Notice me! Neglected for over a century, Black sea spider crab re-described

After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.

Even though recognised in the Mediterranean Sea, the Macropodia czernjawskii spider crab was ignored by scientists (even by its namesake Vladimir Czernyavsky) in the regional faunal accounts of the Black Sea for more than a century. At the same time, although other species of the genus have been listed as Black sea fauna, those listings are mostly wrong and occurred either due to historical circumstances or misidentifications.Now, scientists re-describe this, most likely, only species of the genus occurring in the Black Sea in the open-access journal Zoosystematics and Evolution.

The studied spirder crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea.
Photo by Sergey Anosov

The spider crab genus Macropodia was discovered in 1814 and currently includes 18 species, mostly occurring in the Atlantic and the Mediterranean. The marine fauna of the Black Sea is predominantly of Mediterranean origin and Macropodia czernjawskii was firstly discovered in the Black Sea in 1880, but afterwards, its presence there was largely ignored by the scientists.

After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.

“The analysis of the molecular genetic barcode (COI) of the available material of Macropodia species indicated that M. czernjawskii is a very distinct species while M. parva should be synonimised with M. rostrata, and M. longipes is a synonym of M. tenuirostris”,

states Dr Spiridonov sharing the details of the genus analysis.

All Macropodia species have epibiosis and M. czernjawskii is no exception: almost all examined crabs in 2008-2018 collections had significant epibiosis. It normally consists of algae and cyanobacteria and, particularly, a non-indigenous species of red alga Bonnemaisonia hamifera, officially reported in 2015 at the Caucasian coast of the Black Sea, was found in the epibiosis of M. czernjawskii four years earlier.

“It improves our understanding of its invasion history. Museum and monitoring collections of species with abundant epibiosis (in particular inachid crabs) can be used as an additional tool to record and monitor introduction and establishments of sessile non-indigenous species,”

suggests Dr Spiridonov.
The spider crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea.
Photo by Sergey Anosov

***

Original source:

Spiridonov VA, Simakova UV, Anosov SE, Zalota AK, Timofeev VA (2020) Review of Macropodia in the Black Sea supported by molecular barcoding data; with the redescription of the type material, observations on ecology and epibiosis of Macropodia czernjawskii (Brandt, 1880) and notes on other Atlanto-Mediterranean species of Macropodia Leach, 1814 (Crustacea, Decapoda, Inachidae). Zoosystematics and Evolution 96(2): 609-635. https://doi.org/10.3897/zse.96.48342

Bulgarian Academy of Sciences signs with Pensoft to move Silva Balcanica journal to ARPHA

The first 2020 issue of the journal by the Academy’s Forest Research Institute is already online on a brand new and user-friendly website

The scholarly publisher and technology provider Pensoft welcomes the open-access, peer-reviewed international journal in forest science concerning the Balkan Peninsula, Central and Southern Europe Silva Balcanica to its self-developed publishing platform ARPHA. Having become the latest addition to the lengthy portfolio of scholarly outlets dedicated to the fields of ecology and biology for Pensoft and ARPHA, Silva Balcanica is now offering a wide range of benefits and services to its readers, authors, reviewers and editors alike.

Having already acquired its own glossy and user-friendly website provided by ARPHA, Silva Balcanica also takes advantage of the platform’s signature fast-track, end-to-end publishing system. In addition, the published content enjoys automated export of data to aggregators, as well as web-service integrations with major global indexing and archiving databases.

Silva Balcanica’s new website on ARPHA Platform. Visit athttps://silvabalcanica.pensoft.net 

Ever since its inception in 2001, the journal by the Forest Research Institute at the Bulgarian Academy of Sciences (FRI-BAS), has been providing open access to the latest research in all aspects of forest ecosystems and landscapes of the Balkan Peninsula, and also Central and Southern Europe.

Silva Balcanica invites scientific analysis of practical results, as well as investigations, in the forest sciences, including forest ecology; forest soil science; forest genetics, tree breeding and plantation forestry; biometry and sylviculture; forest economy and management; forest entomology and pathology; ecology and management of game fauna, urban forestry and green infrastructure. Constructive critique addressing scientific publications or events in the field of forestry and forest science are also accepted.

In the first 2020 issue of Silva Balcanica, we can find a total of eight research papers, dealing with a range of various topics, including studies on local plant diversity, genetics, application of experimental designs for forestry research, ecosystem services, population dynamics, invasive pathogens and previously unknown populations of forest-dwelling insects. It brings together single-authored research contributions as well as international collaborative projects, with input from authors from Bulgaria, Greece, Northern Macedonia and Italy.

CEO and founder of both Pensoft and ARPHA Platform Prof. Lyubomir Penev comments:

“Silva Balcanica is an important scholarly outlet and also a remarkable example of international cooperation, inspired and maintained by curiosity, care and responsibility towards the unique, but fragile ecosystems this part of Europe hosts. This is why we take pride in having this particular journal joining our portfolio,”

Silva Balcanica’s Editorial Board says:

“The Scientific Council of the Forest Research Institute at the Bulgarian Academy of Sciences decided to begin publishing Silva Balcanica as an international series in 2001 and since 2014, Silva Balcanica has been published as an international journal.

We are honored to have as members of our Editorial Advisory Board eminent European professors and researchers in forestry and related sciences that join our efforts in pursuit of high quality scientific publishing.

We are confident that Silva Balcanica will unite the research of scientists and specialists in forestry from Southeastern, Central and Eastern Europe and beyond, and will help them in the processes of their European integration.”

###

Visit the new website of Silva Balcanica at https://silvabalcanica.pensoft.net.

DNA metabarcoding detects ecological stress within freshwater species

Metabarcoding allows scientists to extract DNA from the environment, in order to rapidly detect species inhabiting a particular habitat. While the method is a great tool that facilitates conservation activities, few studies have looked into its applicability in monitoring species’ populations and their genetic diversity, which could actually be critical to assess negative trends early on. The potential of the method is confirmed in a new study, published in the peer-reviewed scholarly journal Metabarcoding & Metagenomics.

In a new study, German scientists confirm that responses below species level can be inferred with DNA metabarcoding

Metabarcoding allows scientists to extract DNA from the environment (known as environmental DNA or eDNA), for example, river water or, as in the case of the study by the team from the University of Duisburg-Essen (Essen, Germany) within the German Barcode of Life project (GBOL II): Vera Zizka, Dr Martina Weiss and Prof Florian Leese, from individuals in bulk samples. Thus, they are able to detect what species inhabit a particular habitat.

However, while the method has already been known to be of great use in getting an approximate picture of local fauna, hence facilitating conservation prioritisation, few studies have looked into its applicability to infer responses below species level. That is, how the populations of a particular species fare in the environment of interest, also referred to as intraspecific diversity. Meanwhile, the latter could actually be a lot more efficient in ecosystem monitoring and, consequently, biodiversity loss mitigation.

The potential of the method is confirmed in a new study, published in the peer-reviewed scholarly journal Metabarcoding & Metagenomics. To do so, the researchers surveyed the populations of macroinvertebrate species (macrozoobenthos) in three German rivers: Emscher, Ennepe and Sieg, where each is subject to a different level of ecological disturbance. They were looking specifically at species reported at all of the survey sites by studying the number of different haplotypes (a set of DNA variations usually inherited together from the maternal parent) in each sample. The researchers point out that macrozoobenthos play a key role in freshwater ecosystem functionality and include a wide range of taxonomic groups with often narrow and specific demands with respect to habitat conditions.

“As the most basal level of biodiversity, genetic diversity within species is typically the first to decrease, and the last to regenerate, after stressor’s impact. It consequently provides a proxy for environmental impacts on communities long before, or even if never visible on species diversity level,”

explain the scientists.

Emscher is an urban stream in the Ruhr Metropolitan Area that has been used as an open sewage channel for the past hundred years, and is considered to be a very disturbed environment. Ennepe – regarded as moderately stressed – runs through both rural and urban sites, including ones with sewage treatment plant inflow. Meanwhile, Sieg is considered as a stable, near-natural river system with a good ecological and chemical status.

As a result, despite their original assumption that Sieg would support the most prominent diversity within populations of species sensitive to organic pollution, such as mayflies, stoneflies and caddisflies, the scientists reported no significant difference to the medium stressed river Ennepe. This was also true for overall biodiversity. On the other hand, the team discovered higher intraspecific diversity for species resilient to ecological disturbance like small worms and specialised crustaceans in the heavily disturbed Emscher. The latter phenomenon may be explained with low competition pressure for these species, their ability to use organic compounds as resources and, consequently, increased population growth.

“[T]his pioneer study shows that the extraction of intraspecific genetic variation, so-called ‘haplotypes’ from DNA metabarcoding datasets is a promising source of information to assess intraspecific diversity changes in response to environmental impacts for a whole metacommunity simultaneously,”

conclude the scientists.

However, the researchers also note limitations of their study, including the exclusion of specialist species that only occured at single sites. They prompt future studies to also carefully control for the individual number of specimens per species to quantify genetic diversity change specifically.

###

Original source:

Zizka VMA, Weiss M, Leese F (2020) Can metabarcoding resolve intraspecific genetic diversity changes to environmental stressors? A test case using river macrozoobenthos. Metabarcoding and Metagenomics 4: e51925. https://doi.org/10.3897/mbmg.4.51925

Guest Blog Post: Researchers split the birdcatcher trees (genus Pisonia) into three

Large Cabbage trees (Pisonia grandis) dominate the landscape of a small island in the Pacific Ocean
Photo by Jean-Yves Meyer (Délégation à la Recherche de Polynésie Française, Tahiti, French Polynesia)

Guest blog post by Marcos Caraballo


The birdcatcher trees – genus Pisonia – are infamous for trapping birds with their super-sticky seed pods that would frequently entangle the body of the ‘victim’. Left flightless, the poor feathered creatures eventually die either from starvation or fatigue, or predators. Similarly notorious are the birdcatcher trees for botanists, who have been baffled by their complicated classification for the last three centuries. 

Here’s why myself and graduate student Elson Felipe Rossetto of the Universidade Estadual de Londrina (Brazil) decided to take up the untangling of this issue with our recent taxonomic studies. You can find our research paper published in the open-access scholarly journal PhytoKeys.

Ripe fruits (anthocarps) of the Birdlime tree (Ceodes umbellifera)
Photo by Ching-I Peng [deceased]

We reestablished two genera: Ceodes and Rockia, where both had been previously merged under the name of Pisonia. Now, as a result, there are three distinct lineages of birdcatcher trees from the islands of the Pacific and Indian Oceans: Ceodes, Pisonia, and Rockia.

“Previous molecular studies on Pisonia species from around the world showed that species were clustered into three major groups, and here we assign names for each of them. With this new classification, a large number of the species known as Pisonia will be henceforth named Ceodes. This includes the Parapara (Ceodes brunoniana) and the Birdlime (Ceodes umbellifera) trees, both native to many islands, including Hawaii and New Zealand. They are commonly planted in gardens for their lush and sometimes variegated foliage, as well as their fragrant white flowers. However, the Cabbage tree (Pisonia grandis) will still be technically known as Pisonia.”

adds the study’s lead author Felipe Rossetto.
Male (staminate) showy flowers of the Birdlime tree (Ceodes umbellifera)
Photo by Joel Bradshaw (Far Outliers, Honolulu, Hawaii)

Birdcatcher trees have generated much controversy in the popular media because of their seed pods (technically called “anthocarps”) secreting a sticky substance that glues them to the feathers of seabirds or other animals for dispersal. Sometimes, though, too many seed pods can harm or kill birds, especially small ones, by weighing them down and rendering them flightless. This macabre practice has led to many controversies and local campaigns aiming to remove the trees, even illegally.

Brown noddy (Anous stolidus) covered with the sticky fruits (anthocarps) of the Cabbage tree (Pisonia grandis)
Photo by Jean-Yves Meyer (Délégation à la Recherche de Polynésie Française, Tahiti, French Polynesia)

In spite of their forbidding reputation, however, we would like to stress that birdcatcher trees have positive effects on ecosystems and are important components of vegetation, especially for small islands. Sadly, there are many endemic and already endangered species of birdcatcher trees that only exist on a few small islands, where they are effectively placed at the mercy of local people.

Many species of birdcatcher trees are large and, thereby, tolerate harsh environments like seafronts and rocky cliffs, making them prime nesting spots for seabirds. Birdcatcher trees are also ecologically curious and could be regarded as keystone species in small islands, because their soft branches can sustain many types of invertebrates; their flowers are an important food source for bees and ants; their dense leaf litter nourishes the soil; and their roots have intimate interaction with native underground fungi (mycorrhiza).

All in all, clarifying the taxonomy of the birdcatcher trees is the first step to understanding how many species exist and how they relate to each other. 

Although most people relate birdcatcher trees with beaches and coastal habitats, there are species that are only found in mountains or rainforests. For example, the species now allocated to the genus Rockia is endemic to the Hawaiian archipelago. These are small trees able to grow in dry to mesic mountain forests. Using our new classification, future studies can explore in detail the hidden diversity of these enigmatic plants, and find out how trees with high dispersal capabilities evolve into species endemic to small island ecosystems.

Cabbage trees (Pisonia grandis) are important components of the vegetation in small islands due to their massive size
Photo by Jean-Yves Meyer (Délégation à la Recherche de Polynésie Française, Tahiti, French Polynesia)

About the author:

Marcos A. Caraballo-Ortiz is a research associate at the Smithsonian Institution (Washington, D.C., United States). His research interests include plant systematics and ecology, with a focus on flora of the Caribbean Islands. Dr. Caraballo-Ortiz has experience studying the taxonomy of several groups of tropical plants, with a particular interest in neotropical Mistletoes (Loranthaceae, Santalaceae, Viscaceae) and the Four O’Clock family (Nyctaginaceae). 

For more information about his projects, visit marcoscaraballo.com.

Research paper:

Rossetto EFS, Caraballo-Ortiz MA (2020) Splitting the Pisonia birdcatcher trees: re-establishment of Ceodes and Rockia (Nyctaginaceae, Pisonieae). PhytoKeys 152: 121-136. https://doi.org/10.3897/phytokeys.152.50611


Ten years of ecosystem services matrix: Review of a (r)evolution

In recent years, the concept of Ecosystem Services (ES): the benefits people obtain from ecosystems, such as pollination provided by bees for crop growing, timber provided by forests or recreation enabled by appealing landscapes, has been greatly popularised, especially in the context of impeding ecological crises and constantly degrading natural environments. 

Hence, there has been an increasing need for robust and practical methodologies to assess ES, in order to provide key stakeholders and decision-makers with crucial information. One such method to map and assess ES: the ES Matrix approach, has been increasingly used in the last decade.

The ES Matrix approach is based on the use of a lookup table consisting of geospatial units (e.g. types of ecosystems, habitats, land uses) and sets of ES, meant to be assessed for a specific study area, which means that the selection of a particular study area is the starting point in the assessment. Only then, suitable indicators and methods for ES quantification can be defined. Based on this information, a score for each of the ES considered is generated, referring to ES potential, ES supply, ES flow/use or demand for ES. 

Originally developed in a 2009 paper by a team, led by Prof Dr Benjamin Burkhard (Leibniz University Hannover and Leibniz Centre for Agricultural Landscape Research ZALF), the ES Matrix allows the assessment of the capacity of particular ecosystem types or geospatial units to provide ES.

Ten years later, a research led by Dr C. Sylvie Campagne (Leibniz University Hannover, Germany), Dr Philip Roche (INRAE, France), Prof Dr Felix Muller (University of Kiel, Germany) and Prof Dr Benjamin Burkhard conducted a review of 109 published studies applying the ES matrix approach to find out how the ES matrix approach was applied and whether this was done in an oversimplified way or not.

In their recent paper, published in the open-access, peer-reviewed journal One Ecosystem, the review confirms the method’s flexibility, appropriateness and utility for decision-making, as well as its ability to increase awareness of ES. Nevertheless, the ES matrix approach has often been used in a “quick and dirty” way that urges more transparency and integration of variability analyses, they conclude.

“We analysed the diversity of application contexts, highlighted trends of uses and proposed future recommendations for improved applications of the ES matrix. Amongst the main patterns observed, the ES matrix approach allows for the assessment of a higher number of ES than other ES assessment methods. ES can be jointly assessed with indicators for ecosystem condition and biodiversity in the ES matrix,”

explains Campagne.

“Although the ES matrix allows us to consider many data sources to achieve the assessment scores for the individual ES, these were mainly used together with expert-based scoring (73%) and/or ES scores that were based on an already-published ES matrix or deduced by information found in related scientific publications (51%),”

she elaborates. 

In 29% of the studies, an already existing matrix was used as an initial matrix for the assessment and in 16% no other data were used for the matrix scores or no adaptation of the existing matrix used was made. 

“Nevertheless, we recommend to use only scores assessed for a specific study or, if one wishes to use pre-existing scores from another study, to revise them in depth, taking into account the local context of the new assessment,”

she points out.

The researchers also acknowledge the fact that 27% of the reviewed studies did not clearly explain their methodology, which underlines the lack of method elucidation on how the data had been used and where the scores came from. Although some studies addressed the need to consider variabilities and uncertainties in ES assessments, only a minority of studies (15%) did so. Thus, the team also recommends to systematically report and consider variabilities and uncertainties in each ES assessment.

“We emphasise the need for all scientific studies to describe clearly and extensively the whole methodology used to score or evaluate ES, in order to be able to rate the quality of the scores obtained. The increasing number of studies that use the ES matrix approach confirms its success, appropriateness, flexibility and utility to generate information for decision-making, as well as its ability to increase awareness of ES, but the application of the ES matrix has to become more transparent and integrate more variability analyses,”

concludes the research team.

Original source:
Campagne CS, Roche P, Müller F, Burkhard B (2020) Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosystem 5: e51103. https://doi.org/10.3897/oneeco.5.e51103

Tiny fly from Los Angeles has a taste for crushed invasive snails

Living individual of Draparnaud’s glass snail
Photo by Kat Halsey

As part of their project BioSCAN – devoted to the exploration of the unknown insect diversity in and around the city of Los Angeles – the scientists at the Natural History Museum of Los Angeles County (USA) have already discovered numerous insects that are new to science, but they are still only guessing about the lifestyles of these species.

“Imagine trying to find a given 2 mm long fly in the environment and tracking its behavior: it is the smallest imaginable needle in the largest haystack. So when researchers discover new life histories, it is something worth celebrating,”

explains Dr. Brian Brown, lead author of a recent paper, published in the scholarly open-access Biodiversity Data Journal.

However, Brown and Maria Wong, former BioSCAN technician, while doing field work at the L.A. County Arboretum, were quick to reveal a curious peculiarity about one particular species discovered as part of the project a few years ago. They successfully lured female phorid flies by means of crushing tiny, invasive snails and using them as bait. In comparison, the majority of phorid flies, whose lifestyles have been observed, are parasitoids of social insects like ants.

Within mere seconds after the team crushed tiny invasive snails (Oxychilus draparnaudi), females representing the fly species Megaselia steptoeae arrived at the scene and busied themselves feeding. Brown and Wong then collected some and brought them home alive along with some dead snails. One of the flies even laid eggs. After hatching, the larvae were observed feeding upon the rotting snails and soon they developed to the pupal stage. However, none was reared to adulthood.

Female phorid fly feeding on a crushed Draparnaud’s glass snail
Photo by Kat Halsey

Interestingly, the host species – used by the fly to both feed on and lay eggs inside – commonly known as Draparnaud’s glass snail, is a European species that has been introduced into many parts of the world. Meanwhile, the studied fly is native to L.A. So far, it is unknown when and how the mollusc appeared on the menu of the insect.

To make things even more curious, species of other snail genera failed to attract the flies, which hints at a peculiar interaction worth of further study, point out the scientists behind the study, Brown and Jann Vendetti, curator of the NHM Malacology collection. They also hope to lure in other species of flies by crushing other species of snails.

***

In recent years, the BioSCAN project led to other curious discoveries from L.A., also published in Biodiversity Data JournalIn 2016, a whole batch of twelve previously unknown scuttle fly species was described from the heart of the city. A year later, another mysterious phorid fly was caught ovipositing in mushroom caps after Bed & Breakfast owners called in entomologists to report on what they had been observing in their yard.

Original source:

Brown BV, Vendetti JE (2020) Megaselia steptoeae (Diptera: Phoridae): specialists on smashed snails. Biodiversity Data Journal 8: e50943. https://doi.org/10.3897/BDJ.8.e50943

Research on bats and pangolins – potential vectors of zoonotic pandemics like COVID-19 – invited to a free-to-publish special issue in ZooKeys

Captively bred pangolins. 
Photo by Hua L. et al., taken from their study on the current status, problems and future prospects of captive breeding of pangolins, openly accessible in ZooKeys at: https://doi.org/10.3897/zookeys.507.6970

Accepted papers will be published free of charge in recognition of the emergency of the current global situation

Was it the horseshoe bat or could it rather be one of the most traded mammal in the world: the pangolin, at the root of the current devastating pandemic that followed the transmission of the zoonotic SARS-CoV-2 virus to a human host, arguably after infected animal products reached poorly regulated wet markets in Wuhan, China, last year? 

To make matters worse, the current situation is no precedent. Looking at the not so distant past, we notice that humanity has been repeatedly falling victim to viral deadly outbreaks, including Zika, Ebola, the Swine flu, the Spanish flu and the Plague, where all are linked to an animal host that at one point, under specific circumstances transferred the virus to people. 

Either way, here’s a lesson humanity gets to learn once again: getting too close to wildlife is capable of opening the gates to global disasters with horrific and irreversible damage on human lives, economics and ecosystems. What is left for us to understand is how exactly these transmission pathways look like and what are the factors making certain organisms like the bat and the pangolin particularly efficient vectors of diseases such as COVID-19 (Coronavirus). This crucial knowledge could’ve been easier for us to grasp had we only obtained the needed details about those species on time.

Aligning with the efforts of the biodiversity community, such as the recently announced DiSSCo and CETAF COVID-19 Task Force, who intend to create an efficient network of taxonomists, collection curators and other experts from around the globe and equip them with the tools and large datasets needed to combat the unceasing pandemic, the open-access peer-reviewed scholarly journal ZooKeys invites researchers from across the globe to submit their work on the biology of bats and pangolins to a free-to-publish special issue. 

The effort will be coordinated with the literature digitisation provider Plazi, who will extract and liberate data on potential hosts from various journals and publishers. In this way, these otherwise hardly accessible data will be re-used to support researchers in generation of new hypotheses and knowledge on this urgent topic.

By providing further knowledge on these sources and vectors of zoonotic diseases, this collection of publications could contribute with priceless insights to make the world better prepared for epidemics like the Coronavirus and even prevent such from happening in the future. 

Furthermore, by means of its technologically advanced infrastructure and services, including expedite peer review and publication processes, in addition to a long list of indexers and databases where publications are registered, ZooKeys will ensure the rapid publication of those crucial findings, and will also take care that once they get online, they will immediately become easy to discover, cite and built on by any researcher, anywhere in the world. 

***

The upcoming “Biology of bats and pangolins” special issue is to add up to some excellent examples of previous research on the systematics, biology and distribution of pangolins and bats published in ZooKeys

In their review paper from 2015, Chinese scientists looked into the issues and prospects around captive breeding of pangolins. A year later, their colleagues at South China Normal University provided further insights into captive breeding, in addition to new data on the reproductive parameters of Chinese pangolins.

Back in 2013, a Micronesian-US research studied the taxonomy, distribution and natural history of flying fox bats inhabiting the Caroline Islands (Micronesia). A 2018 joint study on bat diversity in Sri Lanka focused on chiropteran conservation and management; while a more recent article on the cryptic diversity and range extension of the big-eyed bats in the genus Chiroderma

***

For more information, visit ZooKeys website

Follow ZooKeys on Twitter and Facebook.

*** 

References:

Buden D, Helgen K, Wiles G (2013) Taxonomy, distribution, and natural history of flying foxes (Chiroptera, Pteropodidae) in the Mortlock Islands and Chuuk State, Caroline Islands. ZooKeys 345: 97-135. https://doi.org/10.3897/zookeys.345.5840

Edirisinghe G, Surasinghe T, Gabadage D, Botejue M, Perera K, Madawala M, Weerakoon D, Karunarathna S (2018) Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: insights for conservation and management. ZooKeys 784: 139-162. https://doi.org/10.3897/zookeys.784.25562

Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507: 99-114. https://doi.org/10.3897/zookeys.507.6970

Lim BK, Loureiro LO, Garbino GST (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). ZooKeys 918: 41-63. https://doi.org/10.3897/zookeys.918.48786

Zhang F, Wu S, Zou C, Wang Q, Li S, Sun R (2016) A note on captive breeding and reproductive parameters of the Chinese pangolin, Manis pentadactyla Linnaeus, 1758. ZooKeys 618: 129-144. https://doi.org/10.3897/zookeys.618.8886

Guest Blog Post: New Area of Importance for Bat Conservation in Honduras

The recognition of the “Ceguaca, la Mujer de los Juncos” locality comes as a result of research work – published last year in Subterranean Biology – which produced the first checklist of bats for Santa Bárbara


Guest blog post by Eduardo Javier Ordoñez-Trejo and Manfredo Alejandro Turcios-Casco


Bat populations are threatened due to fragmentation and loss of their habitats. Meanwhile, dry forests are some of the least studied and most threatened ecosystems in Honduras, and similarly, so have been the caves.

We had to walk at least two hours to reach either of the caves in El Peñon or Quita Sueño, so we would take our full equipment: for camping, cooking and studying bats.
Photo by Hefer Ávila

Caves are important reservoirs of species, as they offer perks no other habitat can provide at once: a refuge from predators, inconstant weather, and a critical venue for social interactions, reproduction, hibernation, roosting and nutrients. In order to protect bat populations, the Latin American and Caribbean Web for Bat Conservation (RELCOM) supports the establishment of Areas of Importance for the Conservation of Bats, abbreviated as AICOMS (Spanish for Areas with Importance for the Conservation of Bats) .

It was at least a two-hour walk between the caves of Monte Grueso and the caves of El Peñon. The final stint, though, included a swim across Rio Ulúa, one of most extensive rivers in Honduras.
Photo by Hefer Ávila

Together with biologists of the National Autonomous University of Honduras (UNAH) and local community members, we provided the first ever checklist of bat species in the Dry Forest of Ceguaca, Santa Barbara (Honduras), and described the importance of two caves in the area for bat conservation based on species richness. We published this study last June in Subterranean Biology.

The study is openly accessible in Subterranean Biology

We found that caves in Ceguaca are inhabited by at least 23 bat species of four families, which represents approximately a fifth of all species known from Honduras. Their inhabitants include several threatened species like the hairy-legged vampire bat (Diphylla ecaudata), one of the three existing vampire bats, and rare species with few official records in the area, such as Schmidts’s big-eared bat (Micronycteris schmidtorum). These caves may also represent a critical site for roosting and nursing. During our study, we managed to record pregnant and lactating females of several species, as well as reproductive males.

The certificate issued by RELCOM recognising the caves in Ceguaca as an Area of Importance for the Conservation of Bats, dated 6th March 2020

“It feels wonderful to see that our work has had great results and that with our efforts, we established an area where bats will be protected and studied. This certification also includes the name of Roberto Castellano, an elder member of the community of Ceguaca, who helped us during the fieldwork as our guide. He was a great conservationist of this area and protector of the caves. Unfortunately, he passed away during the study, however, due to his enormous contribution, we dedicated our article to him and included him as part of this AICOM success.”

José Alejandro Soler Orellana, co-author of the study.

Using what we learned in Ceguaca’s caves, we approached the Program for Bat Conservation of Honduras (PCMH) and showed them the evidence the locality was indeed a precious place with a spectacular bat diversity. Consequently, thanks to our collaboration with the PCMH, the site was effectively declared as an Area of Importance for the Conservation of Bats by RELCOM on 6th March 2020. 

This is an enormous step for bat conservation in the country. Bat conservation efforts should focus on studying and protecting these and other important habitats. We also need to make sure that local people appreciate the important role the bats play in the ecosystem.

A close up of a spider

Description automatically generated
We captured this adult Pallas’s long-tongued bat (Glossophaga soricina) female in a cave in Monte Grueso. She must have been returning to the cave after spending the day pollinating local plants. During these surveys, we found trees with opened flowers of Mexican calabash (Crescentia alata).
Photo by Hefer Ávila

***

Research article:

Turcios-Casco MA, Mazier DIO, Orellana JAS, Ávila-Palma HD, Trejo EJO (2019) Two caves in western Honduras are important for bat conservation: first checklist of bats in Santa Bárbara. Subterranean Biology 30: 41–55. https://doi.org/10.3897/subtbiol.30.35420

How quickly do flower strips in cities help the local bees?

Insects rely on a mix of floral resources for survival. Populations of bees, butterflies, and flies are currently rapidly decreasing due to the loss of flower-rich meadows. In order to deal with the widespread loss of fauna, the European Union supports “greening” measures, for example, the creation of flower strips.

A group of scientists from the University of Munich, led by Prof. Susanne S. Renner, has conducted the first quantitative assessment of the speed and distance over which urban flower strips attract wild bees, and published the results of the study in the open-access Journal of Hymenoptera Research.

Flower strips are human-made patches of flowering plants that provide resources for flower-visiting insects and insect- and seed-feeding birds. Previous experiments have proved their conservation value for enhancing biodiversity in agricultural landscapes.

The success of flower strips in maintaining populations of solitary bees depends on the floristic composition, distance from suitable nesting sites, and distance from other habitats maintaining stable populations of bees. To study the attractiveness of the flower strips in urban landscapes, the scientists used an experimental set-up of nine 1,000 sq. meters flower strips recently established in Munich by a local bird conservation agency.

“We identified and counted the bees visiting flowers on each strip and then related these numbers to the total diversity of Munich’s bee fauna and to the diversity at different distances from the strips. Our expectation was that newly planted flower strips would attract a small subset of mostly generalist, non-threatened species and that oligolectic species (species using pollen from a taxonomically restricted set of plants) would be underrepresented compared to the city’s overall species pool,”

shared Prof. Susanne S. Renner.

Bees need time to discover new habitats, but the analysis showed that the city’s wild bees managed to do that in just one year so that the one-year-old flower strips attracted one-third of the 232 species recorded in Munich between 1997 and 2017.

Surprisingly, the flower strips attracted a random subset of Munich’s bee species in terms of pollen specialization. At the same time, as expected, the first-year flower-strip visitors mostly belonged to common, non-threatened species.

The results of the study support that flower strip plantings in cities provide extra support for pollinators and act as an effective conservation measure. The authors therefore strongly recommend the flower strip networks implemented in the upcoming Common Agricultural Policy (CAP) reform in the European Union.

###

Original source:

Hofmann MM, Renner SS (2020) One-year-old flower strips already support a quarter of a city’s bee species. Journal of Hymenoptera Research 75: 87-95. https://doi.org/10.3897/jhr.75.47507