A primer in access and benefit-sharing for DNA barcoders

New open access book provides essential background for molecular biodiversity researchers on international policy regarding use and transfer of genetic materials

Molecular biology approaches, such as DNA barcoding, have become part of the standard toolkit for a growing number of biodiversity researchers and practitioners, with an increasing scope of applications in important areas, such as environmental assessment, food inspection, disease control and public education.

Globalization and the advent of bioinformatics are rapidly changing the landscape of international scientific collaborations, which now often span multiple jurisdictions and increase the volume of international data exchange and transactions of biological materials. At the same time, researchers engaging in such partnerships are often unaware of the complex policy frameworks governing such transactions, which may carry reputational and even legal liabilities.

The United Nations Convention on Biological Diversity (1992) and its supplementary agreement, the Nagoya Protocol (ratified in 2014), are the most prominent international treaties designed to provide a legal framework for ensuring the fair and equitable sharing of the benefits arising from research activities involving genetic resources. Although often challenging and, at times, frustrating, it is important for researchers to understand the ramifications of these international agreements, to ensure that their scientific reputations are not tainted with allegations of unfair or unethical practices.

The recent book by Canadian ABS consultant and advisor to Botanic Gardens Conservation International, Kate Davis, and University of Guelph, Canada, researcher and international development expert, Alex Borisenko, offers a perspective on the ramifications of the Convention and the Nagoya Protocol on molecular biodiversity research.

Titled ‘Introduction to Access and Benefit-Sharing and the Nagoya Protocol: What DNA Barcoding Researchers Need to Know‘, it is openly available from Pensoft as an advanced book or PDF document under Creative Commons License.

This contribution is specifically geared towards researchers and practitioners working in the field of DNA barcoding – an actively developing field of biology that advances molecular tools for fast, reliable identification and discovery of species by analyzing short standardized DNA fragments, known as ‘DNA barcode regions’.

This approach, lying at the interface between genomics and biodiversity science, is creating the global knowledge base needed to assess ecosystem services and detect emerging environmental threats, while addressing the imperative of preserving the world’s biodiversity. Carrying out this mission demands close partnerships between biodiversity researchers worldwide, and also relies on large molecular facilities to provide timely, cost-effective and high-quality analytical services, thereby involving active international transactions of biological materials.

Furthermore, the utility of DNA barcoding depends on active open data sharing in ways similar to those established by the medical community for human genomic information.

The book is prefaced by the Executive Secretary of the Convention on Biological Diversity, Dr. Cristiana Pa?ca Palmer. It provides a brief introduction to the Convention and the Nagoya Protocol, and reviews some of their key legal definitions (e.g., ‘genetic resources’, ‘access’, and ‘utilization’). These definitions are considered within the context of terms more familiar to researchers (e.g., tissue samples, DNA extracts, PCR products, trace files) and their daily activities (e.g., field collecting, molecular analysis, DNA sequence assembly).

The main chapters provide further insights into the structure and function of the access and benefit-sharing mechanism at the international policy level and its possible ramifications in form of national laws and institutional requirements.

The text concludes with a set of practical guidelines for researchers and practitioners on the steps that should be taken to ensure due diligence when working with internationally-sourced biological samples. Adhering to these best practices would help build trust and sustain research collegiality among partners involved in international collaboration.

###

Original source:

Davis K, Borisenko A (2017) Introduction to Access and Benefit-Sharing and the Nagoya Protocol: What DNA Barcoding Researchers Need to Know. Advanced Books. https://doi.org/10.3897/ab.e22579

Named after Stanley Kubrick, a new species of frog is a ‘clockwork orange’ of nature

Two new treefrog species were discovered in the Amazon Basin of Bolivia, Peru, and Brazil. Both had been previously misidentified as another superficially identical species.

Curiously, one of them received a name translating to ‘demon’ or ‘devil’. The second one was named in honor of famous American filmmaker Stanley Kubrick, because of his masterpiece A Clockwork Orange.

Having conducted analyses of genetic, morphologic, and bioacoustic data, scientists C. Daniel Rivadeneira, Dr. Pablo J. Venegas, and Dr. Santiago R. Ron concluded that the amphibians represented two previously unknown species that used to go by the name of the Sarayacu treefrog (Dendropsophus parviceps).

As a result of this research collaboration between Ecuador’s Catholic University (PUCE) and Peru’s Centro de Ornitología y Biodiversidad (CORBIDI), the treefrogs were recently described as new to science in the open access journal ZooKeys.

DSC06331The scientists remind that, back in 1972, when Anthony Burgess explained the title of his famous novel A Clockwork Orange, he said: “I’ve implied the junction of the organic, the lively, the sweet – in other words, life, the orange – and the mechanical, the cold, the disciplined (…)”

“Without knowing, he was also giving a good metaphor to describe ecosystems,” comment the researchers. “Nature works as the interplay between life and its cold, mechanical, and disciplined physical matrix.”

Furthermore, both new frogs, scientifically listed as D. kubricki and D. kamagarini, are characterized by having a bright orange blotch on the shanks, reminiscent of the ‘orange pieces of nature’.

On the other hand, the species name kamagarini refers to ‘demon’ or ‘devil’, as per its translation from the Matsigenka language spoken in southeastern Peru. One of the characteristic features of the new species D. kamagarini are namely its horn-like protuberances on the upper eyelids.Bolivia

Amphibians are important pieces in ecosystems as secondary consumers in food chains. They also play a significant role in decomposition and nutrient cycling.

Stanley Kubrick – arguably one of the most brilliant and influential film directors of all time – left an immemorial legacy in cinema. His masterpiece, A Clockwork Orange (1971), was based on Anthony Burgess’s 1962 novel of the same name.

###

Original source:

Rivadeneira CD, Venegas PJ, Ron SR (2018) Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys 726: 25-77. https://doi.org/10.3897/zookeys.726.13864

Spider eat spider: Scientists discover 18 new spider-hunting pelican spiders in Madagascar

In 1854, a curious-looking spider was found preserved in 50 million-year-old amber. With an elongated neck-like structure and long mouthparts that protruded from the “head” like an angled beak, the arachnid bore a striking resemblance to a tiny pelican. A few decades later when living pelican spiders were discovered in Madagascar, arachnologists learned that their behavior is as unusual as their appearance, but because these spiders live in remote parts of the world they remained largely unstudied–until recently.

At the Smithsonian’s National Museum of Natural History, curator of arachnids and myriapods Hannah Wood has examined and analyzed hundreds of pelican spiders both in the field in Madagascar and through study of pelican spiders preserved in museum collections. Her analysis, focused on spiders of the Eriauchenius and Madagascarchaea genera, sorted the spiders she studied into 26 different species–18 of which have never before been described. Wood and colleague Nikolaj Scharff of the University of Copenhagen describe all 26 pelican spider species in the Jan. 11 issue of the journal Zookeys.

159795_webWood says pelican spiders are well known among arachnologists not only for their unusual appearance, but also for the way they use their long “necks” and jaw-like mouthparts to prey on other spiders. “These spiders attest to the unique biology that diversified in Madagascar,” she said.

Pelican spiders are active hunters, prowling the forest at night and following long silk draglines that lead them to their spider prey. When a pelican spider finds a victim, it swiftly reaches out and impales it on its long, fang-tipped “jaws,” or chelicerae. Then it holds the capture away from its body, keeping itself safe from potential counterattacks, until the victim dies.

Today’s pelican spiders are “living fossils,” Wood says–remarkably similar to species found preserved in the fossil record from as long as 165 million years ago. Because the living spiders were found after their ancestors had been uncovered in the fossil record and presumed extinct, they can be considered a “Lazarus” taxon. In addition to Madagascar, modern-day pelican spiders have been found in South Africa and Australia–a distribution pattern that suggests their ancestors were dispersed to these landmasses when the Earth’s supercontinent Pangaea began to break up around 175 million years ago.

Madagascar is home to vast numbers of plant and animal species that exist only on the island, but until recently, only a few species of pelican spiders had been documented there. In 2000, the California Academy of Sciences launched a massive arthropod inventory in Madagascar, collecting spiders, insects and other invertebrates from all over the island.159828_web

Wood used those collections, along with specimens from other museums and spiders that she collected during her own field work in Madagascar, to conduct her study. Her detailed observations and measurements of hundreds of specimens led to the identification of 18 new species–but Wood says there are almost certainly more to be discovered. As field workers continue to collect specimens across Madagascar, “I think there’s going to be a lot more species that haven’t yet been described or documented,” she said.

The spiders Wood personally collected, including holotypes (the exemplar specimens) for several of the new species, will join the U.S. National Entomological Collection at the Smithsonian, the second-largest insect collection in the world, where they will be preserved and accessible for further research by scientists across the globe.

All of the pelican spiders that Wood described live only in Madagascar, an island whose tremendous biodiversity is currently threatened by widespread deforestation. The new species add to scientists’ understanding of that biodiversity, and will help Wood investigate how pelican spiders’ unusual traits have evolved and diversified over time. They also highlight the case for conserving what remains of Madagascar’s forests and the biodiversity they contain, she says.

###

Funding for this study was provided by the Danish National Research Foundation and the National Science Foundation.

###

Original source:

Wood HM, Scharff N (2018) A review of the Madagascan pelican spiders of the genera Eriauchenius O. Pickard-Cambridge, 1881 and Madagascarchaea gen. n. (Araneae, Archaeidae). ZooKeys 727: 1-96. https://doi.org/10.3897/zookeys.727.20222

Track changes and easy comparison of manuscript versions now available in ARPHA Writing Tool

Monitoring the progress of your manuscript has never been easier!

The eagerly anticipated Track changes feature is now available in ARPHA Writing Tool to further facilitate collaborative authoring in the five academic journals* which currently make use of the ARPHA-XML publishing workflow.

Having tapped into ARPHA’s users constructive feedback, we have also updated our Revision History feature. Now, not only can authors access any past version, as created by their co-authors and collaborators, but they can also compare any two of these at the click of a button.

Track changes

To let co-authors and collaborators easily see any changes they have made, a user needs to simply switch on the Track changes mode. From now on, each individual author’s input will be highlighted to draw the attention of the next user.

 

Track_changes_on

 

Logically, any newly inserted text will appear in green, while the deleted one will be coloured in red. A hover over a highlighted text will show the user who has made the edit.

 

Track_changes_see_user

 

To make overseeing even a single edit impossible, ARPHA Writing Tool has made it mandatory for a user to resolve all suggested changes before either submitting the manuscript or switching off the Track changes mode.

Not overlooking any new input, regardless of the length and complexity of a manuscript, is made even easier thanks to the Prev and Next buttons allowing a user to go through the changes one by one.

 

But what shall you do if you or your co-authors/collaborators happen to forget to switch on the Track changes mode?

 

Compare Manuscript Versions

Our latest update to the Revision history button lets users compare any two past manuscript versions, so that they can see at a glance what has changed between any two set points in time.

Just like before, clicking the Revision history button delivers a list of all manuscript versions along with the users who have created them in a chronological order. Now, however, a tick box next to each of these allows the user to select any two versions and see all edits that have taken place in between.

 

revision_history_compared

 

Again, newly added text shows in green, while the deleted text is crossed over and appears in red.

Step-by-step instructions on both how to track changes and compare past versions are available in the Tips and Tricks guidelines accessible anytime in the header of the writing tool.  

 

Tips_and_tricks

 

###

*The open access scholarly journals Biodiversity Data Journal, Research Ideas and Outcomes (RIO Journal), One Ecosystem, BioDiscovery and Biodiversity Information Science and Standards (BISS) are all making use of the technologically advanced collaboration-centred ARPHA-XML workflow, which features the signature ARPHA Writing Tool.

Seven new spider species from Brazil named after 7 famous fictional spider characters

Several literary classics from the fantasy genre are further immortalised and linked together thanks to a Brazilian research team who named seven new spiders after them.

Spider characters from A Song of Ice and Fire, Harry Potter, The Lord of the Rings, The Silmarillion, H. P. Lovecraft’s The Call of Cthulhu and the children’s favourite Charlotte’s Web and Little Miss Spider each gave a name to a new small cave-dwelling six-eyed spider inhabiting northern Brazil.

Discovered in iron caves across the state of Pará, northern Brazil, the new species belong to the same Neotropical genus Ochyrocera. They are described in a new research article published in the open access journal ZooKeys by Dr Antonio Brescovit, Dr Igor Cizauskas and Leandro Mota – all affiliated with Instituto Butantan, Sao Paulo.

Interestingly, while all seven previously unknown species prefer staying in the shadows underground, none of them has the adaptations characteristic for exclusively cave-dwelling organisms, such as loss of pigmentation and reduced or missing eyes. They are classified as edaphic troglophile species, which means that they are capable of completing their life cycle away from sunlight, but are not bound to the deepest recesses. Often crawling near the surface, they can even be spotted outside the caves. To describe the species, the scientists collected about 2,000 adult specimens following a 5-year series of field collection trips.

Ochyrocera varys predating on a fly [Fig. 21 A]The list of ‘fantasy’ spiders begins with Ochyrocera varys named after Lord Varys from George R. R. Martin’s book series A Song of Ice and Fire. Lord Varys is also known as the Spider because of his manipulative skills and ability to ‘weave’ and command his networks of eyes-and-ears across two continents.

The name of Ochyrocera atlachnacha refers to the Spider God Atlach-Nacha from the universe created by H. P. Lovecraft. Atlach-Nacha is a giant spider with a human-like face which lives in the caves beneath a mountain and spins a web believed to link the world with the Dreamlands.

Two species are named after spider characters from the classic works by J. R. R. Tolkien. Ochyrocera laracna is a species named after the well-known giant spider Laracna (Shelob in English) who attacks main characters Frodo and Sam on their way to Mordor in The Lord of the Rings’ second volume – The Two Towers.

On the other hand, the Brazilian spider’s sibling – Ochyrocera ungoliant – is linked to Laracna’s mother. Ungoliant appears in Tolkien’s book The Silmarillion, whose events take place prior to those of The Lord of the Rings’ second volume The Two Towers. According to the story, Ungoliant translates to Dark Spider in Elvish.

Another staple in the 20th-century fantasy literature, the Harry Potter series, written by J. K. Rowling, also enjoys the attention of the researchers. The species Ochyrocera aragogue is an explicit reference to the talking Aragog, who lives in the dark recesses of the Forbidden Forest. In the second volume of the series, Harry Potter and the Chamber of Secrets, he confronts Harry Potter and Ron Weasley.

The authors do not fail to pay tribute to much less violent spiders known from popular children books. David Kirk’s Little Miss Spider inspires the name of Ochyrocera misspider. The character is remembered with her words: “We have to be good to bugs; all bugs.”A couple of Ochyrocera misspider [Fig. 21 C]

The Ochyrocera charlotte species refers to Charlotte, the spider from E. B. White’s classic Charlotte’s Web who befriends the main character – Wilbur the pig.

It is highly likely that there are many species and populations of this group of spiders yet to be discovered in the Neotropics, since the lack of previous studies in the region. However, the area and its biodiversity are impacted by mining.

###

Original source:

Brescovit AD, Cizauskas I, Mota LP (2018) Seven new species of the spider genus Ochyrocera from caves in Floresta Nacional de Carajás, PA, Brazil (Araneae, Ochyroceratidae). ZooKeys 726: 87-130. https://doi.org/10.3897/zookeys.726.19778

Pan-European sampling campaign sheds light on the massive diversity of freshwater plankton

In a major pan-European study, a research team from Germany have successfully extracted environmental DNA (eDNA) from as many as 218 lakes to refute a long-year belief that vital microorganisms do not differ significantly between freshwater bodies and geographic regions the way plants and animals do.

Their new-age approach to biodiversity studies resulted in the largest freshwater dataset along with a study published in the open access journal Metabarcoding and Metagenomics.

Surface freshwaters are of critical importance for terrestrial life and, in particular, human life and welfare. However, these vital ecosystems are severely understudied, as compared to terrestrial or oceanic biomes, and so are the microbial organisms living in them.

Image 2On the other hand, it is these invisible to the naked eye creatures, called protists, that are responsible for keeping our ecosystems running. Their diversity and their high metabolic rates maintain ecosystem stability. In fact, microbes are the major source of the worlds oxygen.

In 2012, the team of Prof. Jens Boenigk, University of Duisburg-Essen, undertook the sampling campaign to study the distribution pattern of microbial organisms on a continental scale and the impact of Europe’s climatic history on their present-day whereabouts.

They sampled freshwater lakes and ponds from sites in Norway, Sweden, Germany, Poland, the Czech Republic, Slovakia, Hungary, Romania, Austria, Italy, France, Spain and Switzerland. Site selection focused on the European orogens, specifically the Alps, the Pyrenees, the Apennine, the High Tatras, the southern Scandinavian mountains and the connecting flatlands.

Thanks to the excellent collaboration both within the team and with a number of scientific institutions across Europe, which gave their support as access points for re-stocking sampling equipment and immediate sample preservation, the campaign delivered groundbreaking results illuminating the hidden diversity of the microbial biosphere.

The scientists reported that plankton diversity was highly partitioned between lakes which bear distinct biological fingerprints. In particular, high mountain ranges imprinted the microbial communities on both regional and continental scale. Ecological factors, such as temperature and nutrient concentrations, are well accepted factors structuring plankton communities.

Beyond the high plankton diversity and the associated highly specific community composition in distinct lakes, the plankton community composition revealed signals of the past, i.e. since the last glaciation some 12,000 years ago.

While this expedition yielded many new scientific findings, the scientists note that these are only the first results of this continental survey.

“We are well aware that we have only just begun our exploration of the hidden diversity of plankton diversity,” they conclude.

###

Original source:Probennahme

Boenigk J, Wodniok S, Bock C, Beisser D, Hempel C, Grossmann L, Lange A, Jensen M (2018) Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding and Metagenomics 2: e21519. https://doi.org/10.3897/mbmg.2.21519

Three new species of zoantharians described from coral reefs across the Indo-Pacific

One of them was named after the president of Palau, Tommy Remengesau, in honour of his and the nation’s support to the authors and marine conservation

Three new species of zoantharians were discovered by researchers from the University of the Ryukyus and Kagoshima University, Japan, and the Palau International Coral Reef Center. Despite not being previously known, all three species were found widely across the Indo-Pacific, with at least two species found in the Red Sea, the Maldives, Palau, and southern Japan.

Zoantharians, or colonial anemones, include species popular in the pet trade such as Zoanthus or Palythoa, but the new species are all much more cryptic, living in marine caves, cracks, or at depths below most recreational SCUBA diving (>20 m). The research was published December 29, 2017, in the open-access journal ZooKeys.

The three new species belong to the genus Antipathozoanthus, which contains species that only live on top of black coral colonies. However, surprisingly, one of the new species does not live on black corals, but instead in narrow cracks in coral reefs.

obscurus“We think that the new species, Antipathozoanthus obscurus, has evolved away from needing to be on top of black corals to take advantage of the available space in coral reef cracks”, said lead researcher Hiroki Kise.

“This is yet another example of how much diversity is right underneath our noses, but we still know nothing about it.”

Coral reefs, which are widely threatened by rising temperatures from global warming, are generally believed to harbour very high numbers of species, including yet many undescribed or unknown species.

Amongst the other two new species is Antipathozoanthus remengesaui, named after the current president of Palau, Tommy Remengesau.

“Much of our work was based in Palau”, said senior author Dr. James Reimer, “and we wished to acknowledge the fantastic support we have received from the nation. Palau is considered at the forefront of marine conservation, and much of this is thanks to President Remengesau’s vision.”

While the new discoveries shed more light on our understanding of coral reef biodiversity, this work is far from done. In fact, the researchers themselves estimate they still have up to ten more zoantharian species to describe from the waters of Palau and Okinawa.

“Marine diversity of coral reefs is amazing, with new surprises all the time”, said Kise, “and biodiversity scientists still have a lot more work to do.”

###

Original source:

Kise H, Fujii T, Masucci GD, Biondi P, Reimer JD (2017) Three new species and the molecular phylogeny of Antipathozoanthus from the Indo-Pacific Ocean (Anthozoa, Hexacorallia, Zoantharia). ZooKeys 725: 97-122. https://doi.org/10.3897/zookeys.725.21006

Evolutionary Systematics joins Pensoft’s portfolio of open access scholarly journals

Evolutionary Systematics is the latest authoritative journal to join the lines of the open access titles published on the Pensoft-developed technologically advanced journal publishing platform ARPHA.

Launched in 1884 and 1912, respectively, University of Hamburg’s journal Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut and Entomologische Mitteilungen are now resurrected under the name of Evolutionary Systematics.

Rebranded and refreshed, the journal has acquired a long list of technological user-friendly innovations, while simultaneously keeping its well-known expertise and devotion to whole-organism biology and collection-related research.

Its first issue in collaboration with Pensoft comprises two editorials dedicated to the extensive tradition and the bright future of the journal along with seven articles are already live on the journal’s new website.

Right underneath the new sleek look and feel welcoming users from the journal’s homepage, there are a lot of high-tech perks to benefit authors, readers, reviewers and editors alike.

Thanks to the fast-track and convenient publishing provided by ARPHA, each manuscript is carried through all stages from submission and reviewing to dissemination and archiving without ever leaving the platform’s singular collaboration-friendly online environment.

Furthermore, all publications are available in three formats (PDF, XML, HTML), complete with a whole set of semantic enhancements, so that the articles are easy to find, accessed and harvested by both humans and machines.

“We are happy to have joined forces with Lyubomir Penev and his professional team at Pensoft Publishers, once again now after having already successfully established together Zoosystematics and Evolution as an international journal of the Berlin Natural History Museum,” say editors Prof. Dr. Matthias Glaubrecht, Prof. Dr. Andreas Schmidt-Rhaesa and Dr. Martin Husemann.

“Certainly, I’m pleased to welcome Evolutionary Systematics to the family of Pensoft,” says the publisher’s founder and CEO Prof. Lyubomir Penev. “Combining our own solid experience in scholarly publishing with their amazing background, dating back to 19th century, will definitely benefit not only the two of us as collaborators, but all our present and future readers and users as well.”

Amongst the first papers, there is the description of the Bob Marley’s Intertidal Spider – a new arachnid species that emerged at low tide to the surprise of the research team of Drs. Barbara Baehr, Robert Raven and Danilo Harms. Once the scientists concluded it was a previously unknown species, they were quick to associate it with the reggae legend’s song “High Tide or Low Tide”.

The first issue also features the description of the Grey Wolf Spider – a common, yet enigmatic new species, which prompted the establishment of a new genus all to itself. The inaugural issue goes on to also announce as many as seven species of goblin spiders new to science . Their discovery results from a genus review involving a significant collection from the Otonga Nature Reserve, Ecuador.

###

Follow Evolutionary Systematics on Twitter | Facebook.

Additional information:

About Pensoft:

Pensoft is an independent academic publishing company, well-known worldwide for its innovations in the field of semantic publishing, as well as for its cutting-edge publishing tools and workflows. In 2013, Pensoft launched the first ever end to end XML-based authoring, reviewing and publishing workflow, as demonstrated by the Pensoft Writing Tool (PWT) and the Biodiversity Data Journal (BDJ), now upgraded to the ARPHA Publishing Platform. Flagship titles include: Research Ideas and Outcomes (RIO), One Ecosystem, ZooKeys, Biodiversity Data Journal, PhytoKeys, MycoKeys, and more.

New species of marine spider emerges at low tide to remind scientists of Bob Marley

It was 02:00h on 11 January 2009 when the sea along the coastline of Australia’s “Sunshine State” of Queensland receded to such an extent that it exposed a population of water-adapted spiders. The observant researchers who would later describe these spiders as a species new to science, were quick to associate their emergence with reggae legend Bob Marley and his song “High Tide or Low Tide”.

In their paper, published in the open access journal Evolutionary Systematics, the team of Drs. Barbara Baehr, Robert Raven and Danilo Harms, affiliated with Queensland Museum and the University of Hamburg, describe the new Bob Marley’s intertidal spider and also provide new information on two of its previously known, yet understudied, relatives from Samoa and Western Australia.

Unlike the spiders which people are familiar with, the intertidal species, whose representative is Bob Marley’s namesake, are truly marine. They have adapted to the underwater life by hiding in barnacle shells, corals or kelp holdfast during high tide. To breathe, they build air chambers from silk. Once the sea water recedes, though, they are out and about hunting small invertebrates that roam the surfaces of the nearby rocks, corals and plants.

The new species, listed under the scientific name of Desis bobmarleyi, is described based on male and female specimens spotted and collected from brain coral on that night in January.

Desis bomarleyi on brain coral photo Paul Hoye

Both sexes are characterised by predominantly red-brown colours, while their legs are orange-brown and covered with a dense layer of long, thin and dark grey hair-like structures. The females appear to be larger in size with the studied specimen measuring nearly 9 mm, whereas the male was about 6 mm long.

While the exact distribution range of the newly described species remains unknown, it is currently recorded from the intertidal zones of the Great Barrier Reef on the north-eastern coast of Queensland.

“The song ‘High Tide or Low Tide’ promotes love and friendship through all struggles of life,” explain the authors for their curious choice of a name. “It is his music that aided a field trip to Port Douglas in coastal Queensland, Australia, to collect spiders with a highly unique biology.”

Apart from reporting their research, the scientists use their paper to pay tribute to a German naturalist from the late 19th century – Amalie Dietrich, as well as the famous Jamaican singer and songwriter. Both admirable figures, even if representative of very different fields, are seen by the authors as examples of “the adventurous and resilient at heart” human nature in pursuit of freedom and independence.

###

Original source:

Baehr BC, Raven R, Harms D (2017) “High Tide or Low Tide”: Desis bobmarleyi sp. n., a new spider from coral reefs in Australia’s Sunshine State and its relative from Sāmoa (Araneae, Desidae, Desis). Evolutionary Systematics 1: 111-120. https://doi.org/10.3897/evolsyst.1.15735

Life in marine driftwood: The case of driftwood specialist talitrids

Driftwood in the sea – either floating or stranded on beaches – is a common feature particularly in temperate regions. Large quantities of driftwood, termed driftwood depositories, may collect at the mouth of small streams associated with marshes and have been present for some 120 millennia – since the origin of flowering plants.

Once marine driftwood begins to decay, it undergoes a specific succession. Firstly, it is colonized by salt tolerant, wood degrading fungi and bacteria, along with a few invertebrates able to digest wood by producing native wood degrading enzymes. The latter include gribbles (isopods) and chelurid amphipods.

Driftwood hoppers (talitrids), as well as isopods, chilopods, insect larvae, some ants and termites, comprize the secondary colonizers. They are all characterized by their inability to utilize driftwood directly. Instead, they rely on symbiotic microflora for digestive purposes.

Within all talitrids, the driftwood hoppers count as few as seven species, most likely because they are extremely difficult to locate and, therefore, discover and describe. Apart from living in tiny burrows, they measure between 13 and <6 mm, which makes the latter the smallest known talitrid.

Having reviewed the driftwood specialized talitrids, Dr. David Wildish of the St. Andrews Biological Station, Canada, concludes that all seven known species demonstrate dwarfism based on slow metabolism and growth. Their sexual development begins earlier compared to faster growing related species. All of them are also characterized with reduced eye size and absence of dorsal pigment patterns.

In his review article published in the open access journal Zoosystematics and Evolution, the scientist confirms that dwarfism in driftwood hoppers has evolved due to poor diet, in turn resulting in slowed metabolism and growth. A further adaptive challenge is the empty gribble burrow size occupied by talitrids (burrow diameter between 0.6 to 5 mm) with the smaller ones being more widespread. Larger talitrids can only complete their life cycle in the larger burrows.

“The size gradient in gribble burrow diameter provides a satisfactory explanation for serial dwarfism within the driftwood talitrids and is why each species becomes successively smaller,” explains the researcher.

Responsibility for first establishing the driftwood talitrid ecological grouping was made during graduate studies by David Wildish, London University, U.K., and Laura Pavesi, University of Rome, Italy. The two criteria for inclusion of a talitrid in the driftwood grouping was: behavioral fidelity to the occupied driftwood and that the food source was solely rotting driftwood (see references).

The larger talitrid family are small/medium in body length (< 30 mm) crustaceans with more than 400 species described in the world list. Ecological groupings within the family include marine/estuarine supralittoral wrack generalists, sand-burrowing, marsh-living and driftwood specialists. A few freshwater and many terrestrial species are also known.

###

Original source:

Wildish DJ (2017) Evolutionary ecology of driftwood talitrids: a review. Zoosystematics and Evolution 93(2): 353-361. https://doi.org/10.3897/zse.93.12582