New species of moth named in honor of Donald Trump ahead of his swearing-in as president

Days before Donald J. Trump steps forward on the Inaugural platform in Washington to assume the role of the 45th President of the United States of America, evolutionary biologist and systematist Dr. Vazrick Nazari named a new species in his honour. The author, whose publication can be found in the open access journal ZooKeys, hopes that the fame around the new moth will successfully point to the critical need for further conservation efforts for fragile areas such as the habitat of the new species.

While going through material borrowed from the Bohart Museum of Entomology, University of California, Davis, Dr. Vazrick Nazari stumbled across a few specimens that did not match any previously known species. Following thorough analysis of these moths, as well as material from other institutions, the scientist confirmed he had discovered the second species of a genus of twirler moths.

image 2While both species in the genus share a habitat, stretching across the states of California, USA, and Baja California, Mexico, one can easily tell them apart. The new moth, officially described as Neopalpa donaldtrumpi, stands out with yellowish-white scales present on the head in adults. In fact, it was in these scales that the author found an amusing reference to Mr. Trump’s hairstyle and turned it into an additional justification for its name.

Donald Trump’s flying namesake is announced only a month following the recently described species of basslet named after predecessor President Barack Obama, also published in ZooKeys. The fish is only known from coral reefs in the Papahānaumokuākea Marine National Monument, Northwestern Hawaii, a nature reserve which the 44th President of the United States of America expanded to become the largest protected marine area in the world.

Being a substantially urbanized and populated area, the habitat of N. donaldtrumpi is also under serious threat.

“The discovery of this distinct micro-moth in the densely populated and otherwise zoologically well-studied southern California underscores the importance of conservation of the fragile habitats that still contain undescribed and threatened species, and highlights the paucity of interest in species-level taxonomy of smaller faunal elements in North America,” says discoverer Dr. Vazrick Nazari. “By naming this species after the 45th President of the United States, I hope to bring some public attention to, and interest in, the importance of alpha-taxonomy in better understanding the neglected micro-fauna component of the North American biodiversity.”

###

Original source:

Nazari V (2017) Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae). ZooKeys 646: 79-94. https://doi.org/10.3897/zookeys.646.11411

Twenty-five frogs added to the amphibian fauna of Mount Oku, Cameroon

 

While amphibians all over the world are undergoing a continuous decline, their status in certain regions, such as Central Africa, remains unknown due to incomplete information. New paper, published by two scientists in the open access journal ZooKeys, addresses the knowledge gap by providing an updated list of already 50 amphibian species living on Mount Oku, Cameroon.

Scientists Dr Thomas M. Doherty-Bone, Royal Zoological Society of Scotland, and Dr Václav Gvoždík, affiliated with both the Czech Academy of Sciences and the National Museum in Prague, have spent more than 10 years studying the Cameroonian mountain. As a result of their thorough surveys, literature review, and re-examination of museum specimens, there are now 50 species known from the locality, which doubles previous numbers. In their newly published checklist the researchers have listed 49 species of frogs and toads, as well as one caecilian species – a limbless, snake-like amphibian.

However, the number of threatened species seems to increase quite proportionally. Many of the newly recorded frogs, for instance, appear to be extremely endangered, yet they have not been assessed by the International Union for Conservation of Nature (IUCN). Therefore, the authors have used the IUCN criteria to propose conservation assessments for them. If the suggested statuses are approved, together with the updated declines of previously abundant in the area species, the proportion of the threatened would rise to nearly half (48%) of the Mount Oku’s entire amphibian fauna. Meanwhile, it is 42% of amphibians at risk of extinction globally.

In their study, the scientists also review the research and conservation undertaken at the mountain so far, including the work they have initiated themselves. Although Mount Oku’s forest turned out to be the best managed among the rest in the region, threats such as forest loss, encroachment and degradation are still largely present and increasing. Additional threats, including use of agrochemicals, climate change and diseases, have also been identified. However, conservation actions for the amphibians of Mount Oku are on the rise, considering both the population and the ecosystem-level perspectives.

“Our paper provides a foundation for continuously improving amphibian conservation at Mount Oku, as well as other mountains in Cameroon,” conclude the authors.   

 

Original source:

Doherty-Bone TM, Gvoždík V (2017) The Amphibians of Mount Oku, Cameroon: an updated species inventory and conservation review. ZooKeys 643: 19-139. https://doi.org/10.3897/zookeys.643.9422

Hidden diversity: 3 new species of land flatworms from the Brazilian Araucaria forest

A huge invertebrate diversity is hidden on the forest floor in areas of the Araucaria moist forest, Brazil. Land flatworms constitute a numerous group among these invertebrates occurring in the Neotropical region. Flatworms are considered to be top predators within the soil ecosystem, preying on other invertebrates.

fig_1_c_aureomaculataThe Araucaria moist forest is part of the Brazilian Atlantic Rain Forest and is considered a hotspot of land flatworm diversity, harboring many yet undescribed species. Study recently published in the open access journal ZooKeys describes three new species from areas covered by Araucaria moist forest in South Brazil, which belong to the Neotropical genus Cratera.

Land flatworms lack a water retention mechanism and have a low tolerance to intense changes in temperature and humidity. Their low vagility leads to the existence of a high number of endemic species. Thus, they are considered good bioindicators of the degree of impact on their habitat.

The new species are named after characteristics of their color pattern and are probably endemic for the study areas. Besides differing from each other, as well as from other species of the genus, by their characteristic color pattern, they also show other distinguishing features in the reproductive system. The study provides an identification key to the species of the genus.

The work was conducted by the south Brazilian research group on triclads, led by Dr. Ana Leal-Zanchet, of the Universidade do Vale do Rio dos Sinos (UNISINOS), in southern Brazil. The study was supported by the Brazilian Research Council (CNPq).fig_2_c_nigrimarginata

###

Original source:

Rossi, I, Leal-Zanchet, A. (2017) Three new species of Cratera Carbayo et al., 2013 from Araucaria forests with a key to species of the genus (Platyhelminthes, Continenticola). ZooKeys 643 (2017): 1-32. doi: 10.3897/zookeys.643.11093

A colorful yet little known snout moth genus from China with 5 new species

A group of beautiful snout moths from China was revised by three scientists from the Institute of Zoology at the Chinese Academy of Sciences.

In their study, recently published in the open access journal Zookeys, entomologists Dr. Mingqiang Wang, Dr. Fuqiang Chen and Prof. Chunsheng Wu describe five new species and two newly recorded for the country.

Despite being morphologically interesting, the snout moth genus Lista remains little known. Usually, its members have bright-coloured wings, often pink, orange, or yellow, which makes them strikingly different from the rest in their subfamily (Epipaschiinae). In fact, it is because of the beautiful coloration that these moths are sometimes favourably compared to butterflies. However, these moths are indifferentiable from one another on the outside.

image-1As a result of the present study, there are now ten species of Lista snout moths known from China, with their world fauna amounting to thirteen. Mostly distributed in the south the East-Asian country, the genus likely originates from there.

###

Original source:

Wang M, Chen F, Wu C (2017) A review of Lista Walker, 1859 in China, with descriptions of five new species (Lepidoptera, Pyralidae, Epipaschiinae). ZooKeys 642: 97-113. 10.3897/zookeys.642.7157

It’s a girl! Tweaking the names of a pest fanworm group

The largest group of fanworm species with rigid chalky (calcareous) tubes belong to the Hydroides genus, and are easily recognised thanks to the shape of their beautifully ornate tube plugs. Hydroides is economically important as its members have the potential to cover immersed marine structures with massive nuisance settlements of chalky biofouling. The best-known example is Hydroides elegans, which settles on boat hulls so readily that colonies of it are perpetually in transit around the world, hitch-hiking to new places.

Latin names of animals mostly do not change over the decades because they are kept stable by a code book of naming rules. However, a mistake has recently been discovered regarding Hydroides. It turns out that it is a feminine genus rather than masculine, thus requiring each of the 107 Hydroides species names, described since 1768, to be re-examined so that the appropriate spelling, determined by the derivation of each name, can be used consistently by all biologists in future.

Scientists Geoffrey Read, National Institute of Water and Atmospheric Research, New Zealand, Harry ten Hove, Naturalis Biodiversity Center, the Netherlands, Yanan Sun and Elena Kupriyanova, Australian Museum, have carefully compiled the data on original Hydroides names, and published a checklist paper in the open access journal ZooKeys.

‘Detective’ work has often been required to get the details, as early biologists have been remarkably vague about the names they created and where their worms had come from. Fortunately, the Biodiversity Heritage Library has digitised many of the legacy taxonomic works required and it was possible to find out some unexpected information such as that species H. floridana actually did not come from Florida, although its name suggests it did.

three_hydroidesminaxSome Hydroides names have a descriptive basis that fits how the worms look, such as H. bulbosa, H. elegantula and H. longispinosa, others are named after people or places, for example, H. dafnii (after its collector, Yaacob Dafni) and H. sanctaecrucis (after Saint Croix Island). Yet, there are others, whose names are of quite tricky origin. It turns out that H. dianthus was actually named after a group of popular garden flowers, and H. euplaeana and H. stoichadon commemorate the long-forgotten names of tiny Mediterranean islands.

A few 19th century Hydroides descriptions are so bad that taxonomists have given up on using the names. However, one of these discarded names was revived last century by American biologists and was then used in often-cited research on sperm biology. Now, we can only guess what the actual species was.

Hydroides itself is a very old name, but it arose in a somewhat accidental and misleading way (in a letter to Linnaeus), because the worms have absolutely no connection to true hydroids, the well-known group of colonial animals related to corals.

The Hydroides species original descriptions are mostly accessible via the checklist because one third of the reports cited in the checklist are linked to the open access Biodiversity Heritage Library, and a large proportion are matched to an online source. While in the past one could only expect to find recorded the geolocations (the latitudes and longitudes) of worms collected during ship voyages, now the original localities of all the Hydroides are finally mapped. Further information on the taxonomy of all Hydroides, including many now regarded as synonyms, is available via links to the World Register of Marine Species Polychaeta web pages.

###

Original source:

Read GB, ten Hove HA, Yanan Sun Y, Kupriyanova EK (2017) Hydroides Gunnerus, 1768 (Annelida, Serpulidae) is feminine: a nomenclatural checklist of updated names. ZooKeys 642: 1-52. https://doi.org/10.3897/zookeys.642.10443

Biodiversity project in Azores delivers detailed abundance data for 286 arthropod species

In 1999, a long-term biodiversity project started at the Azores Islands (Portugal, Atlantic Ocean), the Biodiversity of Arthropods from the Laurisilva of the Azores (BALA) project (1999-2004). Its aim was to obtain detailed distributional and abundance data for a large fraction of arthropod fauna, living in all remaining native forests at seven of the Azores Islands.

After the first successful sampling of 100 sites at 18 native forest fragments over those five years, a second survey was accomplished in 2010-2011, where two sites per fragment were re-sampled. Now, Dr Paulo A.V. Borges and colleagues publish the complete list of the 286 species identified, including many species described as new to science in the open access journal Biodiversity Data Journal. They have also added detailed information on their distribution and abundance.

The resulting database has inspired the publication of many studies in the last ten years, including macroecological studies evaluating the abundance, spatial variance and occupancy of arthropods, the effects of disturbance and biotic integrity of the native forests on arthropod assemblages and the performance of species richness estimators.

image-2Moreover, these data allowed the ranking of conservation priorities for the fauna of the Azores, and allowed the estimation of extinction debt (the species likely to be wiped out because of past events) in the Azores. The present study has also inspired the development of the Azorean Biodiversity Portal and the Azores Island Lab.

The study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and, more importantly, to other less thoroughly surveyed taxonomic groups (e.g. Diptera and Hymenoptera).

“These steps are fundamental for getting a more accurate assessment of the biodiversity in the Azores archipelago, and we hope that can inspire similar biodiversity surveys at other islands,” say the authors.

###

Original source:

Borges P, Gaspar C, Crespo L, Rigal F, Cardoso P, Pereira F, Rego C, Amorim I, Melo C, Aguiar C, André G, Mendonça E, Ribeiro S, Hortal J, Santos A, Barcelos L, Enghoff H, Mahnert V, Pita M, Ribes J, Baz A, Sousa A, Vieira V, Wunderlich J, Parmakelis A, Whittaker R, Quartau J, Serrano A, Triantis K (2016) New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests. Biodiversity Data Journal 4: e10948. https://doi.org/10.3897/BDJ.4.e10948

Golden jackals might be settling in the Czech Republic, hint multiple observations

The first living golden jackal in the Czech Republic was reported by researchers from Charles University, Prague. The scientists captured the canid on camera multiple times over the span of a year and a half some 40 km away from the capital. Once considered native to northern Africa and southern Eurasia, the species seems to be quite rapidly extending its range towards the north of Europe. The study is published in the open access journal ZooKeys.

In June 2015, while doing a research project for her Master’s degree in Central Bohemia, Czech Republic, Klára Pyšková, a student at the Department of Ecology, Faculty of Science of Charles University in Prague, produced the first photograph of a living golden jackal individual captured by a camera trap in the country.

The aim of her study was broader, addressing common carnivore species composition in different habitats typical for central European landscape, about 40 km away from Prague. While the golden jackal capture was not completely unexpected, since several individuals of this species had previously been reported from the country, it was still a surprising discovery – all previously observed animals were either shot or victims of roadkill, and considered rather incidental records.

“The habitat, where the golden jackal decided to settle, resembles the landscapes which these animals prefer in their natural distribution area, the Balkans – an open grass-shrubland surrounded by a forest. It is one of the warmest areas in the country, with mild winters. The observed animal was mostly active at dusk and dawn, with majority of the sightings occurring in the morning hours,” explains Klára Pyšková. In a paper, she co-authored with a group of researchers from Charles University and Institute of Botany of the Czech Academy of Sciences, among them her supervisors Ivan Horáček and David Storch, they report on a long-term monitoring of the animal in an area of approximately 90 km².

The golden jackal first reached the Czech republic in the late 1990s, probably coming from Austria. The first, albeit unconfirmed report of its presence is from May of 1998, of two individuals reportedly sighted in central Bohemia. Almost a decade later, in 2006, a carcass of an adult golden jackal was found by the side of the road in Moravia, the eastern part of the country. Since then, several verified and non-verified records have been made. The photographs captured by Klára Pyšková were the first evidence of a living individual that seems to have settled permanently in the country. The researchers have not observed any cubs or a mate, and although they cannot completely dismiss the occurrence of another individual, they consider it very unlikely. The sex of the animal could not be determined.

“While the golden jackal is a species that has historically never lived in the area, where the study was conducted, and, therefore, might not be appropriate to call it native, it cannot be considered invasive. Invasive species are those that have been intentionally or unintentionally brought to a new area by humans – this is not the case of the golden jackal here,” says Klára Pyšková.

“This being said, there are several factors that have likely facilitated the spread, including indirect human influence,” adds the researcher. “Ongoing global change is bringing about shifts in species distributions that include both the spread of populations of invasive species and range expansions or contractions of native biota. In Europe, this is typically reflected in species moving from the south-eastern part of the continent to the north-west, most often in response to increasing temperatures that allow organisms to colonize areas that were previously unsuitable. Other suggested factors are human-caused changes in the overall character of landscapes, the lack of natural predators, particularly wolves, and high adaptability of the species.”

###

Original source:

Pyšková K., Storch D., Horáček I., Kauzál O. & Pyšek P. (2016) Golden jackal (Canis aureus) in the Czech Republic: the first record of a live animal and its long-term persistence in the colonized habitat. ZooKeys 641: 151-163 doi: 10.3897/zookeys.641.10946

Fishy “juveniles” from the Caribbean to be recognized as a new species, the Hourglass basslet

Living in deep reefs in the Atlantic Ocean, the banded basslet, a small and colorful species with a wide range of distribution, has long been thought to undergo significant changes during its growth into an adult. Suspiciously, the juveniles appeared much more heavily banded. Recently, however, American scientists figured out that the ‘juveniles’ were in fact a new species.

lipogramma-levinsoni-img-2In a paper published in the open access journal ZooKeys, Dr. Carole C. Baldwin, Ai Nonaka, Dr. Luke Tornabene, all affiliated with the National Museum of Natural History, Smithsonian Institution, and Dr. Ross Robertson, Smithsonian Tropical Research Institute, Panama, describe two new basslet species discovered in the Caribbean off the southern coast of Curaçao. Their finding comes as part of the Smithsonian’s Deep Reef Observation Project (DROP), devoted to documenting the biodiversity in the poorly studied depth zone of 50–300 m with the help of a special submersible, called Curasub.

Having been previously confused with the banded basslet’s juveniles, one of the new species was discovered after the submersible’s hydraulic arms collected specimens with smaller size and thicker bands from shallower depths. Subsequent study of the specimens revealed additional morphological, as well as molecular, evidence that suggest the specimens represent a new species.

The species is characterized by predominantly white to tan colored body with three vertical blackish bands, one running across its head, and two along the body. The latter often appear hourglass-shaped, with their middles being narrower and lighter. Due to this resemblance, the authors suggest that the new species is commonly called Hourglass basslet, while its scientific name is Lipogramma levinsoni, in recognition of the generous and continuing support of research on neotropical biology at the Smithsonian Tropical Research Institute (Panamá) made by Frank Levinson.

The second new basslet from Curaçao can be distinguished by the three dusky bars likewise running across its head and body. Its ground color is yellow to white, with the bar at the rear being much lighter than the rest. Reflecting its appearance, its common name is proposed to be Yellow-banded basslet, while its scientific identity is Lipogramma haberi, in recognition of Spencer and Tomoko Haber, who funded and participated in one of the submersible dives that resulted in the collection of a paratype of the new species.the-second-newly-described-basslet-species-lipogramma-haberi

In their study, the researchers also point out that it is likely that there are at least two additional cryptic species belonging to the same genus. Those species are  currently being analyzed in ongoing investigations of the Caribbean deep-reef ecosystems.

Past discoveries made as part of the DROP Project at Curaçao include adorable fishes such as the Stellate scorpionfish and the Godzilla goby. To recognize all involved in the DROP research program, the team have described the small blenny fish as Haptoclinus dropi, after the project itself, while another goby species, Coryphopterus curasub, bears the name of the submersible used in the dives.  

Original source:

Baldwin CC, Robertson RD, Nonaka A, Tornabene L (2016) Two new deep-reef basslets (Teleostei, Grammatidae, Lipogramma), with comments on the eco-evolutionary relationships of the genus. ZooKeys 638: 45-82. https://doi.org/10.3897/zookeys.638.10455

Assassins on the rise: A new species and a new tribe of endemic South African robber flies

Discovery of a new species of assassin flies led to the redescription of its genus. This group of curious predatory flies live exclusively in South Africa, preferring relatively dry habitats. Following the revisit, authors Drs Jason Londt, KwaZulu-Natal Museum, South Africa, and Torsten Dikow, Smithsonian Institution National Museum of Natural History, USA, publish updated information about all species within the genus, now counting a total of seven species, and also establish a new tribe. Their study is published in the open access journal African Invertebrates.

The family of assassin flies (Asilidae), also known as robber flies, are curious insects, which have received their common name due to their extremely predatory behavior. The assassin flies prey on a great variety of insects, including beetles, moths, butterflies, wasps, other flies, as well as some spiders, as early as their juvenile stage of development. When hunting, they would ambush their prey and catch it in flight. Then, they would pierce the victim with a short and strong proboscis, while injecting venom. Once in the body of the prey, it quickly dissolves the insides, so that the assassin fly can suck them out.

The published study was spawned by the collection of new specimens of previously described assassin flies of the species Trichoura tankwa by the junior author in December 2015. These specimens could not be easily identified and so the authors started to look at all available specimens in natural history museums.

image-2The new species, called Trichoura pardeos, was discovered in Tierberg Nature Reserve by the authors in 2004, a small conservation area located on the north banks of the Gariep River in the Northern Cape province of South Africa. The habitat comprises almost entirely a large rocky hill, where the vegetation is scarce and dominated by drought-resistant plants, such as aloes. The fly is predominantly red-brown in colour, with silvery, white and yellowish markings.

Having noted morphological variation between the species inhabiting areas with differently timed yearly rainfalls, the entomologists suggest that two groups within the studied genus have adapted to these different patterns in western and eastern South Africa. They also expect that species representing Trichoura could be also dwelling in Namibia, Botswana, Mozambique and possibly Zimbabwe.

###

Original source:

Londt J, Dikow T (2016) A review of the genus Trichoura Londt, 1994 with the description of a new species from the Northern Cape Province of South Africa and a key to world Willistonininae (Diptera, Asilidae). African Invertebrates 57 (2): 119-135. https://doi.org/10.3897/AfrInvertebr.57.10772

Efficiency of insect biodiversity monitoring via Malaise trap samples and DNA barcoding

The massive decline of over 75% insect biomass reported from Germany between 1989 and 2013 by expert citizen scientists proves the urgent need for new methods and standards for fast and wide-scale biodiversity assessments. If we cannot understand species composition, as well as their diversity patterns and reasons behind them, we will fail not only to predict changes, but also to take timely and adequate measures before species go extinct.

An international team of scientists belonging to the largest and connected DNA barcoding initiatives (iBOL, GBOL, BFB), evaluated the use of DNA barcode analysis applied to large samples collected with Malaise traps as a method to rapidly assess the arthropod fauna at two sites in Germany between May and September.

One Malaise trap (tent-like structure designed to catch flying insects by attracting them to its walls and then funneling them into a collecting bottle) was set in Germany’s largest terrestrial protected natural reserve Nationalpark Bayerischer Wald in Bavaria. Located in southeast Germany, from a habitat perspective, the park is basically a natural forest. The second trap was set up in western Germany adjacent to the Middle River Rhine Valley, located some 485 kilometers away from the first location. Here, the vegetation is eradicated annually due to St. Martin’s fires, which occur every November. Their findings are published in the open access Biodiversity Data Journal.

DNA barcoding enables the identification of a collected specimen by comparing its BIN (Barcode Index Number) against the BOLD database. In contrast to evaluation using traditional morphological approaches, this method takes significantly less experience, time and effort, so that science can easily save up on decades of professional work.

However, having analyzed DNA barcodes for 37,274 specimens equal to 5,301 different BINs (i.e., species hypotheses), the entomologists managed to assign unambiguous species names to 35% of the BINs, which pointed to the biggest problem with DNA barcoding for large-scale insect inventories today, namely insufficient coverage of DNA barcodes for Diptera (flies and gnats) and Hymenoptera (bees and wasps) and allied groups. As the coverage of the reference database for butterflies and beetles is good, the authors showcase how efficient the workflow for the semi-automated identification of large sample sizes to species and genus level could be.

In conclusion, the scientists note that DNA barcoding approaches applied to large-scale samplings collected with Malaise traps could help in providing crucial knowledge of the insect biodiversity and its dynamics. They also invite their fellow entomologists to take part and help filling the gaps in the reference library. The authors also welcome taxonomic experts to make use of the unidentified specimens they collected in the study, but also point out that taxonomic decisions based on BIN membership need to be made within a comparative context, “ideally including morphological data and also additional, independent genetic markers”. Otherwise, the grounds for the decision have to be clearly indicated.

The study is conducted as part of the collaborative Global Malaise Trap Program (GMTP), which involves more than 30 international partners. The aim is to provide an overview of arthropod diversity by coupling the large-scale deployment of Malaise traps with the use of specimen-based DNA barcoding to assess species diversity.

Sequence analyses were partially defrayed by funding from the government of Canada through Genome Canada and the Ontario Genomics Institute in support of the International Barcode of Life project. The German Barcode of Life project (GBOL) is generously supported by a grant from the German Federal Ministry of Education and Research (FKZ 01LI1101 and 01LI1501) and the Barcoding Fauna Bavarica project (BFB) was supported by a 10-year grant from the Bavarian Ministry of Education, Culture, Research and Art.

 

 

Original source:

Geiger M, Moriniere J, Hausmann A, Haszprunar G, Wägele W, Hebert P, Rulik B (2016) Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Biodiversity Data Journal 4: e10671. https://doi.org/10.3897/BDJ.4.e10671