Under Extinction Pressure: Rare Australian bee found after 100 years

A widespread field search for a rare Australian native bee (Pharohylaeus lactiferus) that had not been recorded for almost a century found the species has been there all along – but is probably under increasing pressure to survive. Prior to this study, only six individuals had been found, with the last published record of this Australian endemic bee species, from 1923 in Queensland.

Male Pharohylaeus lactiferus bee. Photo by James Dorey.

A widespread field search for a rare Australian native bee (Pharohylaeus lactiferus) that had not been recorded for almost a century found the species has been there all along – but is probably under increasing pressure to survive. Prior to this study, only six individuals had been found, with the last published record of this Australian endemic bee species, from 1923 in Queensland.

“This is concerning because it is the only Australian species in the Pharohylaeus genus and nothing was known of its biology,”

Flinders University researcher and biological sciences PhD candidate James Dorey says in the new scientific paper in the peer-reviewed, open-access Journal of Hymenoptera Research.

The ‘hunt’ began after bee experts Olivia Davies and Dr Tobias Smith raised the possibility of the species’ extinction based on the lack of any recent sightings. The ‘rediscovery’ followed an extensive sampling of 225 general and 20 targeted sampling sites across New South Wales and Queensland.

Along with extra bee and vegetation recordings from the Atlas of Living Australia, which lists 500 bee species in New South Wales and 657 in Queensland, the Flinders researchers sought to assess the latest levels of true diversity, warning that habitat loss and fragmentation of Australia’s rainforests, along with wildfires and climate change, are likely to put extinction pressure on this and other invertebrate species.  

“Three populations of P. lactiferous were found by sampling bees visiting their favoured plant species along much of the Australian east coast, suggesting population isolation,”

Mr Dorey reports.

Highly fragmented habitat and potential host specialisation might explain the rarity of P. lactiferus.

Additionally, the scientists remind of previous findings that Australia has already cleared more than 40% of its forests and woodlands since European colonisation, leaving much of the remainder fragmented and degraded.

“My geographical analyses used to explore habitat destruction in the Wet Tropics and Central Mackay Coast bioregions indicate susceptibility of Queensland rainforests and P. lactiferus populations to bushfires, particularly in the context of a fragmented landscape,”

Mr Dorey says.

The study also warns the species is even more vulnerable as they appear to favour specific floral specimens and were only found near tropical or sub-tropical rainforest – a single vegetation type.

“Collections indicate possible floral and habitat specialisation with specimens only visiting firewheel trees (Stenocarpus sinuatu), and Illawarra flame trees (Brachychiton acerifolius), to the exclusion of other available floral resources.”

Known populations of P. lactiferus remain rare and susceptible to habitat destruction (e.g. caused by changed land use or events such as fires), the paper concludes.

“Future research should aim to increase our understanding of the biology, ecology and population genetics of P. lactiferus.”

Female Pharohylaeus lactiferus bee. Photo by James Dorey.

“If we are to understand and protect these wonderful Australian species, we really need to increase biomonitoring and conservation efforts, along with funding for the museum curation and digitisation of their collections and other initiatives,”  

Mr Dorey says.

Research paper:

Dorey JB (2021) Missing for almost 100 years: the rare and potentially threatened bee, Pharohylaeus lactiferus (Hymenoptera, Colletidae). Journal of Hymenoptera Research 81: 165-180. https://doi.org/10.3897/jhr.81.59365

***

Follow Journal of Hymenoptera Research on Twitter and Facebook.

Guest blog post: Unique feeding behaviour of Asian kukri snakes gutting frogs and toads

Guest blog post by Henrik Bringsøe

In September 2020, we reported the first evidence for a newly discovered behaviour in snakes, as we provided extensive photographic documentation, demonstrating a macabre feeding strategy of Asian kukri snakes of the species Oligodon fasciolatus, the Small-banded Kukri Snake: a snake cutting open the abdomen of a toad, inserting its head and pulling out the toad’s organs which are then swallowed.

A Small-banded Kukri Snake attacking a Painted Burrowing Frog, which is inflating its lungs. The snake makes rotations about its own longitudinal body axis (“death rolls”), as it is biting and holding the belly of the frog. Video by Navapol Komanasin.

This is done while the toad is alive and it may take several hours before it dies! We have now provided new evidence that two other species of kukri snakes also exhibit this highly unusual behaviour: Oligodon formosanus, the Taiwanese Kukri Snake, and Oligodon ocellatus, the Ocellated Kukri Snake. These three species are closely-related and belong to the same species group in the genus Oligodon.

On two occasions in Hong Kong, a Taiwanese Kukri Snake was observed eviscerating frogs of the species Kaloula pulchra, the Painted Burrowing Frog or Banded Bullfrog. In one case, the snake had cut open the belly of the frog and inserted its head deep into the frog’s abdomen. In this position, the snake performed repeated rotations about its own longitudinal body axis, also called “death rolls”! We believe that the purpose of these death rolls was to tear out organs to be subsequently swallowed. In the other case, the organs of the frog had been forced out of its abdomen.

A Taiwanese Kukri Snake with its head buried deep into the abdomen of a Painted Burrowing Frog. Initially, the frog moves its long fourth toe of the left hind foot up and down 21 times. During the subsequent active struggle, the snake makes three “death rolls”. Video by Jonathan Rotbart.

A Small-banded Kukri Snake was also observed eating a Painted Burrowing Frog in Northeast Thailand, but it swallowed the frog whole. That snake also performed death rolls, although we have never before seen that behaviour in this species of kukri snake (this species was treated in our 2020 paper). This frog is not considered toxic and is also eaten by other snakes. We believe that prey size is crucial in determining whether the gape width allows large prey to be swallowed whole by kukri snakes. If the prey is too large, the snake may eviscerate a frog or toad, in order to swallow the organs. Afterwards, the snake will perhaps be able to swallow the rest of the frog or toad.

In another new paper, we describe and illustrate the Ocellated Kukri Snake eating the toxic toad Asian Black-spotted Toad (Duttaphrynus melanostictus) in Vietnam. Initially, the large snake’s head was buried past its eyes into the abdomen of the toad, but eventually the snake swallowed the toad whole despite its toxicity. We interpret this behaviour that kukri snakes are in fact resistant to the toads’ cardiac glycoside toxins. Furthermore, toads are only eviscerated if they prove too large to be swallowed whole.

An Ocellated Kukri Snake first pierced this poisonous Asian common toad and buried its head deeply into the abdomen of the amphibian, as it was probably eating the organs. However, as seen in the photo, the kukri snake proceeded to swallow the toad whole. 
Photo by James Holden.

We suggest that the unique behaviour of eviscerating frogs and toads and eating their organs may have evolved specifically in a group of kukri snakes named the Oligodon cyclurus group or clade because it has now been recorded in three of its species, namely Oligodon fasciolatus, Oligodon formosanus and Oligodon ocellatus. We hope that future observations may uncover additional aspects of the fascinating feeding habits of kukri snakes though we may indeed call them gruesome.

*

See more video recordings of the snakes’ unique, even if quite gruesome, behaviours provided as supplementary files to one of the discussed research papers.

*

Follow Herpetozoa on Twitter and Facebook.

*

Research papers: 

Bringsøe H, Suthanthangjai M, Suthanthangjai W, Lodder J, Komanasin N (2021) Gruesome twosome kukri rippers: Oligodon formosanus (Günther, 1872) and O. fasciolatus (Günther, 1864) eat Kaloula pulchra Gray, 1831 either by eviscerating or swallowing whole. Herpetozoa 34: 49-55. https://doi.org/10.3897/herpetozoa.34.e62688

Bringsøe H, Holden J (2021) Yet another kukri snake piercing an anuran abdomen: Oligodon ocellatus (Morice, 1875) eats Duttaphrynus melanostictus (Schneider, 1799) in Vietnam. Herpetozoa 34: 57-59. https://doi.org/10.3897/herpetozoa.34.e62689

New DNA barcoding project aims at tracking down the “dark taxa” of Germany’s insect fauna

New dynamic article collection at Biodiversity Data Journal is already accumulating the project’s findings

About 1.4 million species of animals are currently known, but it is generally accepted that this figure grossly underestimates the actual number of species in existence, which likely ranges between five and thirty million species, or even 100 million. 

Meanwhile, a far less well-known fact is that even in countries with a long history of taxonomic research, such as Germany, which is currently known to be inhabited by about 48,000 animal species, there are thousands of insect species still awaiting discovery. In particular, the orders Diptera (flies) and Hymenoptera (especially the parasitoid wasps) are insect groups suspected to contain a strikingly large number of undescribed species. With almost 10,000 known species each, these two insect orders account for approximately two-thirds of Germany’s insect fauna, underlining the importance of these insects in many ways.

The conclusion that there are not only a few, but so many unknown species in Germany is a result of the earlier German Barcode of Life projects: GBOL I and GBOL II, both supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and the Bavarian Ministry of Science under the project Barcoding Fauna Bavarica. 

In its previous phases, GBOL aimed to identify all German species reliably, quickly and inexpensively using DNA barcodes. Since the first project was launched twelve years ago, more than 25,000 German animal species have been barcoded. Among them, the comparatively well-known groups, such as butterflies, moths, beetles, grasshoppers, spiders, bees and wasps, showed an almost complete coverage of the species inventory.

In 2020, another BMBF-funded DNA barcoding project, titled GBOL III: Dark Taxa, was launched, in order to focus on the lesser-known groups of Diptera and parasitoid Hymenoptera, which are often referred to as “dark taxa”. The new project commenced at three major German natural history institutions: the Zoological Research Museum Alexander Koenig (Bonn), the Bavarian State Collection of Zoology (SNSB, Munich) and the State Museum of Natural History Stuttgart, in collaboration with the University of Würzburg and the Entomological Society Krefeld. Together, the project partners are to join efforts and skills to address a range of questions related to the taxonomy of the “dark taxa” in Germany.

As part of the initiative, the project partners are invited to submit their results and outcomes in the dedicated GBOL III: Dark Taxa article collection in the peer-reviewed, open-access Biodiversity Data Journal. There, the contributions will be published dynamically, as soon as approved and ready for publication. The articles will include taxonomic revisions, checklists, data papers, contributions to methods and protocols, employed in DNA barcoding studies with a focus on the target taxa of the project.

“The collection of articles published in the Biodiversity Data Journal is an excellent approach to achieving the consortium’s goals and project partners are encouraged to take advantage of the journal’s streamlined publication workflows to publish and disseminate data and results that were generated during the project,”

says the collection’s editor Dr Stefan Schmidt of the Bavarian State Collection of Zoology.

***

Find and follow the dynamic article collection GBOL III: Dark Taxa in Biodiversity Data Journal.

Follow Biodiversity Data Journal on Twitter and Facebook.

Eurasian eagle owl diet reveals new records of threatened giant bush-crickets

Bird diets provide a real treasure for research into the distribution and conservation of their prey, conclude scientists after studying the Eurasian Eagle Owl in southeastern Bulgaria. In their paper, published in the open-access, peer-reviewed journal Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa”, they report the frequent presence of the threatened Big-Bellied Glandular Bush-Cricket, and conclude that studies on the Eurasian Eagle Owl could be used to identify biodiversity-rich areas in need of protection.

Male specimen of the Big-Bellied Glandular Bush-Cricket (Bradyporus macrogaster)
Photo by Dragan Chobanov

Bird diets provide a real treasure for research into the distribution and conservation of their prey, such as overlooked and rare bush-cricket species, point out scientists after studying the diet of the Eurasian Eagle Owl (Bubo bubo) in southeastern Bulgaria.

In their paper, published in the open-access, peer-reviewed journal Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa”, Dr Dragan Chobanov (Institute of Biodiversity and Ecosystem Research, Bulgaria) and Dr Boyan Milchev (University of Forestry, Bulgaria) report the frequent presence of the threatened with extinction Big-Bellied Glandular Bush-Cricket (Bradyporus macrogaster) in the diet of Eurasian Eagle Owls, and conclude that the predatory bird could be used to identify biodiversity-rich areas in need of protection.

While the Balkan Peninsula has already been recognised as the area with the highest diversity of orthopterans (grasshoppers, crickets and bush-crickets) in Europe and one of the generally most biologically diverse areas in the whole Palearctic realm, it is also home to a worrying number of threatened species. Additionally, a thorough and updated country assessment of the conservation status of the orthopterans found in Bulgaria is currently lacking. This is why the Bulgarian team undertook a study on the biodiversity of these insects by analysing food remains from pellets of Eurasian Eagle Owls, collected from 53 breeding sites in southeastern Bulgaria.

As a result, the scientists reported three species of bush crickets that have become a significant part of the diet of the studied predatory birds. Curiously enough, all three species are rare or threatened in Bulgaria. The case of the Big-Bellied Glandular Bush-Cricket is of special concern, as it is a species threatened by extinction. Meanwhile, the local decline in mammals and birds that weigh between 0.2 and 1.9 kg, which are in fact the preferred prey for the Eurasian Eagle Owl, has led the highly opportunistic predator to increasingly seek large insects for food. The researchers even suspect that there might be more overlooked species attracting the owls.

Taking into account the hereby reported interconnected inferences of conservation concern, as well as the vulnerability of the Big-Bellied Glandular Bush-Cricket, a species with a crucial role in the food chain, the scientists call for the newly provided data to prompt the designation of a new Natura 2000 site. Additionally, due to the species’ requirements for habitats of low disturbance and high vegetation diversity, and its large size and easy location via singing males, they point out that it makes a suitable indicator for habitat quality and species community health.

###

Original source:

Chobanov D, Milchev B (2020) Orthopterans (Insecta: Orthoptera) of conservation value in the Eurasian Eagle Owl Bubo bubo food in Bulgaria. Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa” 63(2): 161-167. https://doi.org/10.3897/travaux.63.e53867

King of the Cave: New centipede on top of the food chain in the sulphurous-soaked Movile

A new species of endemic, troglobiont centipede was discovered by an international team of scientists in the Romanian cave Movile: a unique underground ecosystem, isolated several millions years ago during the Neogene, whose animal life only exists because of the chemosynthetic bacteria. As the largest Movile’s inhabitant, the new species can easily be crowned as the ‘king’ of this ‘hellish’ ecosystem. Aptly named Cryptops speleorex, the cave-dweller is described in the open-access, peer-reviewed journal ZooKeys.

A photo of the newly discovered species (Cryptops speleorex), the largest inhabitant of the Movile cave (Romania) known to date
Photo by Mihai Baciu

Deemed to never see the light of the day, a new species of endemic, troglobiont centipede was discovered by an international team of scientists in the Romanian cave Movile: a unique underground ecosystem, where the oxygen in the air might be half of the amount of what we’re used to, yet the sulphurous abounds; and where the animal life only exists because of chemosynthetic bacteria feeding on carbon dioxide and methane.

This hellish ecosystem–where breathing alone could be lethal for most of us–seems to have finally crowned its king. At a size of between 46 and 52 mm in length, the centipede Cryptops speleorex is the largest of the cave’s inhabitants known to date. The new species is described in the open-access, peer-reviewed journal ZooKeys.

Already isolated from the outside world several millions years ago during the Neogene, the Movile cave has been drawing the attention of scientists ever since its unexpected discovery in 1986 by Romanian workers, searching for locations suitable for building a power plant in the southeastern parts of the country.

Surprisingly enough, despite its harsh living conditions, the Movile ecosystem was soon found to harbor a diverse and unique fauna, characterised by exceptional species endemism and specific trophic links. So far, the cave has been known to give home to the troglobiont water scorpion, liocranid and nesticid spiders, cave leeches and certainly many more yet to be discovered.

In fact, it was long thought that this unique underground ecosystem was also inhabited by surface-dwelling species widespread in Europe. Convinced that this scenario is highly unlikely, scientists Dr Varpu Vahtera (University of Turku, Finland), Prof Pavel Stoev (National Museum of Natural History, Bulgaria) and Dr Nesrine Akkari (Museum of Natural History Vienna, Austria) decided to examine a curious centipede, collected by speleologists Serban Sarbu and Alexandra Maria Hillebrand, during their recent expedition to Movile.

“Our results confirmed our doubts and revealed that the Movile centipede is morphologically and genetically different, suggesting that it has been evolving from its closest surface-dwelling relative over the course of millions of years into an entirely new taxon that is better adapted to life in the never-ending darkness,” explain the researchers.

“The centipede we described is a venomous predator, by far the largest of the previously described animals from this cave. Thinking of its top rank in this subterranean system, we decided to name the species Cryptops speleorex, which can be translated to the “King of the cave”, they add.

The scientists exploring the Movile cave (Romania)
Photo by Mihai Baciu

###

Original Source:

Vahtera V, Stoev P, Akkari N (2020) Five million years in the darkness: A new troglomorphic species of Cryptops Leach, 1814 (Chilopoda, Scolopendromorpha) from Movile Cave, Romania. ZooKeys 1004: 1-26. https://doi.org/10.3897/zookeys.1004.58537

Scientists took a rare chance to prove we can quantify biodiversity by ‘testing the water’

Recent study conducted at a UK fishery farm provides new evidence that DNA from water samples can accurately determine fish abundance and biomass

Organisms excrete DNA in their surroundings through metabolic waste, sloughed skin cells or gametes, and this genetic material is referred to as environmental DNA (eDNA).

As eDNA can be collected directly from water, soil or air, and analysed using molecular tools with no need to capture the organisms themselves, this genetic information can be used to report biodiversity in bulk. For instance, the presence of many fish species can be identified simultaneously by sampling and sequencing eDNA from water, while avoiding harmful capture methods, such as netting, trapping or electrofishing, currently used for fish monitoring.

While the eDNA approach has already been applied in a number of studies concerning fish diversity in different types of aquatic habitats: rivers, lakes and marine systems, its efficiency in quantifying species abundance (number of individuals per species) is yet to be determined. Even though previous studies, conducted in controlled aquatic systems, such as aquaria, experimental tanks and artificial ponds, have reported positive correlation between the DNA quantity found in the water and the species abundance, it remains unclear how the results would fare in natural environments.

However, a research team from the University of Hull together with the Environment Agency (United Kingdom), took the rare opportunity to use an invasive species eradication programme carried out in a UK fishery farm as the ultimate case study to evaluate the success rate of eDNA sampling in identifying species abundance in natural aquatic habitats. Their findings were published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics.

“Investigating the quantitative power of eDNA in natural aquatic habitats is difficult, as there is no way to ascertain the real species abundance and biomass (weight) in aquatic systems, unless catching all target organisms out of water and counting/measuring them all,”

explains Cristina Di Muri, PhD student at the University of Hull.
Drained pond after fish translocation.
Photo by Dr. Watson H.V.

During the eradication, the original fish ponds were drained and all fish, except the problematic invasive species: the topmouth gudgeon, were placed in a new pond, while the original ponds were treated with a piscicide to remove the invasive fish. After the eradication, the fish were returned to their original ponds. In the meantime, all individuals were counted, identified and weighed from experts, allowing for the precise estimation of fish abundance and biomass.

“We then carried out our water sampling and ran genetic analysis to assess the diversity and abundance of fish genetic sequences, and compared the results with the manually collected data. We found strong positive correlations between the amount of fish eDNA and the actual fish species biomass and abundance, demonstrating the existence of a strong association between the amount of fish DNA sequences in water and the actual fish abundance in natural aquatic environments,”

reports Di Muri.
Environmental DNA sampling using water collection bottles
Photo by Dr. Peirson G.

The scientists successfully identified all fish species in the ponds: from the most abundant (i.e. 293 carps of 852 kg total weight) to the least abundant ones (i.e. one chub of 0.7 kg), indicating the high accuracy of the non-invasive approach.

“Furthermore, we used different methods of eDNA capture and eDNA storage, and found that results of the genetic analysis were comparable across different eDNA approaches. This consistency allows for a certain flexibility of eDNA protocols, which is fundamental to maintain results comparable across studies and, at the same time, choose the most suitable strategy, based on location surveyed or resources available,”

elaborates Di Muri.

“The opportunity of using eDNA analysis to accurately assess species diversity and abundance in natural environments will drive a step change in future species monitoring programmes, as this non-invasive, flexible tool is adaptable to all aquatic environments and it allows quantitative biodiversity surveillance without hampering the organisms’ welfare.”

***

Original publication:

Di Muri C, Lawson Handley L, Bean CW, Li J, Peirson G, Sellers GS, Walsh K, Watson HV, Winfield IJ, Hänfling B (2020) Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds. Metabarcoding and Metagenomics 4: e56959. https://doi.org/10.3897/mbmg.4.56959

🎉Celebration time: here’s to 1,000 issues of ZooKeys!

With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!

With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!

In fact, the cause for celebration is two-fold: this year, it’s also the 10th anniversary of ZooKeys’ very special 50th issue, which marked a new era for biodiversity data publishing by introducing several innovative workflows and tools. This is when ZooKeys became an example to follow globally: a title the journal still takes pride to be holding to this day.

Articles published in ZooKeys since the journal’s launch in 2008 (data from 3/12/2020).

Today, we shall reminisce about everything along the way: from that sunny Californian morning at the Entomological Society of America meeting in 2007, where the idea about a new-age taxonomic journal in zoology sprang up in a breakfast chat between renowned entomologists and future founders of ZooKeys: Prof Lyubomir Penev and Dr Terry Erwin, to this very moment, where we’re counting over 5,500 published articles, authored by more than 8,000 researchers from 144 countries and comprising ~150,000 pages. Thus, we saw the description of one supertribe, seven tribes, five subtribes, 27 families, over 800 genera and more than 12,000 species previously unknown to science. In this journey, ZooKeys climbed up the ladder of academic rigour and trustability to become today’s most prolific open-access journal of zoology.

Even though today is the time to feel exalted and look back on our achievements and conquered milestones with ear-to-ear smiles, it is with heavy hearts that we’ll be raising our glasses tonight, as we won’t be joined by our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, whom we lost on 11th May 2020. While his place in our hearts and ZooKeys’ Editorial board will never be filled, we accept our duty to help for his legacy to persist for the future generations of scientists by taking a vow to never lower our standards or cease to improve our services and care for our readers, authors, reviewers and editors alike. 

In honour of Terry, who will be remembered for his splendid personality and zealous enthusiasm for carabid beetles and the world’s immense biodiversity, we’ve opened up a special memorial volume to be published on 11th May 2021.

In fact, we have thousands of people to thank for the place ZooKeys is at right now: these are our authors, who have trusted us with their research work time and time again; our reviewers and editors, who have taken their invaluable time to promptly process submitted manuscripts; and, of course, our readers, who are using ZooKeys content to expand the world’s knowledge, either by learning and building on the findings in their own research, or by spreading the knowledge to those who will.

With a thought for our authors & readers

We’ve been striving to implement the latest and most convenient scholarly publishing technologies and innovations, and also develop some of our own to make sure that ZooKeys users enjoy their experience with our flagship journal. 

In hindsight, ZooKeys was the first journal to pioneer a lot of scholarly publishing technologies, which back in the time were quite revolutionary. Notable examples from 2008-2016 include: 

Yet, this was only the beginning. Fast forward to December 2020, we’re working even harder to build up on our achievements and evolve, so that we stay on top of our game and the scholarly publishing scene. Here are the key innovations we recently implemented in ZooKeys:

With a thought for our editors

Besides revolutionising research publishing, at Pensoft, we’re also deeply devoted to facilitating our editors in their day-to-day editorial work, as well as their long-term engagement with the journal and its progress. 

Recently, we expanded journal performance reporting services, in order to keep our editors on track with the most recent trends in their journal’s performance. Meanwhile, we’ve also taken care after the continuous improvement in those stats by implementing several features meant to facilitate and expedite the handling of manuscripts.

Follow ARPHA’s blog to keep up with the new features available to users of Pensoft’s journals and all journals hosted on ARPHA Platform.  

With a thought for the community

Naturally, research outputs are only as valuable to publish as they are valuable to the community: within and beyond academia. Ultimately, their merit is best measured by citations and readership. This is why, we shall now have a look back at the most impactful papers published in ZooKeys to date.

Author’s delight

Thanks to the indexation of ZooKeys in the research citation database of Dimensions, following the collaboration between ARPHA and Digital Science, which started in 2018, we’re now able to explore the all-time most cited publications in our flagship journal. Detailed information and links to the papers where each of those studies has been cited is available on the webpage of the article.

  1. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool (DOI: 10.3897/zookeys.150.2109)
  2. Family-group names in Coleoptera (Insecta) (DOI: 10.3897/zookeys.88.807)
  3. Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication (DOI: 10.3897/zookeys.219.3944)  
  4. Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation (DOI: 10.3897/zookeys.100.1523
  5. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions (DOI: 10.3897/zookeys.100.1533

Reader’s delight

Thanks to ARPHA Platform’s all-roundedness and transparency, we get to explore the most read papers ever published in ZooKeys straight from the Articles section on the journal’s website.

  1. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito (DOI: 10.3897/zookeys.324.5827)

In 2013, ZooKeys had the honour to announce the first carnivore found in the Western Hemisphere in over three decades. Further, that wasn’t ANY carnivore, but the olinguito, which National Geographic rightfully called a “fuzzy fog-dweller with a face like a teddy bear”.

  1. An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae) (DOI: 10.3897/zookeys.215.3547)

A year prior to the description of the olinguito, a brand new family of “cave robbing” spiders emerged from the pages of ZooKeys, after US scientists found a previously unknown to science spider with “unique, toothed claws at the end of each leg” in Oregon.

  1. Family-Group Names In Coleoptera (Insecta) (DOI: 10.3897/zookeys.88.807)

A huge, first-of-its-kind catalogue containing data on all family-group names for all known extant and fossil beetles (order Coleoptera) was published in ZooKeys in an exemplary research collaboration, spanning three continents in 2011.

  1. Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)

In a truly world-wide sensation, a new species of tiny moth inhabiting a narrow stretch of extremely fragile habitat running between the USA and Mexico, was named after then President-elect Donald Trump in a desperate call to protect this and other similarly vulnerable ecosystems in North America. The species currently goes by the name Neopalpa donaldtrumpi.

  1. Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)

In 2016, US scientists described a total of 14 new to science tarantula species from what many would think to be one the best-researched countries: the United States of America. Curiously enough, one of those tarantula species, found in California near Folsom Prison – a place best known from Cash’s song “Folsom Prison Blues”, was aptly named Aphonopelma johnnycashi.  

Public’s delight

As visionaries, we’ve long realised that scientific impact goes beyond citations and journal subscribers. Communicating science to the community beyond academia is, in fact, one of the strongest components in research dissemination, as it lets the laypeople make sense of the wider world and where exactly they stand in the bigger picture. This is why we’ve been putting that special extra effort to promote research published in our journals–including ZooKeys–using press releases, blog posts and social media content (follow ZooKeys on Twitter and Facebook).

Data source: Altmetric.

Thanks to our partnership with Altmetric, we’re able to identify the top five most popular papers from ZooKeys for all times. These are the ones that have sparkled the most online discussions via social media, big news headlines, blog posts, Wikipedia and more.

  1. Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)

Not only was the previously undescribed species of moth subject to a serious threat of extinction, having been exclusively known from a fragmented area along the Mexico–United States border, but the insect’s “hairstyle” was pointed out to bear a striking resemblance to the golden locks of the 45th U.S. President Donald Trump.

Credit: CNN (read the full news story here)
  1. Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco (DOI: 10.3897/zookeys.928.47517)

Published in ZooKeys earlier this year, this extensive geology and paleontology monograph presents an unprecedented in its volume and scientific value account of a large portion of the most important prehistoric vertebrate fossils ever unearthed from the famous Kem Kem beds in Morocco. “A monograph larger than Paralititan,” as a Reddit user justly pointed out.

  1. Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)

On top of taking pride in becoming the discoverer of as many as 14 tarantula species living “right under our noses” in the US, Dr Chris Hamilton enjoyed the spotlight of Live television in his appearance on Sky News. So did a lucky specimen of the newly described species: Aphonopelma johnnycashi! Suffice it to say, the tarantula was named after the legendary American singer-songwriter for all the right reasons.

Credit: Sky News (read the full news story here)
  1. Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group (DOI: 10.3897/zookeys.751.22661)

Apparently, ants that rip their bodies apart in a self-sacrificial attempt to save their colonies from enemies, weren’t something new by the time PhD student Alice Laciny and her team described the new to science species Colobopsis explodens from Brunei. However, the study published in ZooKeys in 2018 was the first to conduct and film experiments on the peculiar exploding behaviour. Although not the very first for science, C. explodens was the first “T-ant-T” species to be described since 1935.

  1. Mapping the expansion of coyotes (Canis latrans) across North and Central America (DOI: 10.3897/zookeys.759.15149)

Today, coyotes live all around North America: from Alaska to Panama, California to Maine. Once upon a time, or rather, between the Holocene and the early 1900s, their range used to be restricted to the arid west of North America. So, how did the coyotes turn up at the doorstep of South America? North Carolina scientists reached to natural history collections to map the historic colonisation of the coyotes all the way to our days.

***

In our final remarks on this special occasion, it’s the time to say a special Thank you! to our most prolific authors:

  1. Dr Shuqiang Li, expert on spider taxonomy and systematics at the Chinese Academy of Sciences, who’s also a reviewer and a subject editor at ZooKeys (64 publications).
  2. Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, who is also amongst the top five most active reviewers and the three most active subject editors in ZooKeys (59 publications).
  3. Dr Li-Zhen Li, coleopterist at Shanghai Normal University (57 publications).
  4. Dr Reginald Webster, coleopterist at Natural Resources Canada and a reviewer at ZooKeys (57 publications).
  5. Dr Sergei Golovatch, myriapodologist at the Russian Academy of Sciences, and a reviewer and a subject editor at ZooKeys (53 publications).

As well as to our most active reviewers:

  1. Dr Yuri Marusik, arachnologist at the Russian Academy of Sciences and the University of Free State, Magadan, South Africa. He is also a subject editor at ZooKeys.
  2. Dr Donald Lafontaine, entomologist at the Canadian National Collection of Insects, Arachnids, and Nematodes and Agriculture and Agri-Food Canada. He is also a subject editor at ZooKeys
  3. Dr Ivan H. Tuf, ecologist at Palacký University (Czech Republic) and a subject editor at ZooKeys.
  4. Dr Viatcheslav Ivanenko, taxonomist at the Lomonosov Moscow State University.
  5. Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active subject editors at ZooKeys.

And ZooKeysmost active editors:

  1. Prof Pavel Stoev, taxonomist, ecologist, and director at the National Natural History Museum (Bulgaria), and managing editor at ZooKeys.
  2. Prof Lyubomir Penev, entomologist, ecologist at the Bulgarian Academy of Sciences and founder of ZooKeys.
  3. Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active reviewers at ZooKeys.
  4. Dr Nina Bogutskaya, hydrobiologist and ichthyologist at the Museum of Natural History Vienna, and also a reviewer at ZooKeys.
  5. Dr Jeremy Miller, taxonomist and arachnologist at the Naturalis Biodiversity Center (Netherlands), and also a reviewer at ZooKeys.

Looking forward to sharing with you our next milestones and celebrations!

Meanwhile, make sure to follow ZooKeys on Twitter and Facebook to stay in touch!

Tiny cave snail with muffin-top waistline rolls out of the dark in Laos

A new species of tiny cave snail that glistens in the light and has a muffin-top-like bulge, was discovered by Marina Ferrand of the French Club Etude et Exploration des Gouffres et Carrières (EEGC), during the Phouhin Namno caving expedition in Tham Houey Yè cave in Laos in March 2019. The new species, named Laoennea renouardi was described in the open-access, peer-reviewed journal Subterranean Biology.

Tham Houey Yè cave (Vientiane Province, Laos), inhabited by the newly discovered “muffin-topped” snail species Laoennea renouardi.
Photo by Jean-Francois Fabriol.

A new species of tiny cave snail that glistens in the light and has a muffin-top-like bulge, was discovered by Marina Ferrand of the French Club Etude et Exploration des Gouffres et Carrières (EEGC), during the Phouhin Namno caving expedition in Tham Houey Yè cave in Laos in March 2019. The new species, Laoennea renouardi, is 1.80 mm tall and is named after the French caver, Louis Renouard, who explored and mapped the only two caves in Laos known to harbor this group of tiny snails. Only two species of Laoennea snail are known so far, L. carychioides and now, L. renouardi

Caver and scientist, Dr. Adrienne Jochum, affiliated with the Natural History Museum Bern and University of Bern (Switzerland), as well as the Senckenberg Research Institute and Natural History Museum (Frankfurt, Germany) described the new species and its cave habitat together with co-authors: Estée Bochud, Natural History Museum Bern; Quentin Wackenheim, Laboratoire de Géographie Physique (Meudon, France) and Laboratoire Trajectoires (Nanterre, France); Marina Ferrand, EEGC; and Dr. Adrien Favre, Senckenberg Research Institute and Natural History Museum, in the open-access, peer-reviewed journal Subterranean Biology.

The new transparent “muffin-topped” snail, Laoennea renouardi.
Photo by Estée Bochud.

“The discovery and description of biodiversity before it disappears is a major priority for biologists worldwide. The caves in Laos are still largely underexplored and the snails known from them remain few in number,”

points out Dr. Jochum. 

The fact that two species of tiny cave snails of the same group were found in two caves located in two independent karstic networks 3.4 km apart, caused the authors to question evolutionary processes in these underground hotspots of biodiversity. The authors hypothesise that the two caves might have been connected during the Quaternary, around 100–200 thousand years ago. In time, the river Yè might have formed a barrier, thus disconnecting the cave systems and separating the populations. As a result, the snails evolved into two different species.

A new species of tiny cave snail that glistens in the light and has a muffin-top-like bulge, was discovered by Marina Ferrand of the French Club Etude et Exploration des Gouffres et Carrie?res (EEGC), during the Phouhin Namno caving expedition in Tham Houey Yè cave in Laos in March 2019. The new species, Laoennea renouardi, is 1.80 mm tall and is named after the French caver, Louis Renouard, who explored and mapped the only two caves in Laos known to harbor this group of tiny snails. Only two species of Laoennea snail are known so far, L. carychioides and now, L. renouardi.

Caver and scientist, Dr. Adrienne Jochum, affiliated with the Natural History Museum BernUniversity of Bern (Switzerland), as well as the Senckenberg Research Institute and Natural History Museum (Frankfurt, Germany) described the new species and its cave habitat together with co-authors: Estée Bochud, Natural History Museum Bern; Quentin Wackenheim, Laboratoire de Géographie Physique (Meudon, France) and Laboratoire Trajectoires (Nanterre, France); Marina Ferrand, EEGC; and Dr. Adrien Favre, Senckenberg Research Institute and Natural History Museum, in the open-access, peer-reviewed journal Subterranean Biology.

Map of the two caves on opposite sides of the River Yè, Vientiane Province, Laos.
Image by Louis Renouard.

The fact that two species of tiny cave snails of the same group were found in two caves located in two independent karstic networks 3.4 km apart, caused the authors to question evolutionary processes in these underground hotspots of biodiversity. The authors hypothesise that the two caves might have been connected during the Quaternary, around 100-200 thousand years ago. In time, the river Yè might have formed a barrier, thus disconnecting the cave systems and separating the populations. As a result, the snails evolved into two different species.

***

Original Source:

Jochum A, Bochud E, Favre A, Ferrand M, Wackenheim Q (2020) A new species of Laoennea microsnail (Stylommatophora, Diapheridae) from a cave in Laos. Subterranean Biology 36: 1-9.
https://doi.org/10.3897/subtbiol.36.58977

Death from below: the first video of a parasitic wasp attacking caterpillar underwater

Named after fictional monster Godzilla, a parasitic wasp becomes the first observed and filmed to dive underwater for several seconds, in order to attack and pull out caterpillar hosts, so that it can lay its eggs inside them before releasing them back in the water.

A very few species of parasitoid wasps can be considered aquatic. Less than 0.1% of the species we know today have been found to enter the water, while searching for potential hosts or living as endoparasitoids inside of aquatic hosts during their larval stage.

Within the subfamily Microgastrinae (family Braconidae), only two species have previously been recorded to be aquatic, based on their parasitism of aquatic caterpillars of moths. However, none has been known to actually dive in the water.

Recently, during their research work in Japan, Dr. Jose Fernandez-Triana of the Canadian National Collection of Insects and his team found and recorded on camera the first microgastrine parasitoid wasp that dives underwater for several seconds, in order to attack and pull out caterpillar hosts, so that it can lay its eggs inside them before releasing them back in the water.

Interestingly, the wasp, which was described as a new to science species in the open-access, peer-reviewed scientific Journal of Hymenoptera Research, was given the awe-striking name Microgaster godzilla, because its emergence out of the water reminded the scientists of the Japanese iconic fictional monster Godzilla.

In the video, the female wasp can be seen walking over floating plants as it searches for hosts, specifically larvae of the moth species Elophila turbata, which constructs a portable case from fragments of aquatic plants and lives inside it near the water surface. Once the wasp finds one of those cases, it first probes it repeatedly with its antennae, while moving around. Eventually, it forces the larvae to come out of the case and parasitizes it by quickly inserting its ovipositor. In some cases, the wasp has to submerge completely underwater for several seconds, in order to find and pull the caterpillar out of its case. To do this, the species has evolved enlarged and strongly curved tarsal claws, which are thought to be used to grip the substrate as it enters the water and looks for hosts.

A female wasp Microgaster godzilla seeks out a moth caterpillar, dives in the water and pulls it out of its case, in order to parasitize it by quickly inserting its ovipositor.
Video by Dr. Jose Fernandez-Triana

As for the curious choice of name for the new species, Dr. Jose Fernandez-Triana explains:

“The reasons why we decided to use the name of Godzilla for the wasp species are interesting. First, being a Japanese species, it respectfully honours Godzilla (Japanese: ゴジラ, Hepburn: Gōjira), a fictional monster (kaiju) that became an icon after the 1954 Japanese film of the same name and many remakes afterwards. It has become one of the most recognizable symbols of Japanese popular culture worldwide. Second, the wasp’s parasitization behaviour bears some loose resemblance to the kaiju character, in the sense that the wasp suddenly emerges from the water to parasitize the host, similar to how Godzilla suddenly emerges from the water in the movies. Third, Godzilla has sometimes been associated, albeit in different ways, with Mothra (Japanese: モスラ, Hepburn: Mosura), another kaiju that is typically portrayed as a larva (caterpillar) or an adult moth. As you can see, we had biological, behavioural and cultural reasons to justify our choice of a name. Of course, that and having a bit of fun, because that is also an important part of life and science!”

Beyond unusual behaviours and funny names, Dr. Fernandez-Triana wants to emphasize the importance of multidisciplinary work and collaboration. The team that published this paper got to know each other at an international meeting devoted to biological control (The 5th International Entomophagous Insects Conference in Kyoto, Japan, 2017). 

“I was very impressed by several presentations by Japanese grad students, which included video recordings of parasitoid wasp biology. As a taxonomist, I am always impressed with the quality of research done by colleagues in other fields. In this case, we saw an opportunity to combine our efforts to study the wasp in detail and, when we found that it was a new species, we described it together, including adding the filmed behaviour to the original description. Usually, taxonomic descriptions of parasitoid wasps are based on dead specimens, with very few details–often none–on its biology. Thanks to my biocontrol colleagues, we could add more information to what is known about the new species being described. Hopefully we can continue this collaboration and combined approach for future studies”.

Original source:

Fernandez-Triana J, Kamino T, Maeto K, Yoshiyasu Y, Hirai N (2020) Microgaster godzilla (Hymenoptera, Braconidae, Microgastrinae), an unusual new species from Japan which dives underwater to parasitize its caterpillar host (Lepidoptera, Crambidae, Acentropinae). Journal of Hymenoptera Research 79: 15-26. https://doi.org/10.3897/jhr.79.56162

First Australian night bees recorded foraging under the cover of darkness

Original post by Flinders University, Australia

Australian bees are known for pollinating plants on beautiful sunny days, but a new study has identified two species that have adapted their vision for night-time conditions for the first time.

The study by a team of ecology researchers has observed night time foraging behaviour by a nomiine (Reepenia bituberculata) and masked (Meroglossa gemmata) bee species, with both developing enlarged compound and simple eyes which allow more light to be gathered when compared to their daytime kin.

Published in the Journal of Hymenoptera Research, the researchers explain that this improved low-light ability could potentially also exist in other Australian species secretly active at night, with their image processing ability best observed through high-resolution close-up images. 

Lead author PhD Candidate James Dorey, in the College of Science & Engineering at Flinders University, says the two Australian bee species active at night and during twilight hours are mostly found in Australia’s tropical north, but there could potentially more in arid, subtropical and maybe even temperate conditions across the continent.

“We have confirmed the existence of at least two crepuscular bee species in Australia and there are likely to be many more that can forage both during the day and into the early morning or evening under low light conditions. It’s true that bees aren’t generally known to be very capable when it comes to using their eyes at night, but it turns out that low-light foraging is more common than currently thought,”

says Mr Dorey.

“Before this study, the only way to show that a bee had adapted to low-light was by using difficult-to-obtain behavioural observations, but we have found that you should be able to figure this out by using high-quality images of a specific bee.”

Mr Dorey says bees that forage during dim-light conditions aren’t studied enough with no previously reliable published records for any Australian species.  

“Our study provides a framework to help identify low-light-adapted bees and the data that is needed to determine the behavioural traits of other species. This is important as we need to increase efforts to collect bee species outside of normal hours and publish new observations to better understand the role that they play in maintaining ecosystems.”

The researchers outline why more needs to be understood about the behaviour of bee species to help protect them from the potential impacts of climate change. 

“Global weather patterns are changing and temperatures in many parts of Australia are rising along with the risk of prolonged droughts and fires. So, we have to improve our understanding about insects pollinating at night or in milder parts of the day to avoid potential extinction risks or to mitigate loss of pollination services.” 

“This also means we have to highlight the species that operate in a narrow window of time and could be sensitive to climatic changes, so conservation becomes an important concern. Because quite frankly, we have ignored these species up until now.”

Publication:

Dorey JB, Fagan-Jeffries EP, Stevens MI, Schwarz MP (2020) Morphometric comparisons and novel observations of diurnal and low-light-foraging bees. Journal of Hymenoptera Research 79: 117–144. https://doi.org/10.3897/jhr.79.57308