The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195

A Bed & Breakfast in L.A. reveals the lifestyle of a secretive fly species

For nearly 30 years, Dr. Brian Brown knew about a mysterious unidentified phorid fly species, whose females would often be spotted flying above mushrooms, while the males were nowhere to be found.

Little did anyone know that this years-long puzzle would be solved once and for all after a surprising call came in earlier this year, in April.

Los Angeles Bed & Breakfast owners Patsy Carter and Lisa Carter-Davis had decided to alert entomologists about the newly emerged numerous mushrooms in their yard.

The study is published in the open access Biodiversity Data Journal by Dr. Brian Brown and his colleague at the Natural History Museum of Los Angeles County, Emily A. Hartop. It is the latest in a series of publications resulting from the extensive BioScan Project, which surveys the biodiversity in the Los Angeles area and was launched in 2012 by the NHMLA.

It turned out that these mushrooms were hosting the mysterious flies. Females were ovipositing in the mushroom caps with the larvae subsequently developing and feeding on the lower surface of the fungi, deep within the gills. Later, the larvae would exit the mushroom to pupate into the soil underneath before emerging as adults.

Most importantly, the team managed to collect specimens of the previously unknown males, which allowed them to successfully identify the mysterious species as Megaselia marquezi. Over the span of the BioScan Project, the species had already been known to be the sixth most commonly collected one around Los Angeles, yet its lifestyle has remained a secret until now.

“About 100 species, mostly of Megaselia, are known from Los Angeles, but many were new to science and had nothing known of their lifestyle,” explain the authors. “Matching a lifestyle with a species previously known only from a name is a significant accomplishment.”

They also noted that, “We can do great things with the help of citizen scientists, who extend our reach into urban areas that are generally off-limits”.

“Possibly, the widespread irrigation of lawns allows fungal growth that supports an abundant fungivore community, but our ignorance of the fauna of the surrounding natural areas makes such statements highly speculative.”

###

Original source:

Brown B, Hartop E (2017) Mystery mushroom malingerers: Megaselia marquezi Hartop et al. 2015 (Diptera: Phoridae). Biodiversity Data Journal 5: e15052. https://doi.org/10.3897/BDJ.5.e15052

The ‘Star dust’ wasp is a new extinct species named after David Bowie’s alter ego

During her study on fossil insects of the order Hymenoptera at China’s Capitol Normal University, student Longfeng Li visited the Smithsonian National Museum of Natural History, Washington, carrying two unidentified wasp specimens that were exceptionally well-preserved in Burmese amber. This type of fossilized tree resin is known for the quality of the fossil specimens which can be preserved inside it. Being 100 million years old, they provide an incredible view into the past.

The subsequent analysis of the specimens revealed that both represent species new to science. Furthermore, one of the wasps showed such amazing similarities to a modern group of wasps that it was placed in a currently existing genus, Archaeoteleiawhich has long been considered as an ancient lineage. The species are described in a study published in the open access Journal of Hymenoptera Research.

However, Archaeoteleia has changed since the times when the ancient wasp got stuck on fresh tree resin. The authors note that “a novice might not recognize the characters that unite the fossil with extant species”. For instance, the modern wasp species of the genus show visibly longer antennal segments and a different number of teeth on the mandible when compared to the fossil. In turn, the description of the new extinct species enhances the knowledge about living species by highlighting anatomical structures shared by all species within the genus.

This fossil wasp with living relatives received quite a curious name, Archaeoteleia astropulvis. The species name, astropulvis, translates from Latin to ‘star dust’. The discoverers chose the name to refer to both “the ancient source of the atoms that form our planet and its inhabitants”, as well as to commemorate the late David Bowie’s alter ego – Ziggy Stardust.

Unlike the Star dust wasp, the second new species belongs to a genus (Proteroscelio) known exclusively from Cretaceous fossils. Likewise, it is a tiny insect, measuring less than 2mm in length. It also plays an important role in taxonomy by expanding the anatomical diversity known from this extinct genus.

10388_Proteroscelio nexus

The authors conclude that their discovery, especially the Star dust wasp and its placement in an extant genus, where it is the only fossil species, “exemplifies the importance of understanding the extant fauna of a taxon to interpret fossils”.

“Such union of fossil and extant morphologies is especially illuminating and requires examination of both kinds of specimens,” they add.

###

Original source:

Talamas EJ, Johnson NF, Buffington ML, Dong R (2016) Archaeoteleia Masner in the Cretaceous and a new species of Proteroscelio Brues (Hymenoptera, Platygastroidea). In: Talamas EJ, Buffington ML (Eds) Advances in the Systematics of Platygastroidea. Journal of Hymenoptera Research 56: 241-261. https://doi.org/10.3897/jhr.56.10388

The Radiohead ant: A new species of ‘silky’ ant grows fungus gardens for food

The ants of the genus Sericomyrmex – literally translated as ‘silky ants’ – belong to the fungus-farming ants, a group of ants that have figured out how to farm their own food. The silky ants are the less well-known relatives of the famous leaf-cutter ants – well-studied, photogenic model organisms that you simply cannot avoid if you take a trip to the Neotropics.

For their study, now published in ZooKeys, Ana Ješovnik and Ted R. Schultz from the Smithsonian Institution‘s Ant Lab in Washington, D.C., collected silky ants from across their entire range in Central and South America, and revised the genus based on DNA sequence data and morphology. In the end, they turned out to have discovered three new species.

One of those species, Sericomyrmex radioheadi, collected in the Venezuelan Amazon, was named after the famous British music band Radiohead.

Image3“We wanted to honor their music” one of the authors, Ana Ješovnik, says. “But more importantly, we wanted to acknowledge the conservation efforts of the band members, especially in raising climate-change awareness. ”

Using a scanning electron microscope, the authors found that the bodies of the ants are covered with a white, crystal-like layer. Curiously, this previously unknown layer is present in female ants (both workers and queens), but is entirely absent in males. Both the chemical composition and the function of this layer are unclear.

One possibility is that the layer is microbial in origin and that it has a role in protecting the ants and their gardens from parasites. This is interesting, because most of the fungus-farming ants cultivate antibiotic-producing bacteria on their bodies to protect their gardens from microbial weeds. In the meantime, in Sericomyrmex these bacteria are absent, yet their gardens are also parasite-free. Figuring out if this crystal-like layer has a role in protecting these ants’ fungus gardens might provide clues for managing diseases in human agriculture and medicine.

At only four million years, Sericomyrmex is an evolutionary youngster, the most recently evolved genus of fungus-farming ants, and an example of rapid radiation – comparable to other fast-evolving groups, such as the freshwater fishes in Africa, or the Hawaiian fruit flies.

Rapid radiation is a process in which organisms diversify quickly into a multitude of forms, making these ants good candidates for studies into speciation and evolution. In the present article, the authors acknowledge that some of the species they describe might, in fact, be multiple species that look alike, but because the ants are in the early stages of speciation, this is hard to detect.

###

Original source:

Ješovnik A, Schultz TR (2017) Revision of the fungus-farming ant genus Sericomyrmex Mayr(Hymenoptera, Formicidae, Myrmicinae). ZooKeys 670: 1-109. https://doi.org/10.3897/zookeys.670.11839

Of Star Trek, Mark Twain and helmets: 15 new species of wasps with curious names

A total of fifteen new species of parasitic wasps have been described from across the Neotropical region. Apart from belonging to a peculiar group of wasps distinct with large and elongated bodies, the new insects also draw attention with the curious names they have been formally assigned with.

Among them, there are species named after characters from the television series Star Trek and Mark Twain’s The Prince and the Pauper, and five wasps bearing species names all translating to ‘helmet’. The study, conducted by graduate student Katherine C. Nesheim and Dr. Norman F. Johnson, both affiliated with the Ohio State University, USA, and Dr. Lubomír Masner, Agriculture and Agri-Food Canada, is published in the open access journal ZooKeys.

The larvae of the studied wasps parasitise the eggs of lanternflies and planthoppers. These species inhabit exclusively the Neotropical region, with their range stretching from the Isthmus of Tehuantepec in the north to Misiones in southern Paraguay. Despite being quite abundant in the region, these insects have remained under-researched until recently.

One of the newly discovered wasp is named Phanuromyia odo, where the species name odo refers to the Star Trek: Deep Space Nine fictional character of the same name. In the popular sci-fi television series, Odo belongs to a species of shapeshifters called Changelings. The reason for the scientists to associate the parasitoid with the character is the spectacular variability observed within the insect species. In fact, it was this peculiarity that, at some point, led the entomologists believe they were dealing with two separate species.

P_pauper
Phanuromyia pauper

The authors do not make a clear statement that the new species P. pauper has a name inspired by the famous novel The Prince and the Pauper by Mark Twain. Instead, they justify their choice with the fact that the species lacks a specific morphological feature – thus making it ‘poor’. On the other hand, the authors confirm that the new species called P. princeps is of ‘blue blood’ indeed, having its name derive from the other main character of the same book. Furthermore, both species are reported to look a lot like each other.

P_princeps
Phanuromyia princeps

Among the curious names in the list of new species, there are also five wasps whose scientific names all translate to ‘helmet’ in three different languages – Greek, Latin and Old Norse. The reason behind is that they have unusually large heads, which reminded the scientists of a “knight wearing a helmet”. Likewise, a related species received a name that in Latin means ‘wearing a hood’.

There is also a species, whose name means ‘having long hair’, and another called ‘constellation’ in Latin.

###

Original source:

Nesheim KC, Masner L, Johnson NF (2017) The Phanuromyia galeata species group (Hymenoptera, Platygastridae, Telenominae): shining a lantern into an unexplored corner of Neotropical diversity. ZooKeys 663: 71-105. https://doi.org/10.3897/zookeys.663.11554

New species of parasitic wasp named after ancient god of evil Set shows wicked behavior

Being able to manipulate its host’s behavior while growing inside of it, a new species of parasitic wasp seems to have deservedly received the name of the ancient Egyptian god of evil and chaos Set. Discovered in the southeastern United States, the new species, also called the crypt-keeper wasp, parasitizes crypt gall wasps, which in turn infest live oak. The research team led by Dr. Scott P. Egan of Rice University published their discovery in the open access journal ZooKeys.

Once parasitized, the crypt gall wasp cuts a hole through the gall it has built around itself, and plugs its head in it right before being killed. Meanwhile, the larva of the crypt-keeper wasp feeds, grows, and pupates on the insides of its host. As soon as it is ready to emerge as an adult, it takes a ‘shortcut’ out of the crypt gall straight through the head capsule of its prey, leaving chunks of exoskeleton behind in the ‘crypt’. The team has published a parallel paper (Weinersmith et al. 2017) documenting this manipulation and exploring the fitness benefit to E. set in the journal Proceedings of the Royal Society B.

To justify the comparison between the new wasp and Set, the scientists point out that the deity is said to have control on evil animals, such as hyenas and serpents. Furthermore, according to the ancient Egyptian mythology, he trapped his good-hearted brother Osiris in a crypt and killed him. Then, he chopped his body into small pieces and scattered them all over the world.

The new wasp, described under the name Euderus set belongs to a genus of approximately 77 species with a cosmopolitan distribution. The species is a tiny insect measuring between 1.2 and 2.3 mm in length, but under a microscope, it is one of the most colorful. Its colors are shiny metallic, varying from olive green to turquoise to iridescent blue, depending on lighting and age. Originally discovered near Inlet Beach, Florida, it has now been found across the U.S. Gulf coast, including sites in Georgia, Florida, Mississippi, Louisiana, and Texas.

###

Original source:

Egan SP, Weinersmith KL, Liu S, Ridenbaugh RD, Zhang MY, Forbes AA (2017) Description of a new species of Euderus Haliday from the southeastern United States (Hymenoptera, Chalcidoidea, Eulophidae): the crypt-keeper wasp. ZooKeys 645: 37-49. https://doi.org/10.3897/zookeys.645.11117

Assassins on the rise: A new species and a new tribe of endemic South African robber flies

Discovery of a new species of assassin flies led to the redescription of its genus. This group of curious predatory flies live exclusively in South Africa, preferring relatively dry habitats. Following the revisit, authors Drs Jason Londt, KwaZulu-Natal Museum, South Africa, and Torsten Dikow, Smithsonian Institution National Museum of Natural History, USA, publish updated information about all species within the genus, now counting a total of seven species, and also establish a new tribe. Their study is published in the open access journal African Invertebrates.

The family of assassin flies (Asilidae), also known as robber flies, are curious insects, which have received their common name due to their extremely predatory behavior. The assassin flies prey on a great variety of insects, including beetles, moths, butterflies, wasps, other flies, as well as some spiders, as early as their juvenile stage of development. When hunting, they would ambush their prey and catch it in flight. Then, they would pierce the victim with a short and strong proboscis, while injecting venom. Once in the body of the prey, it quickly dissolves the insides, so that the assassin fly can suck them out.

The published study was spawned by the collection of new specimens of previously described assassin flies of the species Trichoura tankwa by the junior author in December 2015. These specimens could not be easily identified and so the authors started to look at all available specimens in natural history museums.

image-2The new species, called Trichoura pardeos, was discovered in Tierberg Nature Reserve by the authors in 2004, a small conservation area located on the north banks of the Gariep River in the Northern Cape province of South Africa. The habitat comprises almost entirely a large rocky hill, where the vegetation is scarce and dominated by drought-resistant plants, such as aloes. The fly is predominantly red-brown in colour, with silvery, white and yellowish markings.

Having noted morphological variation between the species inhabiting areas with differently timed yearly rainfalls, the entomologists suggest that two groups within the studied genus have adapted to these different patterns in western and eastern South Africa. They also expect that species representing Trichoura could be also dwelling in Namibia, Botswana, Mozambique and possibly Zimbabwe.

###

Original source:

Londt J, Dikow T (2016) A review of the genus Trichoura Londt, 1994 with the description of a new species from the Northern Cape Province of South Africa and a key to world Willistonininae (Diptera, Asilidae). African Invertebrates 57 (2): 119-135. https://doi.org/10.3897/AfrInvertebr.57.10772

Mayflies of Turkey: Two new records for the country species and an annotated catalogue

Mayflies (the insect order Ephemeroptera) are a fascinating group, which represents the oldest winged insects, estimated to have been existing on the Earth since the lower Carboniferous, or, approximately for 350 million years. They are characterized by exclusively aquatic larvae, a unique fully winged subimaginal stage (the stage right before the young mayfly transforms into a sexually mature adult) and, typically, rather short life as an adult.

While identification has generally been considered difficult, and good research collections are to be found in relatively few specialised institutions, three biologists from Turkey and Austria have recently concluded a review of the Turkish mayfly fauna, in which they also add two species newly recorded from the country.

They also list 157 mayfly taxa representing 33 genera and 14 families, including 24 species considered endemic to Anatolia. With their annotated overview of the present state of knowledge concerning mayflies in Turkey, the authors aim to facilitate future research.

Synthesis of all previous records of mayflies from Turkey together with new records, a map of provinces and pertinent literature, are all included in the latest paper published by scientists Dr Ali Salur, Hitit University, Çorum, Turkey, Dr Mustafa Cemal Darilmaz, Aksaray University, Aksaray, Turkey, and Dr Ernst Bauernfeind, Natural History Museum Vienna, Austria, in the open access ZooKeys.

The data in the review are based on a detailed study of literature on Ephemeroptera in Turkey as well as on hitherto unpublished material housed in the Natural History Museum Vienna. Unpublished theses have not been considered. By 2015, there have been well over 70 scientific papers and books published on Ephemeroptera in Turkey from both Turkish and foreign researchers.image-2-collected-in-1863-rhithrogena-tibialis-syntype-male-imago-natural-history-museum-vienna

Distribution of species-group taxa in Turkey have been listed and referenced according to publication dates. National distribution records (without specific data at least on province level) have been listed under ‘Turkey’. Type locality of species were only provided if the taxon had originally been based on material from Turkey. Remarks on different taxonomic opinions and nomenclature have been added under ‘Comment’ whenever appropriate.

Websites http://www.faunaturkey.com and http://www.faunaturkey.org (launched in 2013) are meant to contribute more information on research about the fauna of Turkey. The data provided in the present study will also be added to the websites following publication.

###

Original source:

Salur A, Darilmaz MC, Bauernfeind E (2016) An annotated catalogue of the mayfly fauna of Turkey (Insecta, Ephemeroptera). ZooKeys 620: 67-118. doi: 10.3897/zookeys.620.9405

Flying jewels spell death for tarantulas: Study of a North American spider fly genus

Spider flies are usually a rarely encountered group of insects, except in Western North America, where the North American jewelled spider flies (the Eulonchus genus) can be locally abundant in mountainous areas such as the Sierra Nevada of California. The brilliantly coloured adults (also known as ‘sapphires’ and ’emeralds’) are important pollinators of flowers.

The North American jewelled spider flies typically have large rounded bodies covered with dense hairs and metallic green to blue or even purple colouration, giving them a jewel-like appearance. Together, the elongated mouthparts, the metallic coloration and the eyes, covered with soft hairs, immediately set these flies apart from any other group of tarantula fly. The mouthparts are greatly elongated to help them feed on nectar from the flowers of more than 25 different plant families and 80 species.

However, their larvae are more insidious, seeking out and inserting themselves into tarantula hosts and slowly eating away their insides until they mature and burst out of the abdomen, killing the spider, and leaving behind only the skin. Once they have emerged from the host, they pupate to develop into adults.

image-1In the present study, published in the open access journal ZooKeys, six species of the genus are recognized in North America, including one from the Smokey Mountains, and five from the West, ranging from Mexico to Canada. Drs Christopher J. Borkent and Shaun L. Winterton, and PhD student Jessica P. Gillung, all affiliated with the California State Collection of Arthropods, USA, have redescribed all of them using cybertaxonomic methods of natural language description. A phylogenetic tree of the relationships among the species is also presented.

The examined individuals include many from the collection amassed by the late Dr. Evert Schlinger (1928-2014) over the span of more than 60 years. Today, the collection resides at the California Academy of Sciences (CAS). “Dr. Evert I. Sclinger was a world renowned expert on spider fly taxonomy and biology,” write the authors in the paper, which they dedicate to the scientist and his legacy.

All of the studied flies are relatively widely distributed, and locally abundant, except for a single species (E. marialiciae), which is known from only a few specimens, collected within a small contiguous area in the Great Smoky Mountains. However, the scientists suggest that future studies are needed to explore whether this is actually their full range.

###

Original source:

Borkent CJ, Gillung JP, Winterton SL (2016) Jewelled spider flies of North America: a revision and phylogeny of Eulonchus Gerstaecker (Diptera, Acroceridae). ZooKeys 619: 103-146. doi: 10.3897/zookeys.619.8249

More assassins on the radar: As many as 24 new species of assassin bugs described

As many as 24 assassin bugs new to science were discovered and described by Dr. Guanyang Zhang and his colleagues. In their article, published in the open access Biodiversity Data Journal, they describe the new insects along with treating another 47 assassin bugs in the same genus. To do this, the scientists examined more than 10,000 specimens, coming from both museum collections and newly undertaken field trips.

Assassin bugs are insects that prey upon other small creatures, an intriguing behavior that gives the common name of their group. There are some 7000 described species of assassin bugs, but new species are still being discovered and described every year.

The new species described by scientists Drs Guanyang Zhang, University of California, Riverside, and Arizona State University, Elwood R. Hart, Iowa State University, and Christiane Weirauch, University of California, Riverside, belong to the assassin bug genus Zelus.

Linnaeus, the Swedish scientist, who established the universally used Linnean classification system, described the first species (Zelus longipes) of Zelus in 1767. Back then, he placed it in the genus Cimex, from where it was subsequently moved to Zelus. All of Zhang & Hart’s new species are from the Americas. Mexico, Panama, Peru, Colombia and Brazil are some of the top countries harboring new species.

To conduct the research, Zhang examined more than 10,000 specimens and nearly all of them have been databased. These specimen records are now freely and permanently available to everybody. Zhang’s work demonstrates the value of natural history collections. The specimens used in his work come from 26 museums in nine countries. The discovery of the new species would not have been possible without these museums actively collecting and maintaining their insect collections.

It took more than a century for some of the new species to be formally recognized and described. The first specimens of the species Zelus panamensis and Zelus xouthos, for example, had been collected in 1911 and 1915 from Panama and Guatemala. However, since then they had been waiting quietly in the collection of the Smithsonian National Museum of Natural History, USA. Now, over 100 years later, they are finally discovered and given scientific names.

Meanwhile, more recently collected specimens also turned out to be new species. Specimens of Zelus lewisi and Zelus rosulentus were collected in 1995 and 1996 from Costa Rica and Ecuador, about two decades ago, a timeframe considered relatively short for taxonomic research. These interesting patterns of time lapse between specimen collecting and scientific description suggest that it is equally important to examine both long deposited in museums specimens and those newly collected from the field.

The kind of research performed by Zhang and his colleagues is called revisionary taxonomy. In revisionary taxonomy a researcher examines a large number of specimens of a group of organisms of his or her interest. This can be either a monophyletic lineage or organisms from a particular region. The scientist’s goal is to discover and describe new species, but also examine and revise previously published species.

Besides describing new species, the present taxonomic monograph treats another 47 previously described species. Nearly all species now have images of both males and females and illustrations of male genitalia. Some of these insects are strikingly brightly colored and some mimic wasps.

###

 

Original source:

Zhang G, Hart E, Weirauch C (2016) A taxonomic monograph of the assassin bug genusZelusFabricius (Hemiptera: Reduviidae): 71 species based on 10,000 specimens. Biodiversity Data Journal 4: e8150.doi: 10.3897/BDJ.4.e8150