New to science New Zealand moths link mythological deities to James Cameron’s films

In an unexpected discovery from New Zealand, two species of narrowly distributed moths were described as new species. Interestingly, both Arctesthes titanica and Arctesthes avatar were named after mythological deities and top-grossing blockbusters by famous filmmaker James Cameron: Titanic and Avatar, respectively.


The newly described moth species Arctesthes avatar in its natural habitat (South Island, New Zealand). Photo by Brian Patrick.

In an unexpected discovery from the South Island (New Zealand), two species of narrowly distributed macro-moths were described as new species. Interestingly, both Arctesthes titanica and Arctesthes avatar were named after mythological deities and top-grossing blockbusters by famous filmmaker James Cameron: Titanic and Avatar, respectively.

Each of the newly described species are believed to be restricted to only a couple of subalpine/alpine localities. Therefore, they are particularly vulnerable to extinction and need to be “considered of very high priority for conservation”, point out New Zealand scientists Brian Patrick (Wildland Consultants Ltd), Hamish Patrick (Lincoln University) and Dr Robert Hoare (Manaaki Whenua-Landcare Researchin their paper in the open-access journal Alpine Entomology.


Male (left) and female (right) specimens of the newly described moth species Arctesthes titanica. Photo by Birgit Rhode.

Because of its relatively large size, one of the new discoveries: A. titanica, was named in reference to the Titans: the elderly gods in Greek mythology and the legendary, if ill-fated, record-breaking passenger ship ‘Titanic’, which became the subject of the famous 1997 American epic romance and disaster film of the same name. Unfortunately, the moth’s small wetland habitat is located in an area that is currently facing a range of damaging farming practices, such as over-sowing, grazing, stock trampling and vehicle damage.

On the other hand, A. avatar received its name after Forest & Bird, the New Zealand conservation organisation that was behind the 2012 BioBlitz at which the new species was collected, ran a public competition where “the avatar moth” turned up as the winning entry. The reference is to the indigenous people and fauna in Avatar. Just like them, the newly described moth is especially vulnerable to habitat change and destruction. In addition, the study’s authors note that the original avatars came from Hindu mythology, where they are the incarnations of deities, including Vishnu, for example, who would transform into Varaha the boar.

In conclusion, the scientists point out that future studies to monitor and further understand the fauna of New Zealand are of crucial importance for its preservation:

“Quantitative studies as well as work on life histories and ecology are particularly needed. Already one formerly common endemic geometrid species, Xanthorhoe bulbulata, has declined drastically and is feared possibly extinct: its life history and host-plant have never been discovered. Without further intensive study of the fauna of modified and threatened New Zealand environments, we will be unable to prevent other species slipping away.”

###

Original source:

Patrick BH, Patrick HJH, Hoare RJB (2019) Review of the endemic New Zealand genus Arctesthes Meyrick (Lepidoptera, Geometridae, Larentiinae), with descriptions of two new range-restricted species. Alpine Entomology 3: 121-136. https://doi.org/10.3897/alpento.3.33944

‘Insectageddon’ is ‘alarmist by bad design’: Scientists point out the study’s major flaws

Many insects species require pristine environments, including old-growth forests. Photo by Atte Komonen.

Earlier this year, a research article triggered a media frenzy by predicting that as a result of an ongoing rapid decline, nearly half of the world’s insects will be no more pretty soon

Amidst worldwide publicity and talks about ‘Insectageddon’: the extinction of 40% of the world’s insects, as estimated in a recent scientific reviewa critical response was published in the open-access journal Rethinking Ecology.

Query- and geographically-biased summaries; mismatch between objectives and cited literature; and misuse of existing conservation data have all been identified in the alarming study, according to Drs Atte Komonen, Panu Halme and Janne Kotiaho of the University of Jyväskylä (Finland). Despite the claims of the review paper’s authors that their work serves as a wake-up call for the wider community, the Finnish team explain that it could rather compromise the credibility of conservation science.

The first problem about the paper, titled “Worldwide decline of the entomofauna: A review of its drivers” and published in the journal Biological Conservation, is that its authors have queried the Web of Science database specifically using the keywords “insect”, “decline” and “survey”.

“If you search for declines, you will find declines. We are not questioning the conclusion that insects are declining,” Komonen and his team point out, “but we do question the rate and extent of declines.”

Many butterflies have declined globally. Scolitantides orion, for example, is an endangered species in Finland. Photo by Atte Komonen.

The Finnish research team also note that there are mismatches between methods and literature, and misuse of IUCN Red List categories. The review is criticised for grouping together species, whose conservation status according to the International Union for Conservation of Nature (IUCN) is Data Deficient with those deemed Vulnerable. By definition, there are no data for Data Deficient species to assess their declines.

In addition, the review paper is seen to use “unusually forceful terms for a peer-reviewed scientific paper,” as the Finnish researchers quote a recent news story published in The Guardian. Having given the words dramatic, compelling, extensive, shocking, drastic, dreadful, devastating as examples, they add that that such strong intensifiers “should not be acceptable” in research articles.

“As actively popularising conservation scientists, we are concerned that such development is eroding the importance of the biodiversity crisis, making the work of conservationists harder, and undermining the credibility of conservation science,” the researchers explain the motivation behind their response.

###

Original source:

Komonen A, Halme P, Kotiaho JS (2019) Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology 4: 17-19. https://doi.org/10.3897/rethinkingecology.4.34440

Star Wars and Asterix characters amongst 103 beetles new to science from Sulawesi, Indonesia

From left to right: Trigonopterus asterix, T. obelix and T. idefix, three newly described species from Sulawesi (Indonesia). Image by Alexander Riedel.

The Indonesian island of Sulawesi has been long known for its enigmatic fauna, including the deer-pig (babirusa) and the midget buffalo. However, small insects inhabiting the tropical forests have remained largely unexplored.

Such is the case for the tiny weevils of the genus Trigonopterus of which only a single species had been known from the island since 1885. Nevertheless, a recent study conducted by a team of German and Indonesian scientists resulted in the discovery of a total of 103 new to science species, all identified as Trigonopterus. The beetles are described in the open-access journal ZooKeys.

“We had found hundreds of species on the neighboring islands of New Guinea, Borneo and Java – why should Sulawesi with its lush habitats remain an empty space?” asked entomologist and lead author of the study Dr Alexander Riedel, Natural History Museum Karlsruhe (Germany).

In fact, Riedel knew better. Back in 1990, during a survey of the fauna living on rainforest foliage in Central Sulawesi, he encountered the first specimens that would become the subject of the present study. Over the next years, a series of additional fieldwork, carried out in collaboration with the Indonesian Institute of Sciences (LIPI), managed to successfully complete the picture.

“Our survey is not yet complete and possibly we have just scratched the surface. Sulawesi is geologically complex and many areas have never been searched for these small beetles,” said Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense (MZB), Indonesian Research Center for Biology.

Dense mountain forest of Central Sulawesi, where some of the new species have been found. Image by Alexander Riedel.

 

Why have all these beetles remained overlooked for so long?

Unlike the all-time favourite stag beetles or jewel beetles, tiny beetles that measure no more than 2-3 millimeters seem to have been attracting little interest from entomologists. Their superficial resemblance does not help identification either.

In fact, the modern taxonomic approach of DNA sequencing seems to be the only efficient method to diagnose these beetles. However, the capacity for this kind of work in Indonesia is very limited. While substantial evidence points to thousands of undescribed species roaming the forests in the region, there is only one full-time position for a beetle researcher at the only Indonesian Zoological Museum near Jakarta. Therefore, international collaboration is crucial.

103 newly discovered species of the genus Trigonopterus from Sulawesi. Image by Alexander Riedel.

103 beetle names

Coming up with as many as 103 novel names for the newly described species was not a particularly easy task for the researchers either. While some of the weevils were best associated with their localities or characteristic morphology, others received quite curious names.

A small greenish and forest-dwelling species was aptly named after the Star Wars character Yoda, while a group of three species were named after Asterix, Obelix and Idefix – the main characters in the French comics series The Adventures of Asterix. Naturally, Trigonopterus obelix is larger and more roundish than his two ‘friends’.

Other curious names include T. artemis and T. satyrus, named after two Greek mythological characters: Artemis, the goddess of hunting and nature and Satyr, a male nature spirit inhabiting remote localities.

Additionally, the names of four of the newly described beetles pay tribute to renowned biologists, including Charles Darwin (father of the Theory of Evolution), Paul D. N. Hebert (implementer of DNA barcoding as a tool in species identification) and Francis H. C. Crick and James D. Watson (discoverers of the structure of DNA).

 

Six-legged déjà vu

Back in 2016, in another weevil discovery, Dr Alexander Riedel and colleagues described four new species from New Britain (Papua New Guinea), which were also placed in the genus Trigonopterus. Similarly, no weevils of the group had been known from the island prior to that study. Interestingly, one of the novel species was given the name of Star Wars’ Chewbacca in reference to the insect’s characteristically dense scales reminiscent of Chewie’s hairiness. Again, T. chewbacca and its three relatives were described in ZooKeys.

The flightless beetle species Trigonopterus chewbacca, described as new to science in 2016. Image by Alexander Riedel.

 

On the origin of Trigonopterus weevils

Sulawesi is at the heart of Wallacea, a biogeographic transition zone between the Australian and Asian regions. The researchers assume that Trigonopterus weevils originated in Australia and New Guinea and later reached Sulawesi. In fact, it was found that only a few populations would one day diversify into more than a hundred species. A more detailed study on the rapid evolution of Sulawesi Trigonopterus is currently in preparation.

 

Future research

To help future taxonomists in their work, in addition to their monograph paper in ZooKeys, the authors have uploaded high-resolution photographs of each species along with a short scientific description to the website Species ID.

“This provides a face to the species name, and this is an important prerequisite for future studies on their evolution,” explained the researchers.

“Studies investigating such evolutionary processes depend on names and clear diagnoses of the species. These are now available, at least for the fauna of Sulawesi.”

###

Original Source:

Riedel A, Narakusumo RP (2019) One hundred and three new species of Trigonopterus weevils from Sulawesi. ZooKeys 828: 1-153. https://doi.org/10.3897/zookeys.828.32200

Non-native pest-controlling wasp identified in Canada prior to formal approval

A samurai wasp (Trissolcus japonicus) lays an egg inside a brown marmorated stink bug (Halyomorpha halys) egg. The samurai wasp’s offspring will develop inside the pest’s egg and emerge as an adult wasp. Photo by Warren Wong.

Thought to be Canada’s most promising potential defense against the brown marmorated stink bug – a globally spreading agricultural pest native to Asia – the samurai wasp (another species from Asia and natural parasitoid of the former) has been considered for future release in the country in recent years.

However, prior to any formal decision and regulatory approval, the parasitoid, which is known to be specialized on stink bug eggs, was identified at a heavily infested site in Chilliwack, British Columbia, during a survey of the local enemies of the bug, conducted by a research team led by Dr. Paul Abram of Agriculture and Agri-Food Canada. Their findings are published in the open-access Journal of Hymenoptera Research.

Native to China, Japan, Taiwan and the Korean peninsula, the brown marmorated stink bug (Halyomorpha halys) has already established in areas of the United States and Europe and continues to spread. It is highly damaging to a wide range of vegetable and fruit crops, including peaches, apples, pears, soybeans, cherries, raspberries and pears. Curiously, those infested areas in both the USA and Europe also saw the arrival of the samurai wasp (Trissolcus japonicus) amid assessments whether releasing samurai wasps in the wild should be warranted.

“Classical (importation) biological control of invasive pests, where natural enemies are imported and intentionally introduced from a pest’s area of origin, involves years of research to assess risks and benefits of proposed introductions, followed by regulatory approval,” explain the researchers in their paper.

“However, there is increasing recognition that unintentional introductions of natural enemies are probably common, introducing a high level of uncertainty to the regulatory process for biological control introductions.”

In two consecutive years (2017 and 2018), the team of Dr Abram placed a total of 1,496 egg masses (41,351 eggs) of brown marmorated stink bugs at 16 field sites in coastal and interior British Columbia – already known to host large and well-established breeding populations of the species – in order to monitor and identify the local enemies of the pest. Later on, when the researchers retrieved the eggs and studied their parasitoids, they found three native wasp species, but their parasitism appeared largely unsuccessful.

Female samurai wasp (Trissolcus japonicus) collected from Chilliwack, British Columbia. Photo by Elijah Talamas.

According to the scientists, as well as previous studies conducted in both the USA and Europe, native wasps would often lay their eggs in those of the brown marmorated stink bug, but their larvae would rarely complete development. Even when they emerged, they were unlikely to produce their own offspring.

In one of the egg masses, however, the scientists noted that all eggs had been parasitized and, moreover, each produced a viable wasp. Later, the offspring would register a success of >90% in parasitizing brown marmorated stink bug eggs. Following these observations, the team identified these parasitoids as samurai wasps.

While the species is currently being redistributed within some US states on purpose, samurai wasp populations advancing to other localities suggest that much like its host, the parasitoid is also becoming a “global invader”. Therefore, it is quite possible that the samurai wasps in British Columbia have simply crossed a distance of >400 km from nearby Washington State, and the wasp is still at the early stages of its establishment in Canada.

“Nonetheless, the detection of this exotic biological control agent in Canada concurrently with regulatory review of its intentional importation and release is emblematic of the current uncertainty around regulatory control on the movement of biological control agents across borders,” comment the authors of the study.

Field surveys and extensive analyses are currently underway to track the establishment and biological control impact of the samurai wasp in Canada and also reveal how the species ended up in British Columbia.

 

###

Original source:

Abram PK, Talamas EJ, Acheampong S, Mason PG, Gariepy TD (2019) First detection of the samurai wasp, Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), in Canada. Journal of Hymenoptera Research 68: 29-36. https://doi.org/10.3897/jhr.68.32203

Citizen scientists discover pinhead-sized beetle in Borneo

The discovery is the latest in a series of newly described species collected as part of the Taxon Expeditions initiative aiming to bring biodiversity and taxonomy closer to the layperson

How many citizen scientists does it take to discover a new species? A recent expedition to the Ulu Temburong forest in Borneo proved that you only need 10 enthusiasts with no professional training, yet fueled with curiosity and passion for the outdoors, to find a new beetle the size of a pinhead in leaf litter.

The newly discovered species of leaf beetle, Clavicornaltica belalongensis Photo by Taxon Expeditions – Pierre Escoubas.

The species, named Clavicornaltica belalongensis, is a tiny, 1.25-mm-long leaf beetle that eats moss on the forest floor. Published in the open-access Biodiversity Data Journal, it is the latest discovery from Taxon Expeditions, an initiative that organises scientific field trips to remote and biodiverse locations for teams of scientists and laypeople.

The Ulu Temburong forest, Borneo. Photo by Taxon Expeditions – Pierre Escoubas.

Unlike other science/adventure trips, Taxon Expeditions gives a unique opportunity for laypeople, or citizen scientists, to describe and publish new species of animals and focus on the thousands of ‘little things that run the world’. Thanks to the initiative, they learn about tropical biology techniques while participating in the process of taxonomy and the study of hidden biodiversity.

The new beetle, for example, is one of hundreds of thousands of tiny beetle species that inhabit the leaf litter of tropical forests and have remained unknown and scientifically unnamed up to our days.

In a YouTube video, Simon Berenyi, who joined the expedition along with his 14-year-old son, says: ‘I had no idea how special this would be; you become a student again – you become a child again.’

Entomologist and founder of Taxon Expeditions, Dr. Iva Njunjić explains: ‘We introduce the general public to all these tiny, beautiful, and completely unknown animals, and show them that there is a whole world still to be discovered.’

Last year, another survey in Borneo organised by Taxon Expeditions ended up with the description of a new water beetle species (Grouvellinus leonardodicaprioi). Named after famous Hollywood actor and environmentalist Leonardo DiCaprio. The discovery raised a real furore on the public scene, culminating in the new insect making an appearance on the profile image of the celebrity’s facebook page.

 

###

Original source:

Schilthuizen M, Berenyi A, Limin A, Brahim A, Cicuzza D, Eales A, Escoubas P, Grafe U, de Groot M, Hayden W, Paterno M, Jambul R, Slik J, Ting Teck Wah D, Tucker A, Njunjić I (2019) A new species of Clavicornaltica (Coleoptera: Chrysomelidae), discovered and described on a field course to Kuala Belalong, Brunei. Biodiversity Data Journal 7: e32555. https://doi.org/10.3897/BDJ.7.e32555

The first case of a Portuguese beetle living exclusively in groundwater

New to science, the species was named after Pluto, the ruler of the underworld in Greek mythology

A diving beetle demonstrating various adaptations to the life underground, including depigmentation and evolutionary loss of eyes, was discovered at the bottom of a clay pound in the cave Soprador do Carvalho, Portugal. The species turned out to be the very first in the whole order of beetles (Coleoptera) to be known exclusively from the underground waters of the country.

The Soprador do Carvalho cave (Portugal) is the type locality of the newly described species Iberoporus pluto. Photo by Ignacio Ribera.

Despite not being able to find any other specimens during their study – save for the single female, the team of Dr Ignacio Ribera, Institute of Evolutionary Biology (Spain) and Prof Ana Sofia P. S. Reboleira, University of Copenhagen (Denmark) identified the beetle as new to science, thanks to its unambiguous morphology in combination with molecular data.

Profile view of the newly described species Iberoporus pluto. Photo by Ignacio Ribera.

Aptly named Iberoporus pluto in reference to the ruler of the underworld in Greek mythology Pluto, the species was recently described in the open-access journal ZooKeys.

With a uniformly pale orange body measuring 2.8 mm in length and 1.1 mm in its widest part, the beetle is larger than the rest species known in its genus, and its appendages are longer and more slender. While blindness and depigmentation are clear adaptation to life away from sunlight, the elongated limbs and antennae reflect poor swimming abilities needed in a subterranean habitat. Going for 4 km in horizontal direction, Soprador do Carvalho is the largest in the Dueça cave system, located in the north-eastern part of the Sicó karst area in central Portugal. In recent years, the cave is being explored for tourism.

“The knowledge of the subterranean fauna from Portugal has significantly increased over the last decade, with the description of a high number of obligate subterranean species (tripling their number) and the establishment of new biogeographic patterns,” explain the authors of the study. “A high number of these species are stygobiont (i.e. confined to groundwater), mostly from wells in the north of the country, where evapotranspiration is higher.”

###

Original source:

Ribera I, Reboleira ASPS (2019) The first stygobiont species of Coleoptera from Portugal, with a molecular phylogeny of the Siettitia group of genera (Dytiscidae, Hydroporinae, Hydroporini, Siettitiina). ZooKeys 813: 21-38. https://doi.org/10.3897/zookeys.813.29765

Austrian-Danish research team discover as many as 22 new moth species from across Europe

The last time so many previously unknown moths have been discovered at once in the best-studied continent was in 1887

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

Following a long-year study of the family of twirler moths, an Austrian-Danish research team discovered a startling total of 44 new species, including as many as 22 species inhabiting various regions throughout Europe.

Given that the Old Continent is the most thoroughly researched one, their findings, published in the open access journal ZooKeys, pose fundamental questions about our knowledge of biodiversity. Such wealth of new to science European moths has not been published within a single research article since 1887.

“The scale of newly discovered moths in one of the Earth’s most studied regions is both sensational and completely unexpected,” say authors Dr Peter Huemer, Tyrolean State Museum, and Ole Karsholt of the University of Copenhagen‘s Zoological Museum. To them, the new species come as proof that, “despite dramatic declines in many insect populations, our fundamental investigations into species diversity are still far from complete”.

 

The challenge of taxonomy

Type locality of the new moth species Megacraspedus faunierensis, Cottian Alps, Italy.

For the authors, it all began when they spotted what seemed like an unclassifiable species of twirler moth in the South Tyrolean Alps. In order to confirm it as a new species, the team conducted a 5-year study into the type specimens of all related species spread across the museum collections of Paris, London, Budapest and many in between.

To confirm the status of all new species, the scientists did not only look for characteristic colouration, markings and anatomical features, but also used the latest DNA methods to create unique genetic fingerprints for most of the species in the form of DNA barcodes.

 

What’s in a name?

A particular challenge for the researchers was to choose as many as 44 names for the new species. Eventually, they named one of the species after the daughter of one of the authors, others – after colleagues and many others – after the regions associated with the particular species. Megacraspedus teriolensis, for example, is translated to “Tyrolean twirler moth”.

Amongst the others, there is one which the scientists named Megacraspedus feminensisbecause they could only find the female, while another – Megacraspedus pacificus, discovered in Afghanistan – was dubbed “an ambassador of peace”.

 

Mysterious large twirler moths

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

All new moths belong to the genus of the large twirler moths (Megacraspedus) placed in the family of twirler moths (Gelechiidae), where the common name refers to their protruding modified mouthparts (labial palps).

The genus of the large twirler moths presents an especially interesting group because of their relatively short wings, where their wingspan ranges between 8 and 26 millimetres and the females are often flightless. While it remains unknown why exactly their wings are so reduced, the scientists assume that it is most likely an adaptation to the turbulent winds at their high-elevation habitats, since the species prefer mountain areas at up to 3,000 metres above sea level.

Out of the 85 documented species, however, both sexes are known in only 35 cases.

The scientists suspect that many of the flightless females are hard to spot on the ground. Similarly, caterpillars of only three species have been observed to date.

While one of the few things we currently know about the large twirler moths is that all species live on different grasses, Huemer and Karsholt believe that it is of urgent importance to conduct further research into the biology of these insects, in order to identify their conservation status and take adequate measures towards their preservation.

###

Original source:

Huemer P, Karsholt O (2018) Revision of the genus Megacraspedus Zeller, 1839, a challenging taxonomic tightrope of species delimitation (Lepidoptera, Gelechiidae). ZooKeys 800: 1-278. https://doi.org/10.3897/zookeys.800.26292

Advanced computer technology & software turn species identification interactive

Important group of biocontrol wasps from Central Europe are used to demonstrate the perks and advantages of modern, free-to-use software

Representing a group of successful biocontrol agents for various pest fruit flies, a parasitic wasp genus remains largely overlooked. While its most recent identification key dates back to 1969, many new species have been added since then. As if to make matters worse, this group of visually identical species most likely contains many species yet to be described as new to science.

Having recently studied a species group of these wasps in Central Europe, scientists Fabian Klimmek and Hannes Baur of the Natural History Museum Bern, Switzerland, not only demonstrate the need for a knowledge update, but also showcase the advantages of modern taxonomic software able to analyse large amounts of descriptive and quantitative data.

Published in the open access Biodiversity Data Journal, the team’s taxonomic paper describes a new species – Pteromalus capito – and presents a discussion on the free-to-use Xper3, developed by the Laboratory of Informatics and Systematics of Pierre-and-Marie-Curie University. The software was used to create an openly available updated key for the species group Pteromalus albipennis.

The fully illustrated interactive database covers 27 species in the group and 18 related species, in addition to a complete diagnosis, a large set of body measurements and a total of 585 images, displaying most of the characteristic features for each species.

“Nowadays, advanced computer technology, measurement procedures and equipment allow more sophisticated ways to include quantitative characters, which greatly enhance the delimitation of cryptic species,” explain the scientists.

“Recently developed software for the creation of biological identification keys like Xper3, Lucid or Delta could have the potential to replace traditional paper-based keys.”

To put the statement into context, the authors give an example with one of the studied wasp species, whose identification would take 16 steps if the previously available identification key were used, whereas only 6 steps were needed with the interactive alternative.

One of the reasons tools like Xper3 are so fast and efficient is that the key’s author can list all descriptive characters in a specific order and give them different weight in species delimitation. Thus, whenever an entomologist tries to identify a wasp specimen, the software will first run a check against the descriptors at the top, so that it can exclude non-matching taxons and provide a list of the remaining names. Whenever multiple names remain, a check further down the list is performed, until there is a single one left, which ought to be the one corresponding to the specimen. At any point, the researcher can access the chronology, in order to check for any potential mismatches without interrupting the process.

Being the product of digitally available software, interactive identification keys are not only easy, quick and inexpensive to publish, but they are also simple to edit and build on in a collaborative manner. Experts from all around the world could update the key, as long as the author grants them specific user rights. However, regardless of how many times the database is updated, a permanent URL link will continue to provide access to the latest version at all times.

To future-proof their key and its underlying data, the scientists have deposited all raw data files, R-scripts, photographs, files listing and prepared specimens at the research data Zenodo, created by OpenAIRE and CERN.

###

Original source:

Klimmek F, Baur H (2018) An interactive key to Central European species of the Pteromalus albipennis species group and other species of the genus (Hymenoptera: Chalcidoidea: Pteromalidae), with the description of a new species. Biodiversity Data Journal 6: e27722. https://doi.org/10.3897/BDJ.6.e27722

Large-sized fossilised lacewings prove remarkable species diversity during Middle Jurassic

Middle Jurassic has always been considered as a mysterious ancient period full of ‘magical’ dinosaurs, pterosaurs and plants. However, when we think about the Jurassic landscape, we should take insects into consideration as well.

The lacewings, for example, are a graceful group famous for the lovely net-like veins on their wings, beautiful enough to stand the test of time, preserved as fossils. In addition, the wing spots on their wings form various patterns, which serve to tell us more about their adaptation to the particular environment.

Having carefully studied several pieces of compressed fossils of the large and distinct insects they found in Dohugou village, Inner Mongolia, Chinese scientists Hui Fang, Dong Ren, Jiaxi Liu and Yongjie Wang, College of Life Science, Capital Normal University, Beijing, discovered two species new to science.

Due to their complex, one-of-a-kind wing venations, all three of them were placed in the same genus (Laccosmylus) in the family Saucrosmylidae. Their descriptions, along with the redescription of another previously known species, are published in the open access journal ZooKeys.

“Fossil lacewing insects are much more abundant compared to living ones,” comment the authors.

“These large-sized fossil lacewing species reflect a high lacewing diversity in Middle Jurassic. Soon, they will help us reconstruct the wonderful environment of the Jurassic world.”

***

Original source:

Fang H, Ren D, Liu J, Wang Y (2018) Revision of the lacewing genus Laccosmylus with two new species from the Middle Jurassic of China (Insecta, Neuroptera, Saucrosmylidae). ZooKeys 790: 115-126. https://doi.org/10.3897/zookeys.790.28286

The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195