Guest Blog Post: New Area of Importance for Bat Conservation in Honduras

The recognition of the “Ceguaca, la Mujer de los Juncos” locality comes as a result of research work – published last year in Subterranean Biology – which produced the first checklist of bats for Santa Bárbara


Guest blog post by Eduardo Javier Ordoñez-Trejo and Manfredo Alejandro Turcios-Casco


Bat populations are threatened due to fragmentation and loss of their habitats. Meanwhile, dry forests are some of the least studied and most threatened ecosystems in Honduras, and similarly, so have been the caves.

We had to walk at least two hours to reach either of the caves in El Peñon or Quita Sueño, so we would take our full equipment: for camping, cooking and studying bats.
Photo by Hefer Ávila

Caves are important reservoirs of species, as they offer perks no other habitat can provide at once: a refuge from predators, inconstant weather, and a critical venue for social interactions, reproduction, hibernation, roosting and nutrients. In order to protect bat populations, the Latin American and Caribbean Web for Bat Conservation (RELCOM) supports the establishment of Areas of Importance for the Conservation of Bats, abbreviated as AICOMS (Spanish for Areas with Importance for the Conservation of Bats) .

It was at least a two-hour walk between the caves of Monte Grueso and the caves of El Peñon. The final stint, though, included a swim across Rio Ulúa, one of most extensive rivers in Honduras.
Photo by Hefer Ávila

Together with biologists of the National Autonomous University of Honduras (UNAH) and local community members, we provided the first ever checklist of bat species in the Dry Forest of Ceguaca, Santa Barbara (Honduras), and described the importance of two caves in the area for bat conservation based on species richness. We published this study last June in Subterranean Biology.

The study is openly accessible in Subterranean Biology

We found that caves in Ceguaca are inhabited by at least 23 bat species of four families, which represents approximately a fifth of all species known from Honduras. Their inhabitants include several threatened species like the hairy-legged vampire bat (Diphylla ecaudata), one of the three existing vampire bats, and rare species with few official records in the area, such as Schmidts’s big-eared bat (Micronycteris schmidtorum). These caves may also represent a critical site for roosting and nursing. During our study, we managed to record pregnant and lactating females of several species, as well as reproductive males.

The certificate issued by RELCOM recognising the caves in Ceguaca as an Area of Importance for the Conservation of Bats, dated 6th March 2020

“It feels wonderful to see that our work has had great results and that with our efforts, we established an area where bats will be protected and studied. This certification also includes the name of Roberto Castellano, an elder member of the community of Ceguaca, who helped us during the fieldwork as our guide. He was a great conservationist of this area and protector of the caves. Unfortunately, he passed away during the study, however, due to his enormous contribution, we dedicated our article to him and included him as part of this AICOM success.”

José Alejandro Soler Orellana, co-author of the study.

Using what we learned in Ceguaca’s caves, we approached the Program for Bat Conservation of Honduras (PCMH) and showed them the evidence the locality was indeed a precious place with a spectacular bat diversity. Consequently, thanks to our collaboration with the PCMH, the site was effectively declared as an Area of Importance for the Conservation of Bats by RELCOM on 6th March 2020. 

This is an enormous step for bat conservation in the country. Bat conservation efforts should focus on studying and protecting these and other important habitats. We also need to make sure that local people appreciate the important role the bats play in the ecosystem.

A close up of a spider

Description automatically generated
We captured this adult Pallas’s long-tongued bat (Glossophaga soricina) female in a cave in Monte Grueso. She must have been returning to the cave after spending the day pollinating local plants. During these surveys, we found trees with opened flowers of Mexican calabash (Crescentia alata).
Photo by Hefer Ávila

***

Research article:

Turcios-Casco MA, Mazier DIO, Orellana JAS, Ávila-Palma HD, Trejo EJO (2019) Two caves in western Honduras are important for bat conservation: first checklist of bats in Santa Bárbara. Subterranean Biology 30: 41–55. https://doi.org/10.3897/subtbiol.30.35420

Vibes before it bites: 10 types of defensive behaviour for the False Coral Snake

The False Coral Snake (Oxyrhopus rhombifer) may be capable of recognising various threat levels and demonstrates ten different defensive behaviours, seven of which are registered for the first time for the species. Scientists from the Federal University of Viçosa (Brazil) published their laboratory observation results based on a juvenile specimen in the open-access journal Neotropical Biology and Conservation.

In a recent paper in the open-access journal Neotropical Biology and Conservation, a group of Brazilian scientists from the Federal University of Viçosa (Brazil) published ten different defensive behaviours for the False Coral Snake (Oxyrhopus rhombifer), seven of which are registered for the first time for the species. One of these is reported for the first time for Brazilian snakes.

Evolution shaped anti-predator mechanisms in preys, which can be displayed either with avoidance or defensive behaviours. The current knowledge about such mechanisms are still scarce for many snake species, but it is constantly increasing over the last years. These data are helpful for better understanding of the species ecology, biology and evolution.

The False Coral Snake (O. rhombifer) is a terrestrial snake species with a colouration like the true coral snake . The species has a wide geographic distribution, occurring in Argentina, Paraguay, Uruguay, Bolivia and all Brazilian biomes. Among its previously known anti-predator mechanisms, this species has already shown cloacal discharge, body flattening, struggling, erratic movements and hiding the head.

However, these behaviors were only a small part of what this species is capable of doing to defend itself! In November 2017, a juvenile male  captured in the Atlantic Forest of southeastern Brazil was observed under laboratory settings, where the scientists would simulate a predation attempt with an increasing threat level.

We released the snake on to the laboratory bench and let it notice our presence. The animal remained motionless at first, then performed a pronounced dorsoventral flattening of the anterior part of the body, raised its tail, adopted an S-shaped posture, raised the first third of the body and performed brief body vibrations. Then we approached the snake, which remained with the same posture and body vibrations. When we touched the animal (not handling), it remained with the S-shaped posture, keeping the first third of the body elevated and the dorsoventral flattening (however, less accentuated) and started to display erratic movements, false strikes and locomotor escape. When handled, the snake only struggled,

shares the lead scientist Mr. Clodoaldo Lopes de Assis.

Amongst ten recorded behaviour types only three were among those already registered for this species. Since defensive responses in snakes decrease as body size increases, juveniles exhibit a broader set of defensive behaviour than adults. Because of that, some types of behaviour described in this study might be explained either by physical constraints or stage of development of the individual.

Some types of behaviour resemble the ones of true coral snakes of the genus Micrurus, a group of extremely venomous snakes. Thus, this similarity may be linked with the mimicry hypothesis between these two groups, where harmless false coral snakes take advantage of their similar appearance to the true coral snakes to defend themselves.

Another type of anti-predation mechanism shown — body vibrations — is yet an unknown behaviour for Brazilian snakes and has been recorded for the first time. This type of behaviour is difficult to interpret, but could represent a defensive signal against non-visually orientated predators.

Finally, defensive strategies of the specimen differed according to the threat level imposed: starting from discouraging behaviour up to false bites, erratic movements and locomotor escape.


Some defensive types of behaviour displayed by the juvenile Oxyrhopus rhombifer
Credit: Mr. Clodoaldo Lopes de Assis
License: CC-BY 4.0

O. rhombifer may be capable of recognising different threat levels imposed by predators and adjusting its defensive behaviour accordingly,

highlights Mr. Clodoaldo Lopes de Assis.

Through such simple laboratory observations we can get a sense of how Brazilian snakes are yet poorly known regarding their natural history, where even common species like the false coral snake O. rhombifer can surprise us!

Mr. Clodoaldo Lopes de Assis adds in conclusion.

***

Original source:
Lopes de Assis C, José Magalhães Guedes J, Miriam Gomes de Jesus L, Neves Feio R (2020) New defensive behaviour of the false coral snake Oxyrhopus rhombifer Duméril, Bibron & Duméril, 1854 (Serpentes, Dipsadidae) in south-eastern Brazil. Neotropical Biology and Conservation 15(1): 71-76. https://doi.org/10.3897/neotropical.15.e48564

Taxonomist Day at Pensoft: Three species in the WoRMS’ Top 10 Marine Species of 2019 described in our journals

Happy Taxonomist Appreciation Day, everyone!

In a lovely tradition, the World Register of Marine Species (WoRMS) issued the Top 10 Marine Species of 2019 for the ninth time around on time for this special day! 

In what has also already become a tradition we are particularly proud of, it’s not one, but several species described as new to science in Pensoft journals that make it to the renowned list! Even if it’s a slight step back from last year’s five entries, this year, we see a total of three species making it to the list: the Vibranium Fairy Wrasse (Cirrhilabrus wakanda) and the Green Rat Clingfish (Barryichthys algicola), both published in ZooKeys, and Thiel’s Boring Amphipod (Bircenna thieli) first known from the pages of Evolutionary Systematics.

Struggling to put a face to the name? Let us bring the stories behind these fantastic discoveries for you: 


The real-life fairy wrasse, whose scales shine bright like sci-fi vibranium

Even if the “twilight zone” – the ocean depths from 60 to 150 meters underneath the water surface, are long known to be teeming with all sorts of fascinating reef-dwelling lifeforms that still await discovery, California Academy of Sciences’ (CAS) initiative Hope for Reefs and partners are already concerned with the protection of these fragile habitats. One of the ways they do this is by deploying the taxonomic approach: recording and defining every creature the current environmental crisis could be putting in danger.

One of the latest discoveries made by the CAS team and Yi-Kai Tea, lead author and PhD student at the University of Sydney, is a stunning wrasse species with colours so mesmerising and vibrant that immediately triggered the creativity of the scientists. Discovered amongst the dusky coral reefs of eastern Zanzibar, off the coast of Tanzania, the species received the scientific name Cirrhilabrus wakanda in a nod to the Marvel Entertainment comics and movie Black Panther, where Wakanda is a mythical nation. 

The fish also goes under its common name: Vibranium Fairy Wrasse, because of its hypnotising scales reminiscent of the fictional metal. In the franchise, the vibranium is a rare, robust and versatile ore capable of manipulating energy. In its turn, the scales of the Vibranium Fairy Wrasse have a pigment so strong, their shades survive even when preserved.

“When we thought about the secretive and isolated nature of these unexplored African reefs, we knew we had to name this new species after Wakanda,”

said Yi-Kai Tea.

Story via Forbes*

Find more in the WoRMS’ press release.

***

Research article in ZooKeys:

Conway KW, Moore GI, Summers AP (2019) A new genus and two new species of miniature clingfishes from temperate southern Australia (Teleostei, Gobiesocidae). ZooKeys 864: 35-65. https://doi.org/10.3897/zookeys.864.34521


The clingy, yet long unknown green fish

You might think that a common name for a genus of tiny, less than 21 mm long marine inhabitants, such as ‘Rat Clingfish’ is way too unusual already, but it’s getting even more curious when you find out about those species’ mind-boggling lifestyle. 

These two miniature clingfishes were first spotted around microalgae in Australia back in the 1980s and since then they would puzzle scientists so much they would simply refer to them as “Genus B”. However, this was about to change, when in 2019, the US-Australian research team of Drs Kevin W. Conway, Glenn I. Moore and Adam P. Summers collected and studied enough specimens found in dense stands of macroalgae in intertidal and shallow subtidal areas along the coast of southern Australia. There, the two clingfishes use their well-developed adhesive discs located on their tummies to attach to the microalgae. Because of their miniature size, they have evolved multiple reduced and novel distinctive features.

As a result of their study, we now have the genus Barryichthys, whose common name is Rat Clingfish, and two new to science species assigned to it: the Brown Rat Clingfish (Barryichthys hutchinsi) and the Green Rat Clingfish (Barryichthys algicola), where the latter was found to be particularly intriguing thanks to its peculiar green colouration and a species name translated to “one who inhabits the algae”.

Find more in the WoRMS’ press release.

***

Research article in ZooKeys:

Conway KW, Moore GI, Summers AP (2019) A new genus and two new species of miniature clingfishes from temperate southern Australia (Teleostei, Gobiesocidae). ZooKeys 864: 35-65. https://doi.org/10.3897/zookeys.864.34521 


The boring vegetarian amphipod  

Another impressive creature with a taste for algae described in 2019 from Australia is the Thiel’s Boring Amphipod, which is indeed boring. The tiny crustacean, which can be found in colonies of hundreds in Tasmania, eats its way through its favourite bull kelp leaving behind tunnels.

Another peculiarity about the species is its head, which when seen from the front resembles that of an ant!

With its species name: Bircenna thieli, the scientists behind the study – Drs Elizabeth Hughes (Natural History Museum of London, UK) and Anne-Nina Lörz (University of Hamburg, Germany) pay tribute to respected crustacean expert Prof. Dr. Martin Thiel, who had originally collected some of the studied specimens.

Find more in the WoRMS’ press release.

***

Research article in Evolutionary Systematics:

Hughes LE, Lörz A-N (2019) Boring Amphipods from Tasmania, Australia (Eophliantidae: Amphipoda: Crustacea). Evolutionary Systematics 3(1): 41-52. https://doi.org/10.3897/evolsyst.3.35340

Major advances in our understanding of New World Morning Glories

John Wood of the Oxford team members collecting plants in Bolivia
Photo by BRM Williams

A major advance in revealing the unknown plant diversity on planet Earth is made with a new monograph, published in the open-access, peer-reviewed journal PhytoKeys. The global-wide study, conducted by researchers at the University of Oxford, lists details about each of the 425 New World species in the largest genus within the family of morning glories, thanks to an all-round approach combining standard, modern and new-generation identification techniques. 

The family of morning glories, also known as bindweeds, whose scientific name is Convolvulaceae, includes prominent members like the sweet potato and ornamental plants such as the moonflower and the blue dawn flower. In fact, one of the key conclusions, made in the present work, is that within this plant group there are many other species, besides the sweet potato, that evolved storage roots long before modern humans appeared on Earth. Furthermore, most of those are yet to be evaluated for economic purposes.

Sweet potato (Ipomoea batatas) growing as a weed in a waste ground, San Ramon, Peru
Photo by Robert Scotland

To make their findings, the research team of John Wood, Dr Pablo Muñoz Rodríguez, Bethany R.M. Williams and Prof Robert Scotland applied the “foundation monograph” concept that they had developed for similarly diverse and globally distributed, yet largely understudied groups. Usually, such groups with hundreds of species have never been surveyed across their entire geographical range, which in turn results in the existence of many overlooked new species or species wrongly named.

As a result, the monograph adds six new to science species and establishes nine new subspecies, previously recognised as either distinct species or varieties. The publication also cites all countries where any of those 425 morning glories occurs. In order to provide detailed knowledge about their identities and ecologies, the authors also produced over 200 illustrative figures: both line drawings and photos.

In their study, the scientists also investigate poorly known phenomena concerning the genus. For instance, the majority of the plants appear to originate from two very large centres, from where they must have consequently radiated: the Parana region of South America and the Caribbean Islands. Today, however, a considerable amount of those species can be found all around the globe. Interestingly, the team also notes a strong trend for individual species or clades (separate species with a common ancestor) to inhabit disjunct localities at comparable latitudes on either side of the tropics in North America and South America, but not the Equator.

Prof Robert Scotland (University of Oxford) with the evolutionary tree of Ipomoea that includes 2000 specimens sequenced for DNA
Photo by John Baker

The monograph exemplifies the immense value of natural history collections. Even though the researchers have conducted fieldwork, most of their research is based on herbarium specimens. They have even managed to apply DNA sequencing to specimens over 100 years old. The publication also provides detailed information about the characteristics, distribution and ecology of all the species. It is illustrated with over 200 figures, both line drawings and photos.

“A major challenge in monographing these groups is the size of the task given the number of species, their global distribution and extensive synonymy, the large and increasing number of specimens, the numerous and dispersed herbaria where specimens are housed and an extensive, scattered and often obscure literature,”

comment the scientists.

“Unlike traditional taxonomic approaches, the ‘foundation monograph’ relies on a combination of standard techniques with the use of online digital images and molecular sequence data. Thereby, the scientists are able to focus on species-level taxonomic problems across the entire distribution range of individual species,”

they explained.

***

In a separate paper, published in Nature Plants last November, the research team provides further insights into how they have assembled the monograph and include all the molecular sequence data and phylogenetics produced during their work.

***

Original source:
Wood JR.I, Muñoz-Rodríguez P, Williams BR.M, Scotland RW (2020) A foundation monograph of Ipomoea (Convolvulaceae) in the New World. PhytoKeys 143: 1-823. https://doi.org/10.3897/phytokeys.143.32821


Ancient Mantis-Man Petroglyph Discovered in Iran

A unique rock carving found in the Teymareh rock art site (Khomein county) in Central Iran with six limbs has been described as part man, part mantis. Rock carvings, or petroglyphs, of invertebrate animals are rare, so entomologists teamed up with archaeologists to try and identify the motif. They compared the carving with others around the world and with the local six-legged creatures which its prehistoric artists could have encountered.

Entomologists Mahmood Kolnegari, Islamic Azad University of Arak, Iran; Mandana Hazrati, Avaye Dornaye Khakestari Institute, Iran; and Matan Shelomi, National Taiwan University teamed up with freelance archaeologist and rock art expert Mohammad Naserifard and describe the petroglyph in a new paper published in the open access Journal of Orthoptera Research

The Teymareh rock art site in central Iran (Markazi Province, Iran), where the petroglyph was found
Photo by Mr Mahmood Kolnegari

The 14-centimetre carving was first spotted during surveys between 2017 and 2018, but could not be identified due to its unusual shape. The six limbs suggest an insect, while the triangular head with big eyes and the grasping forearms are unmistakably those of a praying mantid, a predatory insect that hunts and captures prey like flies, bees and even small birds. An extension on its head even helps narrow the identification to a particular genus of mantids in this region: Empusa.

Even more mysterious are the middle limbs, which end in loops or circles. The closest parallel to this in archaeology is the ‘Squatter Man,’ a petroglyph figure found around the world depicting a person flanked by circles. While they could represent a person holding circular objects, an alternative hypothesis is that the circles represent auroras caused by atmospheric plasma discharges.

It is presently impossible to tell exactly how old the petroglyphs are, because sanctions on Iran prohibit the use of radioactive materials needed for radiocarbon dating. However, experts Jan Brouwer and Gus van Veen examined the Teymareh site and estimated the carvings were made 40,000–4,000 years ago. 

One can only guess why prehistoric people felt the need to carve a mantis-man into rock, but the petroglyph suggests humans have linked mantids to the supernatural since ancient times. As stated by the authors, the carving bears witness, “that in prehistory, almost as today, praying mantids were animals of mysticism and appreciation.”

Sarkubeh village (Markazi province, Iran) is the closest
to the studied site human habitation
Photo by Mr Mahmood Kolnegari

Original source:

Kolnegari M, Naserifard M, Hazrati M, Shelomi M (2020) Squatting (squatter) mantis man: A prehistoric praying mantis petroglyph in Iran. Journal of Orthoptera Research 29(1): 41-44. https://doi.org/10.3897/jor.29.39400

Vegetation Classification and Survey (VCS), the new journal of the Int’l Association for Vegetation Science

The journal is to launch with a big editorial and several diverse, high-quality papers over the next months

In summer 2019 IAVS decided to start a new, third association-owned journal, Vegetation Classification and Survey (VCS), next to Journal of Vegetation Science (JVS) and Applied Vegetation Science (AVS).

Vegetation Classification and Survey (VCS) is an international, peer-reviewed journal of plant community ecology published on behalf of the International Association for Vegetation Science (IAVS) together with its sister journals, Journal of Vegetation Science (JVS) and Applied Vegetation Science (AVS). It is devoted to vegetation survey and classification at any organizational and spatial scale and without restriction to certain methodological approaches.

The journal publishes original papers that develop new vegetation typologies as well as applied studies that use such typologies, for example, in vegetation mapping, ecosystem modelling, nature conservation, land use management or monitoring. Particularly encouraged are methodological studies that design and compare tools for vegetation classification and mapping, such as algorithms, databases and nomenclatural principles. Papers dealing with conceptual and theoretical bases of vegetation survey and classification are also welcome. While large-scale studies are preferred, regional studies will be considered when filling important knowledge gaps or presenting new methods. VCS also contains Permanent Collections on “Ecoinformatics” and “Phytosociological Nomenclature”.

VCS is published by the innovative publisher Pensoft as a gold open access journal. Thanks to support from IAVS, we can offer particularly attractive article processing charges (APCs) for submissions during the first two years. Moreover, there are significant reductions for IAVS members, members of the Editorial Team and authors from low-income countries or with other financial constraints (learn more about APCs here).

Article submissions are welcomed at: https://vcs.pensoft.net/

Post by Jürgen Dengler, Idoia Biurrun, Florian Jansen & Wolfgang Willner, originally published on Vegetation Science Blog: Official blog ot the IAVS journals.

###

Follow Vegetation Classification and Survey on Twitter and Facebook.

Book on plants in the Murmansk region (Russia) scores 4/19 correct insect identifications

Mistakes can occur in any environment, but what if the records we read about are actually incorrect? The case of unqualified scientists publishing false records of insects in the Murmansk oblast of Russia is described in the recent paper in the open-access journal Arctic Environmental Research.

A recently published book on some aspects of the ecology of woody introducents in the Murmansk oblast of Russia provides the information on 19 species of plant-damaging insects out of which only 4 species are identified correctly. Dr Mikhail V. Kozlov from the University of Turku provides correct identifications for the insects, illustrated in the book, in his paper, published in the open-access journal Arctic Environmental Research in order to prevent the spread of erroneous information across future publications and databases.

Insect fauna of the Murmansk region is relatively well-studied and that’s why any new faunistic records from this region immediately attract the attention of entomologists. Those findings are especially exciting when they extend the distribution range of certain species by 1,000 to 2,000 km towards the North Pole.

The published misidentifications of insect species can lead to a cascading effect of mistakes, because entomologists commonly use faunistic data published by colleagues decades and even centuries ago. That’s why it is very important to keep a track of such cases and provide correct identifications if possible, remarks the author.

“In particular, three moth species (Archips crataegana, A. podanaand Erannis defoliaria) reported in this book to occur around Kirovsk have not yet been found either in the Murmansk oblast or in the more southern Karelia. In neighbouring Finland, the northernmost records of these species are from locations some 1,000 km to the south of Kirovsk”,

Dr Kozlov shares his concerns.

The most striking examples of misidentification in the book are at the order level: a syrphid fly (Diptera) identified as a leafcutter bee (Hymenoptera), and a sawfly (Hymenoptera) identified as a psyllid (Hemiptera).


Leaf beetle Chrysomela lapponica, erroneously mentioned in the criticized book as a pest of bird cherry, shadbush and chokeberry, feeds in the Murmansk oblast only on willows.
Credit: Vitali Zverev
License: CC-BY 4.0

In conclusion, Dr Kozlov’s revision found that 15 out of the 19 species illustrated were incorrectly identified. Thus, the leaf damage associated with certain insect species, considered in the book, also becomes very questionable.

“The misidentification of pest species can easily result in incorrect pest management and face unnecessary costs, while publication of incorrect data distorts our knowledge of the distribution and biology of insects. Therefore, insect identification for scientific, educational or pest management purposes should always be performed by professionals or by volunteers and students who have specific training for this
purpose”,

concludes Dr Mikhail V. Kozlov.

***

Original source:
Kozlov MV (2019) Insects identified by unqualified scientists: multiple “new” records from the Murmansk oblast of Russia are dismissed as false. Arctic Environmental Research 19(4): 153-158. https://doi.org/10.3897/issn2541-8416.2019.19.4.153 

How quickly do flower strips in cities help the local bees?

Insects rely on a mix of floral resources for survival. Populations of bees, butterflies, and flies are currently rapidly decreasing due to the loss of flower-rich meadows. In order to deal with the widespread loss of fauna, the European Union supports “greening” measures, for example, the creation of flower strips.

A group of scientists from the University of Munich, led by Prof. Susanne S. Renner, has conducted the first quantitative assessment of the speed and distance over which urban flower strips attract wild bees, and published the results of the study in the open-access Journal of Hymenoptera Research.

Flower strips are human-made patches of flowering plants that provide resources for flower-visiting insects and insect- and seed-feeding birds. Previous experiments have proved their conservation value for enhancing biodiversity in agricultural landscapes.

The success of flower strips in maintaining populations of solitary bees depends on the floristic composition, distance from suitable nesting sites, and distance from other habitats maintaining stable populations of bees. To study the attractiveness of the flower strips in urban landscapes, the scientists used an experimental set-up of nine 1,000 sq. meters flower strips recently established in Munich by a local bird conservation agency.

“We identified and counted the bees visiting flowers on each strip and then related these numbers to the total diversity of Munich’s bee fauna and to the diversity at different distances from the strips. Our expectation was that newly planted flower strips would attract a small subset of mostly generalist, non-threatened species and that oligolectic species (species using pollen from a taxonomically restricted set of plants) would be underrepresented compared to the city’s overall species pool,”

shared Prof. Susanne S. Renner.

Bees need time to discover new habitats, but the analysis showed that the city’s wild bees managed to do that in just one year so that the one-year-old flower strips attracted one-third of the 232 species recorded in Munich between 1997 and 2017.

Surprisingly, the flower strips attracted a random subset of Munich’s bee species in terms of pollen specialization. At the same time, as expected, the first-year flower-strip visitors mostly belonged to common, non-threatened species.

The results of the study support that flower strip plantings in cities provide extra support for pollinators and act as an effective conservation measure. The authors therefore strongly recommend the flower strip networks implemented in the upcoming Common Agricultural Policy (CAP) reform in the European Union.

###

Original source:

Hofmann MM, Renner SS (2020) One-year-old flower strips already support a quarter of a city’s bee species. Journal of Hymenoptera Research 75: 87-95. https://doi.org/10.3897/jhr.75.47507

Exceptional catapulting jump mechanism in a tiny beetle could be applied in robotic limbs

The fascinating and highly efficient jumping mechanism in flea beetles is described in a new research article in the open-access journal Zookeys. Despite having been known since 1929, the explosive jump – which is also the reason behind the colloquial name of this group of leaf beetles – has so far not been fully understood.

By joining forces, a team of Chinese and US scientists, led by Dr Xingke Yang, Siqin Ge and Yongying Ruan of the Chinese Academy of Sciences and Dr Alexander Konstantinov of the Agricultural Research Service at the U.S. Department of Agriculture, tested the existing theories, using micro-computed tomography (micro-CT scans), 3D reconstructions, high-speed filming and dissection. Following their experiments, the scientists provided comprehensive insights into the mechanics behind the spectacular jump in flea beetles and reported, for the first time, the role of a structure found in the legs of these insects, known as “elastic plate”.

The flea beetles (members of the tribe Alticini) are plant feeders that belong to a hyperdiverse group of about 9,900 species and occur in various environments worldwide: from lowland tropical rain forests to high-altitude mountain meadows and deserts. Most of them live, feed and procreate on the upper leaf surface of their host plants, thus making them particularly vulnerable to predators, including birds, ants and spiders. One of their defence mechanisms is their incredible jumping skills, which allow the beetles to escape an approaching predator in an instant.

The apparatus responsible for this exceptional jump is hidden inside the beetle’s hind legs and is relatively simple. It contains only three sclerotised parts and a few muscles. Yet, it is, in reality, a highly efficient “catapult”, able to propel the beetle at a distance hundreds of times its body length. Using micro-computed tomography, 3D reconstructions and high-speed filming data, the scientists revealed that the acceleration during the jump can reach an explosive peak of 8,650 m/s2, which is 865 times the acceleration of gravity. The peak power output of the hind legs of the beetle peaked at 2.24 × 105 W/kg (per unit mass). This is about 450 times the capabilities of the fastest known muscle and 100~200 times that of a powerful rally car engine.

The 3D reconstructions revealed two processes inside the hind leg that amplify the power output of the beetle’s muscles and reduce energy waste.

Firstly, the tibial extensor and tibial flexor muscles contract simultaneously and cumulatively build up elastic strain energy inside the femur (the longest segment of an insect’s leg). The energy is stored in a sclerotised structure, called a metafemoral spring, while another two structures inside the leg, previously known as “triangular plate” and “elastic plate”, act together as a trigger for the catapult mechanism. When the trigger is released, the metafemoral spring contracts and converts elastic potential energy into kinetic energy, which allows the flea beetle to attain an extraordinarily high acceleration. Instead of gradual acceleration throughout the jump, the flea beetle employs a ‘high-efficiency mechanism’ at the start, in order to store colossal strain energy to be released later on.

Thus, flea beetles avoid muscle fatigue (energy waste) and improve their jumping performance to the point where they can do over 30 consecutive jumps, as recorded by the scientists in their laboratory experiments. In nature, this mechanism is an adaptation for the insects to escape predators by quickly disappearing from the leaf surfaces where they normally spend their lives. In fact, it is this “explosive” jump that, according to the researchers, is amongst the key traits responsible for the high evolutionary success and remarkable species diversity in flea beetles.

In conclusion, the scientists note that the catapulting jump mechanism in flea beetles is so efficient and yet so simple that it might find an excellent use in robotics, as well as in engineering and industrial installations. In their research paper, they also propose a design of a bionic limb inspired by the studied beetles.

###

Original source:

Ruan Y, Konstantinov AS, Shi G, Tao Y, Li Y, Johnson AJ, Luo X, Zhang X, Zhang M, Wu J, Li W, Ge S, Yang X (2020) The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg. ZooKeys 915: 87-105. https://doi.org/10.3897/zookeys.915.38348