draparnaud’s glass snail
Photo by Kat Halsey

As part of their project BioSCAN – devoted to the exploration of the unknown insect diversity in and around the city of Los Angeles – the scientists at the Natural History Museum of Los Angeles County (USA) have already discovered numerous insects that are new to science, but they are still only guessing about the lifestyles of these species.

“Imagine trying to find a given 2 mm long fly in the environment and tracking its behavior: it is the smallest imaginable needle in the largest haystack. So when researchers discover new life histories, it is something worth celebrating,”

explains Dr. Brian Brown, lead author of a recent paper, published in the scholarly open-access Biodiversity Data Journal.

However, Brown and Maria Wong, former BioSCAN technician, while doing field work at the L.A. County Arboretum, were quick to reveal a curious peculiarity about one particular species discovered as part of the project a few years ago. They successfully lured female phorid flies by means of crushing tiny, invasive snails and using them as bait. In comparison, the majority of phorid flies, whose lifestyles have been observed, are parasitoids of social insects like ants.

Within mere seconds after the team crushed tiny invasive snails (Oxychilus draparnaudi), females representing the fly species Megaselia steptoeae arrived at the scene and busied themselves feeding. Brown and Wong then collected some and brought them home alive along with some dead snails. One of the flies even laid eggs. After hatching, the larvae were observed feeding upon the rotting snails and soon they developed to the pupal stage. However, none was reared to adulthood.

Female phorid fly feeding on a crushed Draparnaud’s glass snail
Photo by Kat Halsey

Interestingly, the host species – used by the fly to both feed on and lay eggs inside – commonly known as Draparnaud’s glass snail, is a European species that has been introduced into many parts of the world. Meanwhile, the studied fly is native to L.A. So far, it is unknown when and how the mollusc appeared on the menu of the insect.

To make things even more curious, species of other snail genera failed to attract the flies, which hints at a peculiar interaction worth of further study, point out the scientists behind the study, Brown and Jann Vendetti, curator of the NHM Malacology collection. They also hope to lure in other species of flies by crushing other species of snails.

***

In recent years, the BioSCAN project led to other curious discoveries from L.A., also published in Biodiversity Data JournalIn 2016, a whole batch of twelve previously unknown scuttle fly species was described from the heart of the city. A year later, another mysterious phorid fly was caught ovipositing in mushroom caps after Bed & Breakfast owners called in entomologists to report on what they had been observing in their yard.

Original source:

Brown BV, Vendetti JE (2020) Megaselia steptoeae (Diptera: Phoridae): specialists on smashed snails. Biodiversity Data Journal 8: e50943. https://doi.org/10.3897/BDJ.8.e50943

Research on bats and pangolins – potential vectors of zoonotic pandemics like COVID-19 – invited to a free-to-publish special issue in ZooKeys

Captively bred pangolins. 
Photo by Hua L. et al., taken from their study on the current status, problems and future prospects of captive breeding of pangolins, openly accessible in ZooKeys at: https://doi.org/10.3897/zookeys.507.6970

Accepted papers will be published free of charge in recognition of the emergency of the current global situation

Was it the horseshoe bat or could it rather be one of the most traded mammal in the world: the pangolin, at the root of the current devastating pandemic that followed the transmission of the zoonotic SARS-CoV-2 virus to a human host, arguably after infected animal products reached poorly regulated wet markets in Wuhan, China, last year? 

To make matters worse, the current situation is no precedent. Looking at the not so distant past, we notice that humanity has been repeatedly falling victim to viral deadly outbreaks, including Zika, Ebola, the Swine flu, the Spanish flu and the Plague, where all are linked to an animal host that at one point, under specific circumstances transferred the virus to people. 

Either way, here’s a lesson humanity gets to learn once again: getting too close to wildlife is capable of opening the gates to global disasters with horrific and irreversible damage on human lives, economics and ecosystems. What is left for us to understand is how exactly these transmission pathways look like and what are the factors making certain organisms like the bat and the pangolin particularly efficient vectors of diseases such as COVID-19 (Coronavirus). This crucial knowledge could’ve been easier for us to grasp had we only obtained the needed details about those species on time.

Aligning with the efforts of the biodiversity community, such as the recently announced DiSSCo and CETAF COVID-19 Task Force, who intend to create an efficient network of taxonomists, collection curators and other experts from around the globe and equip them with the tools and large datasets needed to combat the unceasing pandemic, the open-access peer-reviewed scholarly journal ZooKeys invites researchers from across the globe to submit their work on the biology of bats and pangolins to a free-to-publish special issue. 

The effort will be coordinated with the literature digitisation provider Plazi, who will extract and liberate data on potential hosts from various journals and publishers. In this way, these otherwise hardly accessible data will be re-used to support researchers in generation of new hypotheses and knowledge on this urgent topic.

By providing further knowledge on these sources and vectors of zoonotic diseases, this collection of publications could contribute with priceless insights to make the world better prepared for epidemics like the Coronavirus and even prevent such from happening in the future. 

Furthermore, by means of its technologically advanced infrastructure and services, including expedite peer review and publication processes, in addition to a long list of indexers and databases where publications are registered, ZooKeys will ensure the rapid publication of those crucial findings, and will also take care that once they get online, they will immediately become easy to discover, cite and built on by any researcher, anywhere in the world. 

***

The upcoming “Biology of bats and pangolins” special issue is to add up to some excellent examples of previous research on the systematics, biology and distribution of pangolins and bats published in ZooKeys

In their review paper from 2015, Chinese scientists looked into the issues and prospects around captive breeding of pangolins. A year later, their colleagues at South China Normal University provided further insights into captive breeding, in addition to new data on the reproductive parameters of Chinese pangolins.

Back in 2013, a Micronesian-US research studied the taxonomy, distribution and natural history of flying fox bats inhabiting the Caroline Islands (Micronesia). A 2018 joint study on bat diversity in Sri Lanka focused on chiropteran conservation and management; while a more recent article on the cryptic diversity and range extension of the big-eyed bats in the genus Chiroderma

***

For more information, visit ZooKeys website

Follow ZooKeys on Twitter and Facebook.

*** 

References:

Buden D, Helgen K, Wiles G (2013) Taxonomy, distribution, and natural history of flying foxes (Chiroptera, Pteropodidae) in the Mortlock Islands and Chuuk State, Caroline Islands. ZooKeys 345: 97-135. https://doi.org/10.3897/zookeys.345.5840

Edirisinghe G, Surasinghe T, Gabadage D, Botejue M, Perera K, Madawala M, Weerakoon D, Karunarathna S (2018) Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: insights for conservation and management. ZooKeys 784: 139-162. https://doi.org/10.3897/zookeys.784.25562

Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507: 99-114. https://doi.org/10.3897/zookeys.507.6970

Lim BK, Loureiro LO, Garbino GST (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). ZooKeys 918: 41-63. https://doi.org/10.3897/zookeys.918.48786

Zhang F, Wu S, Zou C, Wang Q, Li S, Sun R (2016) A note on captive breeding and reproductive parameters of the Chinese pangolin, Manis pentadactyla Linnaeus, 1758. ZooKeys 618: 129-144. https://doi.org/10.3897/zookeys.618.8886

New pathogen threatens fennel yield in Italy

A new fungal genus and species Ochraceocephala foeniculi causes fennel yield losses of about 20-30% for three different cultivars. It damages the crops with necrotic lesions on the crown, root and stem.
International research group makes the first step in handling the new fennel disease by publishing their paper in the open-access journal Mycokeys.

A new fennel fungal disease caused by a new genus and species – Ochraceocephala foeniculi, was observed for the first time in 2017 on 5% of the “Apollo” fennel cultivar grown in the sampled localities in Catania province, Italy. Now, it has spread to 2 more cultivars: “Narciso” and “Pompeo”, causing crop losses of around 20-30%. The new pathogen damages the fennel with necrotic lesions on the crown, root and stem.

Fennel, a crop native in arid and semi-arid regions of southern Europe and the Mediterranean area is massively used as a vegetable, herb and seed spice in food, pharmaceutical, cosmetic and healthcare industries with Italy taking the world-leading production. It is an important and widely cultivated crop in Sicily (southern Italy).

Symptoms caused by Ochraceocephala foeniculi on fennel plants
Symptoms caused by Ochraceocephala foeniculi on fennel plants
Credits: Dalia Aiello
License: CC-BY 4.0

Worldwide, fennel crops are affected by several fungal diseases. In Italy, amongst soilborne diseases, there have been reports of brown rot and wilt caused by Phytophthora megasperma and crown rot caused by Didymella glomerata.

International research group, led by Ms. Dalia Aiello from the University of Catania, made the first step in handling the new fennel disease by identifying the causal agent obtained from symptomatic plants and publishing the results of their research in the open-access journal Mycokeys.

In order to understand the origin of the causal agent, scientists collected 30 samples during several surveys in the affected areas in Sicily, and studied the consistently grown fungal colonies from symptomatic tissues.

“The fungal species obtained from symptomatic tissues was identified based on morphological characters and molecular phylogenetic analyses of an ITS-LSU-SSU rDNA matrix, resulting in the description of the fennel pathogen as a new genus and species, Ochraceocephala
foeniculi,”

shares Dr. Dalia Aiello.

According to the pathogenicity tests, O. foeniculi causes symptoms on artificially inoculated plants of the same cultivar. Preliminary evaluation of fennel germplasm, according to the susceptibility to the new disease, shows that some cultivars (“Narciso”, “Apollo” and “Pompeo”) are more susceptible and some are less susceptible (“Aurelio”, “Archimede” and “Pegaso”), but this is a subject yet to be confirmed by additional investigations. More studies are required in order to plan further effective disease management strategies.

Holotype of Ochraceocephala foeniculi
Credits: Mr. Hermann Voglmayr
License: CC-BY 4.0

“On the basis of the disease incidence and severity observed in the field, we believe that this disease represents a serious threat to fennel crop in Sicily and may become a major problem also to other areas of fennel production if accidentally introduced,”

concludes Dr. Dalia Aiello.
***

Original source: Aiello D, Vitale A, Polizzi G, Voglmayr H (2020) Ochraceocephala foeniculi gen. et sp. nov., a new pathogen causing crown rot of fennel in Italy. MycoKeys 66: 1-22. https://doi.org/10.3897/mycokeys.66.48389

All microgastrinae wasps from around the world finally together in a 1,089-page monograph

With 3,000 known species and thousands more left to describe, the wasps of the subfamily Microgastrinae are the single most important group of parasitoids attacking the larvae of butterflies and moths, many of which are economically important pests. Consequently, these wasps have a significant impact on both the world’s economy and biodiversity.

Due to their affinities, these wasps are widely used in biological control programs to manage agricultural and forestry pests around the globe. Further, they have also been prominently featured in many basic and applied scientific research (e.g. chemical ecology, biodiversity studies, conservation biology, genomics, behavioural ecology). However, the information about Microgastrinae species is scattered across hundreds of papers, some of which are difficult to find. To make matters worse, there has never been an authoritative checklist of the group at a planetary scale.

All currently available information about the group is now brought together in a large monograph of 1,089 pages, published in the open-access, peer-reviewed journal ZooKeys. The publication presents a total of 2,999 valid extant species belonging to 82 genera. On top of that, the monograph features fossil species and genera, unavailable names and the institutions that store the primary types of all listed species.

Moreover, the researchers have included extensive colour illustrations of all genera and many species (thousands of images in 250 image plates); brief characterisation and diagnosis of all genera; detailed species distributions (within biogeographical regions and per individual country); synopsis of what is known on host-parasitoid associations; summary of available DNA barcodes; estimations of the group diversity at world and regional levels; as well as notes on individual species upon request.

“Compiling this annotated checklist was, more than anything, a labour of love,”

says Dr. Jose Fernandez-Triana of the Canadian National Collection of Insects, lead author of the paper.

Monograph paper openly published in ZooKeys at
https://doi.org/10.3897/zookeys.920.39128

“For the past six or seven years, we have spent thousands of hours pouring through hundreds of publications, reading original descriptions in old manuscripts, checking type specimens in many collections worldwide, exchanging information with colleagues from all continents. For the past year or so, I basically stopped all other ongoing research projects I was involved with, to focus solely (almost obsessively!) on finishing this manuscript. The work was often tedious and mind-numbing, and many times I had the temptation to delay the completion of the paper for a later time. However, I was lucky that the other co-authors were just as passionate as myself, and we all pushed each other to finish the task when energy ran low.”

Fifteen species of microgastrinae wasps showing the incredible diversity within the subfamily. Note the variety of colours and shapes.
Image by Dr. Jose Fernandez-Triana

“For the past few years, the Microgastrinae wasps have been one of the most intensively studied groups of insects, at least from a taxonomic perspective,” he adds. “Just to give you an idea: between 2014 and 2019 a total of 720 new species of Microgastrinae were described worldwide. That is an average of one new species every three days, sustained over a six-year period and showing no signs of slowing down.”

He also points out that many scientists from many different countries and biogeographical regions have been involved in the description of the new species. The paper recognises them all and their contributions in the Acknowledgements section.

“You could even say that we are witnessing a renaissance in the study of this group of wasps. However, even then, what has been done is only the tip of the iceberg, as we estimated that only 5 to 10% of all Microgastrinae species have been described. That means that we do not have a name, let alone detailed knowledge, for 90-95% of the remaining species out there. Perhaps, there could be up to 50,000 Microgastrinae wasp species worldwide. It is truly humbling when you consider the magnitude of the work that lies ahead.”

Yet, it is not only a matter of counting huge numbers of species. More importantly, many of those species either have already been put in use as biocontrol agents against a wide range of agricultural and forestry pests, or have the potential to be in the future.

For applied scientists, working with hyperdiverse and poorly known groups such as Microgastrinae is even more perplexing. Navigating the maze of old names, synonyms (species described more than one time under different names), homonyms (same names applied to different species), or unavailable names (names that do not conform to the rules of the International Commission of Zoological Nomenclature) is a daunting task. Often, that results in the same species being referred to in several different ways by different authors and academic works. Consequently, many historical references are full of misleading or even plainly wrong information. Meanwhile, it is very difficult to seek out the useful and correct information.

The present annotated checklist could work as a basic reference for anyone working with or interested in the parasitoid wasps of the subfamily Microgastrinae. In the future, the authors hope to produce revised editions, thus continuing to incorporate new information as it is generated, and to also correct possible mistakes.

“We welcome all kinds of criticisms and suggestions. And we hope that biocontrol practitioners will also help us, the taxonomists, to improve future versions of this work. However, for the time being, let me say that it is a tremendous relief to get this first version out!”

concludes Dr. Fernandez-Triana.

***

Original source:

Fernandez-Triana J, Shaw MR, Boudreault C, Beaudin M, Broad GR (2020) Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae). ZooKeys 920: 1-1089. https://doi.org/10.3897/zookeys.920.39128.