New methods needed to boost success of Classical Biological Control to fight insect pests

The success of Classical Biological Control in the Western Paleartic ecozone is rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases

A CABI-led study has revealed that the success of Classical Biological Control (CBC) in Europe, North Africa and the Middle East is only rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases.

The research – published in the journal NeoBiota – suggests that the overall success of biological control introductions of insect predators and parasitoids against herbivorous insects in the Western Paleartic ecozone is comparable to the success of CBC worldwide. However, over 100 years of CBC in this region, has resulted in no overall rise in success in the fight against insect pests – including those of crops such as citrus, olive, potato, mulberry and various other fruits.

An illustration of a case of biological control of the Comstock mealybug Pseudococcus comstocki with the parasitoid wasp Allotropa burrelli. Image by Lukas Seehausen

Lead author Dr Lukas Seehausen, together with colleagues from CABI Switzerland, the University of Lisbon and the University of Bordeaux, argue that a focus on life-history traits of the biological control agent to increase the chances of successful CBC is not fully justified and should be complemented with the consideration of traits regarding the pest and its host plant, as well as other aspects of CBC, such as climate and management – including ways in which CBC agents are released.

For example, if a CBC agent is released repeatedly against the same pest in different years and countries, the chances of successful establishment and control of the target increase. This is an indication for the importance of release strategies for the success of CBC programmes.

Dr Seehausen said, “What makes our study different from others is that we studied factors that may impact the outcome of CBC not independently of each other but using a holistic analysis, which reveals their relative importance within the complexity of CBC programmes.

“The results from this study should be understood as a first step to give the incentive for a holistic, rather than an independent consideration of factors affecting the success of CBC.”

By filtering data from the BIOCAT catalogue, the scientists found that 780 introductions of insects for biological control were undertaken in the Greater Western Palearctic ecozone between 1890 and 2010. This constituted 416 agent-target combinations.

The results showed that eight countries were responsible for more than two thirds (70.5%) of all introductions: Israel (16.3%), Italy (14.0%), Former USSR (10.1%), France (7.3%), Greece (7.1%), Spain (6.0%), Egypt (5.3%), and Cyprus (4.4%). Within these countries, the percentage of complete target control was very variable.

Overall, the study showed that while the success of agent establishment was 32%, the successful impact of single agents on their target was 18% and the success of complete control was 11%.

However, the success rates of agent establishment and target control were higher in CBC projects targeting pests of woody plants than pests of other types of plants.

A reason for this, the scientists say, might be that being perennial, trees provide a more stable and predictable environment when compared to herbaceous plants such as annual plants or crops.

In carrying out the research, Dr Seehausen and the team added 15 new explanatory variables including consideration of the biological control agent feeding strategy, host range and life-stage killed by the biological control agent.

Dr Seehausen explains, “We found that only a few CBC agent-related factors significantly influenced the success of CBC – suggesting that the reoccurring focus on agent-related traits is not justified.

“Our attention should be redirected to include lower trophic levels and other aspects of CBC – such as abiotic factors including climate and management.”

The scientists conclude by stressing that analysis of the entire BIOCAT catalogue, or an updated version including more factors, should lead to further insights and help to develop decision support tools to increase the success of CBC at all levels.

Original source:

Seehausen ML, Afonso C, Jactel H, Kenis M (2021) Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success? NeoBiota 65: 169-191. https://doi.org/10.3897/neobiota.65.66276

Recruiting participants to the first European Red list of insect taxonomists

Contributors will enable the EU to take action to plug in the essential scientific knowledge to address insect declines

The ‘Red List of Taxonomists’ initiative, funded by the European Union, launches its registration portal, where professionals and citizen scientists are called to register on. The purpose is to build a database of European taxonomy experts in the field of entomology, the biological discipline dedicated to insects. The analysis of these data will elucidate the trends in available expertise, thereby forming the basis of key recommendations for policy makers to further allocate necessary efforts and funds to support taxonomists’ work and contribute to protecting European biodiversity and beyond.

Globally, insect populations have been catastrophically plummeting over the last decades. According to the first major Europe-wide survey of honeybee colonies, conducted in 2013, some European countries lost as many as one-third of their colonies every winter. On the other hand, estimates state, the European agriculture industry alone ‘owes’ at least €22 billion per year to honey bees and wild bees, in addition to many species from other insect orders, as together they ensure pollination for over 80% of crops and wild plants in Europe.

Insect pollination of plants is an irreplaceable service to people
Photo: Lenka Z (pexels)

The health of European pollinators on species and population level and other insects essential in our ecosystems strongly relies on our ability to rapidly turn the growing awareness about these worrying trends into swift, decisive actions. These decisions are crucial to mitigate the negative impacts of these alarming trends in human activities, mainly industrial agriculture. Taxonomists – the people who can identify, discover and monitor insect species – have a decisive role to play.

Often specialised in specific insect groups, they can investigate the diversity and abundance of insects. To a great concern, the numbers of trained insect taxonomists seem also to be fast declining. There is the real danger of losing numerous species before we get the chance to even learn about their existence! 

On a more positive note, while species extinction is an irreversible event, certain taxonomic expertise can be nourished and ‘brought back to life’ if only we have the data and analyses to bring to the attention of the relevant education institutions, governments and policy-makers, so that the necessary resources are allocated to education, training, career support and recognition.

This is how the ‘Red List of Taxonomists’ project, an initiative by the organisation uniting the most important and largest European natural science collections (CETAF), the world’s authority on assessing the risk of extinction of organisms: the International Union for Conservation of Nature (IUCN) and the scientific publisher with a long history in the biodiversity and ecology fields: Pensoft, and funded by the European Commission, comes into play. Launched earlier this year, the ‘Red List of Taxonomists’ aims to compile the very first inventory of taxonomic expertise for any group of organisms, understandably choosing the class of insects. 

Bringing together scientists, research institutions and learned societies from across Europe, the project will compare the trends and extract recommendations to overcome the risks, while preserving and further evolving the expert capacity of this scientific community.

The precious skills of insect taxonomists must be preserved and developed
Photo: Grafvision, Adobe Stock

As partners of the project, CETAF and IUCN are mobilising experts from their respective networks to populate the ‘Red List of Taxonomists’ database. In parallel, Pensoft is extracting further data of authors, reviewers and editors from taxonomic publications across its portfolio of academic journals and books, in addition to major relevant databases working with scholarly literature. 

To reach experts, including professionals not necessarily affiliated with partnering institutions, as well as citizen scientists, the team is now calling for European taxonomists to register via the newly launched ‘Red List of Taxonomists’ portal and provide their data by filling a short survey. Their data will not be publicly available, but it will be used for in-depth analyses and reports in the concluding stage of the project, scheduled for early 2022. The collection of the data is in full compliance with GDPR requirements.

***

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Dating in a jungle: Female praying mantises jut out weird pheromone gland to attract mates

Scientists from the Ruhr-University and the Bavarian State Collection of Zoology discovered that females of a South American species protrude a Y-shaped organ on their backs to release pheromones and attract males. Found in none of the over 2,500 species of praying mantises worldwide, the behaviour is reported for the first time in the peer-reviewed scientific Journal of Orthoptera Research.

Female of Stenophylla lobivertex with protruded pheromone gland
(Photo by Christian J. Schwarz)

It isn’t only myriads of currently unknown species that await discovery in the Amazon rainforests. As a new study by German scientists at the Ruhr-University (Bochum) and the Bavarian State Collection of Zoology (Munich)published in the open-access peer-reviewed scientific Journal of Orthoptera Research, concludes, it seems that so do plenty of unusual behaviours.

“When I saw the maggot-like structures peeking out from the back of the praying mantis and then withdrew, I immediately thought of parasites that eat the animal from the inside, because that is not really uncommon in insects,”

says Frank Glaw, a reptile and amphibian expert from the Bavarian State Collection of Zoology, who discovered the unusual phenomenon.
How does the Alien Mantis (Stenophylla lobivertex) attract partners?

However, it took specialists in this particular animal group to solve the riddle. Although the experts had seen nothing like this in praying mantises before either, they pointed out that there are other species of mantises, in which mostly unfertilised females release pheromones from a gland in the same part of the body (between the 6th and 7th tergite), in order to attract mates. The Y-shaped organ, which can stretch up to 6 mm in length, is in fact an advanced pheromone gland, which the insect controls with the help of hemolymph.

“We suspect that Stenophylla lobivertex can release the pheromones with the protrusible organ more efficiently and in a more targeted manner than other praying mantises,”

says Christian J. Schwarz, entomologist at the Ruhr-University.

“This can be very important, especially for rare species with a low population density, so that males can reliably find their females.”

Stenophylla lobivertex is a very rare species and lives hidden in the Amazon rainforests. Discovered only 20 years ago, the bizarre-looking and well-camouflaged animal has only been spotted a few times, and apparently only mates at night in the darkness.

Stenophylla lobivertex is a rare praying mantis from the Amazon rainforest. Its ‘true’ face becomes apparent only at second glance
(Photo by Christian J. Schwarz)

***

Follow Journal of Orthoptera Research on Twitter and Facebook.

***

Publication:

Schwarz CJ, Glaw F (2021) The luring mantid: Protrusible pheromone glands in Stenophylla lobivertex (Mantodea: Acanthopidae). Journal of Orthoptera Research 30(1): 39-41. https://doi.org/10.3897/jor.30.55274

‘Insectageddon’ is ‘alarmist by bad design’: Scientists point out the study’s major flaws

Many insects species require pristine environments, including old-growth forests. Photo by Atte Komonen.

Earlier this year, a research article triggered a media frenzy by predicting that as a result of an ongoing rapid decline, nearly half of the world’s insects will be no more pretty soon

Amidst worldwide publicity and talks about ‘Insectageddon’: the extinction of 40% of the world’s insects, as estimated in a recent scientific reviewa critical response was published in the open-access journal Rethinking Ecology.

Query- and geographically-biased summaries; mismatch between objectives and cited literature; and misuse of existing conservation data have all been identified in the alarming study, according to Drs Atte Komonen, Panu Halme and Janne Kotiaho of the University of Jyväskylä (Finland). Despite the claims of the review paper’s authors that their work serves as a wake-up call for the wider community, the Finnish team explain that it could rather compromise the credibility of conservation science.

The first problem about the paper, titled “Worldwide decline of the entomofauna: A review of its drivers” and published in the journal Biological Conservation, is that its authors have queried the Web of Science database specifically using the keywords “insect”, “decline” and “survey”.

“If you search for declines, you will find declines. We are not questioning the conclusion that insects are declining,” Komonen and his team point out, “but we do question the rate and extent of declines.”

Many butterflies have declined globally. Scolitantides orion, for example, is an endangered species in Finland. Photo by Atte Komonen.

The Finnish research team also note that there are mismatches between methods and literature, and misuse of IUCN Red List categories. The review is criticised for grouping together species, whose conservation status according to the International Union for Conservation of Nature (IUCN) is Data Deficient with those deemed Vulnerable. By definition, there are no data for Data Deficient species to assess their declines.

In addition, the review paper is seen to use “unusually forceful terms for a peer-reviewed scientific paper,” as the Finnish researchers quote a recent news story published in The Guardian. Having given the words dramatic, compelling, extensive, shocking, drastic, dreadful, devastating as examples, they add that that such strong intensifiers “should not be acceptable” in research articles.

“As actively popularising conservation scientists, we are concerned that such development is eroding the importance of the biodiversity crisis, making the work of conservationists harder, and undermining the credibility of conservation science,” the researchers explain the motivation behind their response.

###

Original source:

Komonen A, Halme P, Kotiaho JS (2019) Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology 4: 17-19. https://doi.org/10.3897/rethinkingecology.4.34440

Austrian-Danish research team discover as many as 22 new moth species from across Europe

The last time so many previously unknown moths have been discovered at once in the best-studied continent was in 1887

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

Following a long-year study of the family of twirler moths, an Austrian-Danish research team discovered a startling total of 44 new species, including as many as 22 species inhabiting various regions throughout Europe.

Given that the Old Continent is the most thoroughly researched one, their findings, published in the open access journal ZooKeys, pose fundamental questions about our knowledge of biodiversity. Such wealth of new to science European moths has not been published within a single research article since 1887.

“The scale of newly discovered moths in one of the Earth’s most studied regions is both sensational and completely unexpected,” say authors Dr Peter Huemer, Tyrolean State Museum, and Ole Karsholt of the University of Copenhagen‘s Zoological Museum. To them, the new species come as proof that, “despite dramatic declines in many insect populations, our fundamental investigations into species diversity are still far from complete”.

 

The challenge of taxonomy

Type locality of the new moth species Megacraspedus faunierensis, Cottian Alps, Italy.

For the authors, it all began when they spotted what seemed like an unclassifiable species of twirler moth in the South Tyrolean Alps. In order to confirm it as a new species, the team conducted a 5-year study into the type specimens of all related species spread across the museum collections of Paris, London, Budapest and many in between.

To confirm the status of all new species, the scientists did not only look for characteristic colouration, markings and anatomical features, but also used the latest DNA methods to create unique genetic fingerprints for most of the species in the form of DNA barcodes.

 

What’s in a name?

A particular challenge for the researchers was to choose as many as 44 names for the new species. Eventually, they named one of the species after the daughter of one of the authors, others – after colleagues and many others – after the regions associated with the particular species. Megacraspedus teriolensis, for example, is translated to “Tyrolean twirler moth”.

Amongst the others, there is one which the scientists named Megacraspedus feminensisbecause they could only find the female, while another – Megacraspedus pacificus, discovered in Afghanistan – was dubbed “an ambassador of peace”.

 

Mysterious large twirler moths

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

All new moths belong to the genus of the large twirler moths (Megacraspedus) placed in the family of twirler moths (Gelechiidae), where the common name refers to their protruding modified mouthparts (labial palps).

The genus of the large twirler moths presents an especially interesting group because of their relatively short wings, where their wingspan ranges between 8 and 26 millimetres and the females are often flightless. While it remains unknown why exactly their wings are so reduced, the scientists assume that it is most likely an adaptation to the turbulent winds at their high-elevation habitats, since the species prefer mountain areas at up to 3,000 metres above sea level.

Out of the 85 documented species, however, both sexes are known in only 35 cases.

The scientists suspect that many of the flightless females are hard to spot on the ground. Similarly, caterpillars of only three species have been observed to date.

While one of the few things we currently know about the large twirler moths is that all species live on different grasses, Huemer and Karsholt believe that it is of urgent importance to conduct further research into the biology of these insects, in order to identify their conservation status and take adequate measures towards their preservation.

###

Original source:

Huemer P, Karsholt O (2018) Revision of the genus Megacraspedus Zeller, 1839, a challenging taxonomic tightrope of species delimitation (Lepidoptera, Gelechiidae). ZooKeys 800: 1-278. https://doi.org/10.3897/zookeys.800.26292

Large-sized fossilised lacewings prove remarkable species diversity during Middle Jurassic

Middle Jurassic has always been considered as a mysterious ancient period full of ‘magical’ dinosaurs, pterosaurs and plants. However, when we think about the Jurassic landscape, we should take insects into consideration as well.

The lacewings, for example, are a graceful group famous for the lovely net-like veins on their wings, beautiful enough to stand the test of time, preserved as fossils. In addition, the wing spots on their wings form various patterns, which serve to tell us more about their adaptation to the particular environment.

Having carefully studied several pieces of compressed fossils of the large and distinct insects they found in Dohugou village, Inner Mongolia, Chinese scientists Hui Fang, Dong Ren, Jiaxi Liu and Yongjie Wang, College of Life Science, Capital Normal University, Beijing, discovered two species new to science.

Due to their complex, one-of-a-kind wing venations, all three of them were placed in the same genus (Laccosmylus) in the family Saucrosmylidae. Their descriptions, along with the redescription of another previously known species, are published in the open access journal ZooKeys.

“Fossil lacewing insects are much more abundant compared to living ones,” comment the authors.

“These large-sized fossil lacewing species reflect a high lacewing diversity in Middle Jurassic. Soon, they will help us reconstruct the wonderful environment of the Jurassic world.”

***

Original source:

Fang H, Ren D, Liu J, Wang Y (2018) Revision of the lacewing genus Laccosmylus with two new species from the Middle Jurassic of China (Insecta, Neuroptera, Saucrosmylidae). ZooKeys 790: 115-126. https://doi.org/10.3897/zookeys.790.28286

The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195

A Bed & Breakfast in L.A. reveals the lifestyle of a secretive fly species

For nearly 30 years, Dr. Brian Brown knew about a mysterious unidentified phorid fly species, whose females would often be spotted flying above mushrooms, while the males were nowhere to be found.

Little did anyone know that this years-long puzzle would be solved once and for all after a surprising call came in earlier this year, in April.

Los Angeles Bed & Breakfast owners Patsy Carter and Lisa Carter-Davis had decided to alert entomologists about the newly emerged numerous mushrooms in their yard.

The study is published in the open access Biodiversity Data Journal by Dr. Brian Brown and his colleague at the Natural History Museum of Los Angeles County, Emily A. Hartop. It is the latest in a series of publications resulting from the extensive BioScan Project, which surveys the biodiversity in the Los Angeles area and was launched in 2012 by the NHMLA.

It turned out that these mushrooms were hosting the mysterious flies. Females were ovipositing in the mushroom caps with the larvae subsequently developing and feeding on the lower surface of the fungi, deep within the gills. Later, the larvae would exit the mushroom to pupate into the soil underneath before emerging as adults.

Most importantly, the team managed to collect specimens of the previously unknown males, which allowed them to successfully identify the mysterious species as Megaselia marquezi. Over the span of the BioScan Project, the species had already been known to be the sixth most commonly collected one around Los Angeles, yet its lifestyle has remained a secret until now.

“About 100 species, mostly of Megaselia, are known from Los Angeles, but many were new to science and had nothing known of their lifestyle,” explain the authors. “Matching a lifestyle with a species previously known only from a name is a significant accomplishment.”

They also noted that, “We can do great things with the help of citizen scientists, who extend our reach into urban areas that are generally off-limits”.

“Possibly, the widespread irrigation of lawns allows fungal growth that supports an abundant fungivore community, but our ignorance of the fauna of the surrounding natural areas makes such statements highly speculative.”

###

Original source:

Brown B, Hartop E (2017) Mystery mushroom malingerers: Megaselia marquezi Hartop et al. 2015 (Diptera: Phoridae). Biodiversity Data Journal 5: e15052. https://doi.org/10.3897/BDJ.5.e15052

The ‘Star dust’ wasp is a new extinct species named after David Bowie’s alter ego

During her study on fossil insects of the order Hymenoptera at China’s Capitol Normal University, student Longfeng Li visited the Smithsonian National Museum of Natural History, Washington, carrying two unidentified wasp specimens that were exceptionally well-preserved in Burmese amber. This type of fossilized tree resin is known for the quality of the fossil specimens which can be preserved inside it. Being 100 million years old, they provide an incredible view into the past.

The subsequent analysis of the specimens revealed that both represent species new to science. Furthermore, one of the wasps showed such amazing similarities to a modern group of wasps that it was placed in a currently existing genus, Archaeoteleiawhich has long been considered as an ancient lineage. The species are described in a study published in the open access Journal of Hymenoptera Research.

However, Archaeoteleia has changed since the times when the ancient wasp got stuck on fresh tree resin. The authors note that “a novice might not recognize the characters that unite the fossil with extant species”. For instance, the modern wasp species of the genus show visibly longer antennal segments and a different number of teeth on the mandible when compared to the fossil. In turn, the description of the new extinct species enhances the knowledge about living species by highlighting anatomical structures shared by all species within the genus.

This fossil wasp with living relatives received quite a curious name, Archaeoteleia astropulvis. The species name, astropulvis, translates from Latin to ‘star dust’. The discoverers chose the name to refer to both “the ancient source of the atoms that form our planet and its inhabitants”, as well as to commemorate the late David Bowie’s alter ego – Ziggy Stardust.

Unlike the Star dust wasp, the second new species belongs to a genus (Proteroscelio) known exclusively from Cretaceous fossils. Likewise, it is a tiny insect, measuring less than 2mm in length. It also plays an important role in taxonomy by expanding the anatomical diversity known from this extinct genus.

10388_Proteroscelio nexus

The authors conclude that their discovery, especially the Star dust wasp and its placement in an extant genus, where it is the only fossil species, “exemplifies the importance of understanding the extant fauna of a taxon to interpret fossils”.

“Such union of fossil and extant morphologies is especially illuminating and requires examination of both kinds of specimens,” they add.

###

Original source:

Talamas EJ, Johnson NF, Buffington ML, Dong R (2016) Archaeoteleia Masner in the Cretaceous and a new species of Proteroscelio Brues (Hymenoptera, Platygastroidea). In: Talamas EJ, Buffington ML (Eds) Advances in the Systematics of Platygastroidea. Journal of Hymenoptera Research 56: 241-261. https://doi.org/10.3897/jhr.56.10388

The Radiohead ant: A new species of ‘silky’ ant grows fungus gardens for food

The ants of the genus Sericomyrmex – literally translated as ‘silky ants’ – belong to the fungus-farming ants, a group of ants that have figured out how to farm their own food. The silky ants are the less well-known relatives of the famous leaf-cutter ants – well-studied, photogenic model organisms that you simply cannot avoid if you take a trip to the Neotropics.

For their study, now published in ZooKeys, Ana Ješovnik and Ted R. Schultz from the Smithsonian Institution‘s Ant Lab in Washington, D.C., collected silky ants from across their entire range in Central and South America, and revised the genus based on DNA sequence data and morphology. In the end, they turned out to have discovered three new species.

One of those species, Sericomyrmex radioheadi, collected in the Venezuelan Amazon, was named after the famous British music band Radiohead.

Image3“We wanted to honor their music” one of the authors, Ana Ješovnik, says. “But more importantly, we wanted to acknowledge the conservation efforts of the band members, especially in raising climate-change awareness. ”

Using a scanning electron microscope, the authors found that the bodies of the ants are covered with a white, crystal-like layer. Curiously, this previously unknown layer is present in female ants (both workers and queens), but is entirely absent in males. Both the chemical composition and the function of this layer are unclear.

One possibility is that the layer is microbial in origin and that it has a role in protecting the ants and their gardens from parasites. This is interesting, because most of the fungus-farming ants cultivate antibiotic-producing bacteria on their bodies to protect their gardens from microbial weeds. In the meantime, in Sericomyrmex these bacteria are absent, yet their gardens are also parasite-free. Figuring out if this crystal-like layer has a role in protecting these ants’ fungus gardens might provide clues for managing diseases in human agriculture and medicine.

At only four million years, Sericomyrmex is an evolutionary youngster, the most recently evolved genus of fungus-farming ants, and an example of rapid radiation – comparable to other fast-evolving groups, such as the freshwater fishes in Africa, or the Hawaiian fruit flies.

Rapid radiation is a process in which organisms diversify quickly into a multitude of forms, making these ants good candidates for studies into speciation and evolution. In the present article, the authors acknowledge that some of the species they describe might, in fact, be multiple species that look alike, but because the ants are in the early stages of speciation, this is hard to detect.

###

Original source:

Ješovnik A, Schultz TR (2017) Revision of the fungus-farming ant genus Sericomyrmex Mayr(Hymenoptera, Formicidae, Myrmicinae). ZooKeys 670: 1-109. https://doi.org/10.3897/zookeys.670.11839