Spiders of the family Araneidae are known for building vertical orbicular webs to catch upon prey. They can be easily identified by their eye pattern, the abdomen normally overlapping the carapace, and complex genitalia. The family currently has 188 genera and 3,119 species worldwide.
Two scientists from Murdoch University in Perth (Australia), Dr Pedro Castanheira and Dr Volker Framenau, described a new spider genus of Araneids following a comprehensive study of orb-weaving spiders found in Australian zoological collections. They named it after one of their favourites bands, the Swedish pop group ABBA, paying tribute to the band members Agnetha Fältskog, Björn Ulvaeus, Benny Andersson, and Anni-Frid Lyngstad.
The band’s “songs and subsequent musicals Mamma Mia! (2008) and Mamma Mia – Here We Go again! (2018), provided hours of entertainment for the authors,” they explain in their study, which was published in the journal Evolutionary Systematics.
Abba transversa. Photo by Volker Framenau
The new genus is composed of a relatively small single species (ca. 3-4 mm), Abba transversa (Rainbow, 1912), whose specimens are currently known from the coastal area of New South Wales and Queensland. It is differentiated from other species within the family by the presence of two dark spots in the middle of abdomen and by the thick macrosetae on the first pair of legs of the males.
The description comes after 15 years of scientific work, with the researchers looking at 12,000 records in Australian museums and overseas collections.
“Describing new taxa is vital for conservation management plans to assess biodiversity and protect forests areas across Australia,” says study author Dr Pedro Castanheira. “Currently, 80% of Australian spider species are unknown, and many of the described ones are misplaced in different genera, like Abba transversa used to be.”
Original source:
Castanheira PS, Framenau VW (2023) Abba, a new monotypic genus of orb-weaving spiders (Araneae, Araneidae) from Australia. Evolutionary Systematics 7(1): 73-81. https://doi.org/10.3897/evolsyst.7.98015
The publications so far include the grant proposal; conference abstracts, a workshop report, guidelines papers and deliverables submitted to the Commission.
The dynamic open-science project collection of BiCIKL, titled “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” (doi: 10.3897/rio.coll.105), continues to grow, as the project progresses into its third year and its results accumulate ever so exponentially.
Following the publication of three important BiCIKL deliverables: the project’s Data Management Plan, its Visual identity package and a report, describing the newly built workflow and tools for data extraction, conversion and indexing and the user applications from OpenBiodiv, there are currently 30 research outcomes in the BiCIKL collection that have been shared publicly to the world, rather than merely submitted to the European Commission.
Shortly after the BiCIKL project started in 2021, a project-branded collection was launched in the open-science scholarly journal Research Ideas and Outcomes(RIO). There, the partners have been publishing – and thus preserving – conclusive research papers, as well as early and interim scientific outputs.
The publications so far also include the BiCIKL grant proposal, which earned the support of the European Commission in 2021; conference abstracts, submitted by the partners to two consecutive TDWG conferences; a project report that summarises recommendations on interoperability among infrastructures, as concluded from a hackathon organised by BiCIKL; and two Guidelines papers, aiming to trigger a culture change in the way data is shared, used and reused in the biodiversity field.
At the time of writing, the top three of the most read papers in the BiCIKL collection is completed by the grant proposal and the second Guidelines paper, where the partners – based on their extensive and versatile experience – present recommendations about the use of annotations and persistent identifiers in taxonomy and biodiversity publishing.
Access to data and services along the entire data and research life cycle in biodiversity science. The figure was featured in the BiCIKL grant proposal, now made available from the BiCIKL project collection in RIO Journal.
What one might find quite odd when browsing the BiCIKL collection is that each publication is marked with its own publication source, even though all contributions are clearly already accessible from RIO Journal.
This is because one of the unique features of RIOallows for consortia to use their project collection as a one-stop access point for all scientific results, regardless of their publication venue, by means of linking to the original source via metadata. Additionally, projects may also upload their documents in their original format and layout, thanks to the integration between RIO and ARPHA Preprints. This is in fact how BiCIKL chose to share their latest deliverables using the very same files they submitted to the Commission.
“In line with the mission of BiCIKL and our consortium’s dedication to FAIRness in science, we wanted to keep our project’s progress and results fully transparent and easily accessible and reusable to anyone, anywhere,”
explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.
“This is why we opted to collate the outcomes of BiCIKL in one place – starting from the grant proposal itself, and then progressively adding workshop reports, recommendations, research papers and what not. By the time BiCIKL concludes, not only will we be ready to refer back to any step along the way that we have just walked together, but also rest assured that what we have achieved and learnt remains at the fingertips of those we have done it for and those who come after them,” he adds.
Apart from science communication, Pensoft is also tasked with the development and maintenance of the CANOPY platform, whose aim is to support policymakers and national and regional authorities
Dedicated to bridging the gap between science, policy, industry and society, Pensoft is striving to maximise ForestPaths’ impact in meeting Europe’s climate and biodiversity targets
The backdrop
The European Union (EU) has set ambitious targets to reduce greenhouse gas emissions by at least 55% in 2030 and to become climate neutral by 2050, which require urgent and major societal and economic reforms.
In the meantime, the EU also aims to protect biodiversity and reverse the degradation of ecosystems, while using natural resources to mitigate climate change.
ForestPaths – a recently started Horizon Europe project will help meet Europe’s climate and biodiversity targets by providing clear policy options that enable European forests and the forest-based sector to contribute to climate change mitigation, while conserving their biodiversity and sustaining the services they provide to people.
As an experienced science communicator, Pensoft is dedicated to maximising ForestPaths’ impact. The team will do so by means of tailored communication, dissemination and exploitation strategies aimed at sharing the project’s results with relevant stakeholder groups.
Furthermore, Pensoft is tasked with the development and long-term maintenance of the CANOPY platform, whose aim is to support policymakers and national and regional authorities by granting them access to the knowledge and scientific evidence acquired within ForestPaths long after the project is finalised.
Building on these options, the project will collaborate with policymakers and key authorities through a series of Policy labs, where the partners will co-design policy pathways, which will then be analysed with next-generation integrated assessment techniques.
Lastly, ForestPaths will apply this framework for an all-round assessment of the climate mitigation potential of European forests and the forest-based sector.
Aerial view of a forest road.
The ForestPaths legacy
ForestPaths’ policy pathways – as well as their supporting information and evidence – will be made openly available through the project’s policy-support platform CANOPY, hosted on the ForestPaths website.
The platform, whose launch is scheduled for 2026, will feature an interactive policy analysis tool explaining the policy pathways and showcasing their implications, as well as providing detailed assessment results and policy recommendations in an easily accessible manner. Its long-term mission is to become the go-to place for easily accessible assessment results and policy recommendations.
“We are excited to be doing our part for Europe’s fight for climate neutrality by extending ForestPaths reach to policy, industry and society at large! As an open-access scientific publisher engaged in about 50 environmental research projects, Pensoft echoes ForestPaths’ aim to support the EU’s climate neutrality transition through what we are sure will be a prolific international research collaboration,” says ForestPaths’ WP7 leader Anna Sapundzhieva.
For the first time, self-sustaining populations of three non-native species of turtles were identified in south-western Germany by researchers at the University of Freiburg
For the first time, self-sustaining populations of three non-native species of turtles were identified in south-western Germany by researchers at the University of Freiburg
Three species of turtles native to North America have been successfully reproducing in the wild in Germany, report for the first time environmental researcher Benno Tietz and biologist Dr. Johannes Penner of the University of Freiburg, along with Dr. Melita Vamberger of the Senckenberg Natural History Collection in Dresden.
Their results were published in the open-access scientific journal NeoBiota.
The scientists examined a total of nearly 200 animals living in the wild in lakes in Freiburg and Kehl. Their findings suggest that the turtles have established themselves in a new habitat, where they could become a threat to the local ecosystem.
For two species, this is the first evidence of independent reproduction outside of their natural reproductive range. For the third species, this is the northernmost evidence of its presence up to now,
says Penner.
The false map turtle (Graptemys pseudogeographica) enjoys the sun’s warmth. Photo: Johannes Penner.
Turtles released into the wild
Invasive species do a great deal of economic damage world-wide. They also contribute to advancing global species extinctions.
Alien reptiles regularly make their way into the wild in Germany. Most often, this is because they have been released by pet owners.
Large numbers of North American pond sliders (Trachemys scripta) were imported into the European Union (EU) in the 1980s and 1990s as house pets. In 1997, their import into the EU was banned. By 2016, the sale of specimens born here was also made illegal. Since then, pet shops have replaced them with other freshwater turtles, such as the river cooter (Pseudemys concinna) and the false map turtle (Graptemys pseudogeographica).
Genetic analyses of specimens of all three species in a range of ages have now demonstrated that they are reproducing independently in local waters.
What’s surprising is that the invasive species have established themselves so far north. In Europe, successful reproduction and self-maintaining populations of Trachemys scripta were only known in the Mediterranean regions and the continental climate zone of Slovenia,
explains Benno Tietz.
Until recently, it had been assumed the turtles being examined couldn’t reproduce in Central Europe due to the colder climate. Especially the false map turtle is actually quite sensitive to the cold,
he says.
A North American pond slider (Trachemys scripta) resting on a lily pad. Photo: Johannes Penner.
Consequences for local species unclear
The invasive turtles could become a problem for indigenous species.
The European pond turtle (Emys orbicularis), for example, is now only present in Germany in parts of Brandenburg.
In an experimental setup, the European pond turtle showed weight loss and an increased death rate when being kept together with Trachemys scripta,
reports Penner.
Penner says that could be caused by the larger, alien species forcing the smaller local turtles from places where they sun themselves, leading the local turtles to have problems with thermoregulation. Or perhaps the competition led to them having greater challenges when seeking food.
Beyond that, aquatic turtles could be hosts for viruses and parasites, leading them to play a role in the spread of diseases. This could potentially have a damaging influence on other parts of the ecosystem, including amphibians, fish, or aquatic plants.
On the other hand, in their study, the researchers consider the alien species could assume functions in damaged ecosystems that would otherwise go unreplaced.
Vamberger says these questions urgently need to be explored further.
We need to raise public awareness that people should not release – no matter what kind of species – any animals into the wild in future.”
she insists.
A river cooter (Pseudemys concinna) lets itself drift in the water. Photo: Johannes Penner.
Benno Tietz has completed a Master’s degree in Environmental Sciences at the University of Freiburg. His thesis – finished in the Winter Semester of 2020/2021 – investigated alien turtles. Currently, he is a research assistant at the Freiburg Institute of Applied Animal Ecology.
Tietz B, Penner J, Vamberger M (2023) Chelonian challenge: three alien species from North America are moving their reproductive boundaries in Central Europe. NeoBiota 82: 1-21. https://doi.org/10.3897/neobiota.82.87264
OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System.
Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.
OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System.
As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.
In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.
“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”
explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.
“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”
he adds.
At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.
Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL.
As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions.
Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.
Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.
On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.
“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”
Guest blog post by Daniela N. López, Eduardo Fuentes-Contreras, Cecilia Ruiz, Sandra Ide, Sergio A. Estay
Understanding the history of non-native species arrivals to a country can shed light on the origins, pathways of introduction, and the current and future impacts of these species in a new territory. In this sense, collecting this information is important, and sometimes essential, for researchers and decision makers. However, in most cases, reconstructing this history takes a lot of work. Finding antique references is hard work. To add more complexities, changes in the taxonomy of species or groups could be frustrating as we try to track the moment when a species was referenced in the country for the first time, sometimes centuries ago. Of course, we only learned about these issues when, almost seven years ago, we thought that compiling a database for the exotic insects established in Chile would be interesting to people working on invasive species in the country.
Tremex fuscicornis caught in Chile. Photo by Sergio Estay
First, we collected information from physical and electronic books and journals available in our institutional libraries, but soon we noticed that we needed a more significant effort. In Chile, the National Library and The National Congress library allowed us to review and collect information from texts, in many cases, over a hundred years old. We also had to request information from foreign specialized libraries and bookstores. Sometimes, we had to negotiate with private collectors to buy antique books or documents. When we figured the first version of the database was ready, we began a second step for detecting errors, correcting the taxonomy, and completing the information about the reported species.
Ctenarytaina eucalypti individuals and damage in Chile. Photo by Sergio Estay
The analysis began when we finally completed the database. What types of questions could we answer using this data? Was the database complete enough to detect historical, biogeographic, and ecological patterns? Two competing hypotheses were the starting point for the study at this stage. On the one hand, the species that dominated the non-native insect assemblage could have come from original environmental conditions that matched Chile’s. Or, the pool of non-native insects arrived using pathways associated with the country’s economic activities, regardless of their origin.
We found records of almost 600 non-native insect species established in continental Chile. Most species corresponded to Hemiptera (true bugs and scales, among others) from Palaearctic origin and were linked to agriculture and forestry, as we initially hypothesized. These characteristics point to the central role of intercontinental human-mediated transport in structuring non-native insect assemblages in Chile. Non-native insect introductions began immediately after the arrival of Europeans to the central valley of Chile and have shown an enormous acceleration since 1950. Using data on the economic history of Chile, we can preliminary link this acceleration with the strong development in agriculture and forestry in Chile after World War II and the increase in intercontinental air traffic.
Exotic aphids in garden in Chile. Photo by Sergio Estay
The development and analysis of this database gave us some preliminary answers about the ecology of invasive insect species and opened the door to new questions. Also, this is a work in progress. We need the scientific community’s support to improve and correct the records, provide new reports and collect further references to support the database. Our data and analysis may be representative of other countries in South America. Similarities between our countries can facilitate using this information to manage recent introductions and prevent significant economic, social, or environmental damage.
Reference
López DN, Fuentes-Contreras E, Ruiz C, Ide S, Estay SA (2023) A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NeoBiota 81: 183-197. https://doi.org/10.3897/neobiota.81.87362
The frog lives in the pristine streams of the Río Negro-Sopladora National Park, a protected area with thousands of hectares of almost primary forests in Ecuador.
“In a stream in the forest there lived a Hyloscirtus. Not a nasty, dirty stream, with spoor of contamination and a muddy smell, nor yet a dry, bare, sandy stream with nothing in it to perch on or to eat: it was a Hyloscirtus-stream, and that means environmental quality.” (adapted from the opening of “The Hobbit” by J. R. R. Tolkien)
A magnificent new species of stream frog from the Andes of Ecuador was named after J. R. R. Tolkien, creator of Middle-earth and author of famous fantasy works “The Hobbit” and “The Lord of the Rings. It lives in the pristine streams of the Río Negro-Sopladora National Park, a recently declared protected area that preserves thousands of hectares of almost primary forests in southeastern Ecuador.
Stream frogs are a group of amphibians that inhabit the high Andes of Venezuela, Colombia, Ecuado, Peru, and Bolivia. Their life is closely linked to the pure rivers and streams in the mountain areas of the Andes, hence the name “stream frogs”. The adults live in the riparian vegetation, and their tadpoles develop among the rocks of the rapid waters of the rivers.
The researchers, Juan C. Sánchez-Nivicela, José M. Falcón-Reibán, and Diego F. Cisneros-Heredia, named the new frog Hyloscirtus tolkieni in honour of one of their favourite writer. JRR Tolkien, a renowned author, poet, philologist and academic, is the creator of Middle-earth and the father of fantastic works such as “The Hobbit” and “The Lord of the Rings”. The amazing colours of this new frog species reminded them of the magnificent creatures from Tolkien’s fantasy worlds.
Expeditions carried out since 2020 in the Río Negro-Sopladora National Park in Ecuador have allowed the discovery of a large number of species yet unknown to science. A protected area since 2018, this national park, located in the south of the country, is home to large forested areas that remain unstudied.
“For weeks, we explored different areas of the Río Negro-Sopladora National Park, walking from paramo grasslands at 3,100 meters elevation to forests at 1,000 m. We found a single individual of this new species of frog, which we found impressive due to its colouration and large size.”, indicated Juan Carlos Sánchez Nivicela, associate researcher at the Museum of Zoology of the Universidad San Francisco de Quito USFQ and the National Institute of Biodiversity, and co-author of the study where the frog is described.
The Río Negro Stream Frog is easily differentiated from all its frog releatives by its appearance and unique colouration. It is relatively large (65 mm long), a greyish green back with yellow spots and black specks, and a pale pink and black iris. Its throat, belly and flanks as well as the undersides of its legs are golden yellow with large black spots and dots, and its fingers and toes have black bars and spots and broad skin stripes.
“The new species of frog has amazing colours, and it would seem that it lives in a universe of fantasies, like those created by Tolkien. The truth is that the tropical Andes are magical ecosystems where some of the most wonderful species of flora, funga, and fauna in the world are present. Unfortunately, few areas are well protected from the negative impacts caused by humans. Deforestation, unsustainable agricultural expansion, mining, invasive species, and climate changes are seriously affecting Andean biodiversity”, said Diego F. Cisneros-Heredia, director of the Museum of Zoology of the Universidad San Francisco de Quito USFQ and associate researcher of the National Institute of Biodiversity, and co-author of the study.
The species is still only known from one locality and one individual, so information is insufficient to assess its conservation status and the risk of extinction. However, the authors agree that it is urgent to establish research and monitoring actions to study its life history and ecology, as well as its population size and dynamics. In addition, they suggest exploring new sites where additional populations may exist, and assessing whether their long-term conservation is affected by any threats, such as invasive species, mining, emerging diseases, or climate change.
The description of new species is an important mechanism to support global strategies for the conservation of vulnerable environments, since it reveals the great wealth of biodiversity that is linked to countless natural resources and environmental services. For example, amphibians are important pest controllers and play vital ecological roles in the stability of nature. Unfortunately, 57% of amphibian species in Ecuador are threatened by extinction.
Research article:
Sánchez-Nivicela JC, Falcón-Reibán JM, Cisneros-Heredia DF (2023) A new stream treefrog of the genus Hyloscirtus (Amphibia, Hylidae) from the Río Negro-Sopladora National Park, Ecuador. ZooKeys 1141: 75-92. https://doi.org/10.3897/zookeys.1141.90290
Photos by Juan Carlos Sánchez-Nivicela / Archive Museo de Zoología, Universidad San Francisco de Quito
Between 2010 and 2019, total imports of frog’s legs into the EU numbered 40.7 million kg, which equals to up to roughly 2 billion frogs. While Belgium is the main importer, France is the main consumer. These insights are part of a new study, published in the journal Nature Conservation, which found “inexplicable volatility” in the trade of frog legs and an extreme dependency of the EU on other countries to meet its demand.
Leading author Dr. Auliya of the Leibniz Institute for the Analysis of Biodiversity Change in Bonn, Germany, outlines the manifold uncertainties underlying this trade: “The international trade in frogs’ legs is a black box, whether it is the lack of species-specific trade data, which would be needed to ensure sustainability, or the large-scale mislabeling in trade and the challenges to identify species when it comes to processed, skinned and frozen frogs’ legs.”
Frogs’ legs from large ranids at a large-scale reptile collector in North Sumatra, Indonesia. Photo by Mark Auliya
Frogs have a central role in the ecosystem as insect predators – and where frogs disappear, the use of toxic pesticides increases. Hence, the frogs’ legs trade has direct consequences not only for the frogs themselves, but for biodiversity and ecosystem health as a whole. The extent to which pesticide residues in frogs’ legs are traded internationally remains unclear.
In the 1970s and 1980s, India and Bangladesh were the top suppliers of frogs’ legs to Europe, but when their wild frog populations collapsed, both countries banned exports. Since then, Indonesia has taken over as the largest supplier. In the Southeast Asian country, as now also in Turkey and Albania, large-legged frog species are dwindling in the wild, one after the other, causing a fatal domino effect for species conservation. This increasingly threatens frog populations in the supplier countries.
“The EU is by far the world’s largest importer of frogs’ legs, and large-legged species such as the crab-eating grass frog (Fejervarya cancrivora), the giant Javan frog (Limnonectes macrodon) and the East Asian bullfrog (Hoplobatrachus rugulosus) are in particular demand among supposed gourmets in Europe”, points out co-author Dr. Sandra Altherr, a biologist and wildlife trade expert of the Germany-based charity Pro Wildlife.
Frozen frogs’ legs on sale in a French supermarket, August 2022. Photo by Sandra Altherr / Pro Wildlife
While commercial frog farms, like those operated in Viet Nam, may at first glance seem to be an alternative that can relieve the pressure from wild frog populations, ongoing restocking of frog farms with native species from the wild and, in the case of non-native species, such as the American bullfrog (Lithobates catesbeianus) the risk of escape, invasion and potential risk of disease spread, are serious risks for the environment.
The harvest of wild frog populations and species produced at commercial frog farms for the purpose of consumption also leaves disease control and hygiene measures by the wayside; additionally, the cross-border trade of species for consumption has led to genetic pollution and hybridization between species.
Limnonectes blythii species complex from a large-scale collector in North Sumatra. Photo by Mark Auliya
„During the course of this study, it became clear just how difficult it is to obtain concrete data on the current international trade in frogs’ legs. Specifically, relevant data are scattered across different unconnected databases,“ the researchers write in their paper.
In the course of their review, they were not able to find any published data out whether pesticide residues and other potentially toxic substances in (processed) frogs or their legs imported into the EU have been monitored. “This in itself is shocking and in view of the situation in exporting countries and the lack of transparency and management in the application of agrochemicals and veterinary medicinal substances within commercial farms, we strongly recommend that this monitoring become an urgent near-future task for importing countries,” they write.
“The complexity of issues underlying the frogs’ legs trade is not a priority policy item for the EU,” the authors conclude. They add that a listing of the most-affected frog species under CITES, the Convention on International Trade in Endangered Species of Wild Fauna and Flora, would help to monitor trade and ensure its sustainability, and the EU as the main destination should take the lead on that.
Research article:
Auliya M, Altherr S, Nithart C, Hughes A, Bickford D (2023) Numerous uncertainties in the multifaceted global trade in frogs’ legs with the EU as the major consumer. Nature Conservation 51: 71-135. https://doi.org/10.3897/natureconservation.51.93868
For the first time, the satellite tracks of two Antarctic blue whales, tagged a decade ago, have been published in the open-access Biodiversity Data Journal.
Ten years ago, Dr Virginia Andrews-Goff was riding the bowsprit of a six-metre boat, as a 30-metre, 120-tonne Antarctic blue whale surfaced alongside.
That day in the Southern Ocean, she became the first and, so far, the only person, to deploy satellite tags on two of these critically endangered and rarely sighted giants.
At the time, her success added weight to a case in the United Nations International Court of Justice, demonstrating that scientific research on whales could be conducted without killing them.
Dr Andrews-Goff and her colleagues at the Australian Antarctic Division have now published the two satellite tracks generated by that 2013 work, in the open-access Biodiversity Data Journal.
This is a unique data set that was incredibly challenging to get.
Dr Virginia Andrews-Goff
The tracks give an insight into the animals’ movement and behaviour on their feeding grounds, and illustrate the significant logistical challenges needed to successfully locate, tag, and track Antarctic blue whales.
“This is a unique data set that was incredibly challenging to get, and, unfortunately, for 10 years no-one has been able to generate more data,” Dr Andrews-Goff said.
“We know very little about the movement and distribution of Antarctic blue whales, where they migrate, where they forage and breed, and we don’t understand the threats they might face as they recover from whaling.”
Part of the issue is that the animals are incredibly difficult to find. Commercial whaling in the 1960s and ‘70s killed about 290,000 Antarctic blue whales, accounting for 90% of the population. By the late 1990s, the world’s population of Antarctic blue whales was estimated at 2280 animals.
Back in 2013, the research team used novel acoustic tracking techniques to detect blue whale calls and hone in on their location from up to 1000 kilometres away. Once the whales were in sight (in two separate locations), an expert crew manoeuvred close to their fast-moving targets.
The satellite tags showed that the whales travelled 1390 kilometres in 13 days and 5550 kilometres in 74 days, with an average distance of more than 100 kilometres per day.
“The two whales did entirely different things, but what became obvious is that these animals can travel really quickly,” Dr Andrews-Goff said.
“If you consider how far and fast these animals moved, protecting the broader population against potential threats will be tricky because they could potentially circumnavigate Antarctica within a single feeding season.”
Since the tracks were obtained, new analytical methods have added some behavioural context to the data.
Two movement rates were observed – a faster ‘in transit’ speed averaging 4.2 km/hr and a slower speed of 2.5 km/hr, thought to correspond with searching or foraging.
“It looks like the whales might hang around in one area to feed and then move quickly to another area and hang around there for another feed,” Dr Andrews-Goff said.
“There may be certain areas that are better feeding grounds than others. From a management perspective, it would be good to understand what is it that makes these areas important?”
Even at a sample size of two, Dr Andrews-Goff said the satellite tracks will assist the International Whaling Commission’s management of Antarctic blue whales, by providing initial insights into blue whale foraging ecology, habitat preferences, distribution, movement rates, and feeding. These will inform an in-depth assessment of Antarctic blue whales due to begin in 2024.
Original source:
Andrews-Goff V, Bell EM, Miller BS, Wotherspoon SJ, Double MC (2022). Satellite tag derived data from two Antarctic blue whales (Balaenoptera musculus intermedia) tagged in the east Antarctic sector of the Southern Ocean. Biodviersity Data Journal 10: e94228 https://doi.org/10.3897/BDJ.10.e94228
***
Conditions of Use – strictly non-commercial, once only, no archive + no sales The Australian Antarctic Division welcomes your interest in Australia’s Antarctic Program. The Commonwealth of Australia, represented by the Australian Antarctic Division of the Department of Climate Change, Energy, the Environment and Water (Commonwealth), hereby consents to you publishing each item of material listed below ONCE ONLY on a non-commercial, royalty-free and non-exclusive basis. Where material is published in a printed or electronic format (including on the internet), you are requested to acknowledge the photographer or videographer as listed below. If used on social media please tag the Australian Antarctic Division @AusAntarctic #AusAntarctic
This Consent does not entitle you to use the material specified below in any future article, feature or broadcast without further specific prior written permission of the Commonwealth or to adapt, modify, exploit or sublicense the material specified below in any way. By using this material, you agree to the terms of this Consent.
A new species of snake was described from western Panama. First documented in 1977 by Dr. Charles Myers, a scientist studying amphibians and reptiles throughout Panama, it was only now that it got a scientific description.
The new snake has been given the name Dipsas aparatiritos. The genus Dipsas includes the snailsuckers, a unique group of snakes that feed on soft-bodied prey including snails extracted from their shells, slugs, and earthworms. The species epithet “aparatiritos” is Greek for unnoticed: a reference to the fact that the snake had remained hidden in plain sight for over forty years at a very well-studied field site.
Live individual of Dipsas aparatiritos in Parque Nacional General de División Omar Torrijos Herrera photographed in the wild. Photo by Kevin Enge
Scientists Dr. Julie Ray, University of Nevada – Reno, Paola Sánchez-Martínez, Abel Batista, Daniel G. Mulcahy, Coleman M. Sheehy III, Eric N. Smith, R. Alexander Pyron and Alejandro Arteaga, have described the new species in a paper published in the open-access journal ZooKeys.
Dipsas aparatiritos has the characteristic bulbous head and brown-and-black patterning of many of the snakes in the genus. It looks very similar to its closest known relative, Dipsas temporalis, which is also found in Panama. It is now known that D. aparatiritos is endemic to, or known only from, the western and central parts of the country.
The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray
Panama has a rich diversity of snakes, with over 150 documented species in a country the size of Ireland or the U.S. state of South Carolina. Dr. Ray has documented over 55 species of snakes in Parque Nacional General de División Omar Torrijos Herrera where the newly described snake is best studied, and over 80 species in Coclé Province in Central Panama. She published a field guide, Snakes of Panama, in 2017.
Four individuals of Dipsas aparatiritos intertwined on one plant at Parque Nacional General de División Omar Torrijos Herrera. Photo by Noah Carl
Co-author of the species description Dr. Alex Pyron, The George Washington University, visited Parque Nacional General de División Omar Torrijos Herrera in June 2013 with Dr. Frank Burbrink, American Museum of Natural History. “That was my first trip to Central America,” he says. “We were able to see the after-effects of the amphibian declines. But I was struck by the diversity and abundance of snakes that were still present, including this species of snail-eater we have just described, the rare Geophis bellus [a small leaf litter snake known from just one specimen prior to this discovery] and an unusual Coralsnake.”
Despite being a new species, Dipsas aparatiritos is relatively common in Parque Nacional General de División Omar Torrijos Herrera and has been studied for years before it was described. Dr. Ray has published a paper about the diet of snail-eating snakes, where it was found that earthworms from bromeliads compose a large portion of the diet of Dipsas aparatiritos. She also co-authored a paper on trophic cascades following amphibian declines, where it was found that Dipsas aparatiritos actually was increasing in numbers due to a diet independent of amphibians.
The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray
Dipsas aparatiritos is already considered Near Threatened based on IUCN Red List standards. The snake is endemic to Panama and comes from a limited range in the cloud forests of mid-elevation, where at least 44% of the overall range has been deforested. In addition, as snakes are constantly persecuted by humans, almost all snake species are in danger of extinction in the near future. Efforts must be made to conserve these rare species, the researchers believe, especially as so many are just being described now.
“This work was a true collaboration of scientists from different countries each contributing their expertise to thoroughly understand this new species, morphologically and molecularly,” said Dr. Ray.
“We are in an exciting time in science. Naturalists and scientists must continue to document the natural world; there are many species out there yet to be found and described. The usage of molecular techniques is exciting and facilitates the confirmation of so many new species.”
Research article:
Ray JM, Sánchez-Martínez P, Batista A, Mulcahy DG, Sheehy III CM, Smith EN, Pyron RA, Arteaga A (2023) A new species of Dipsas (Serpentes, Dipsadidae) from central Panama. ZooKeys 1145: 131-167. https://doi.org/10.3897/zookeys.1145.96616