Rare beetle, rediscovered after 55 years, named in honor of Jerry Brown

UC Berkeley entomologist Kipling Will discovered a specimen of Bembidion brownorum while sampling for insects near Freshwater Creek on former Gov. Jerry Brown’s ranch.

When University of California, Berkeley, entomologist Kipling Will first heard that former Gov. Jerry Brown was hosting field scientists on his Colusa County ranch, he jumped at the chance to hunt for beetles on the property.

“I reached out and said, ‘Hey, I want to sample your beetles,’” Will said. “And [Brown] was quite game to let me come up there.”

Will, a professor of environmental science, policy and management, has travelled to all corners of California to study carabid beetles, ground beetles that are important predators of other insects. But Will’s repeated visits to Brown’s ranch proved especially fruitful.

While sampling for insects near Freshwater Creek, Will collected a rare species of beetle that had never been named or described — and which, according to records, had not been observed by scientists in over 55 years. The new species will be named Bembidion brownorum, in honor of Brown and his wife, Anne Brown.

Former California Gov. Jerry Brown (right) and his wife, Anne Brown, with their dogs, Colusa and Cali, on the Browns’ Colusa County ranch. Photo courtesy Evan Westrup

“I’m very glad that [my ranch] is advancing science in some interesting and important ways,” said Brown, who has hosted a wild variety of field researchers, including geologists, anthropologists and botanists, on the property. “There are so many undiscovered species. I think it’s very important that we catalog and discover what we have and understand their impact on the environment — how it’s functioning and how it’s changing.”

Brown’s 2,500-acre ranch is about an hour’s drive north of Sacramento, in an agricultural region where most of the land is privately owned and insect biodiversity is historically understudied. For more than two years, Will has regularly sampled for insects on the ranch, sometimes even showing the beetles that he finds to the Browns.

Jerry Brown said his dedication to welcoming researchers onto his land is rooted in the ranch’s history as a stagecoach stop called Mountain House, and in his own interest in climate change and conservation.

“We don’t have stagecoach stop, but we have a place of gathering, of research and collaboration,” said Brown, who is currently chair of the California-China Climate Institute at UC Berkeley.

The location on Freshwater Creek where Kipling Will discovered the Bembidion brownorum beetle. Photo courtesy Kipling Will

After collecting a beetle at the ranch that didn’t resemble any species he was familiar with, Will called up Bembidion expert David Maddison, a professor of integrative biology at Oregon State University, to help identify the specimen. Together, the scientists used morphological and DNA analysis to confirm that the beetle represented a completely new species.

Will then combed through entomology collections at museums throughout California in search of other specimens that may have been unlabeled or misidentified. He found only 21 other specimens of the species, the most recent of which was collected in 1966.

UC Berkeley entomologist Kipling Will discovered a specimen of Bembidion brownorum while sampling for insects near Freshwater Creek on former Gov. Jerry Brown’s ranch. The species had not been observed by scientists in more than 55 years. Photo courtesy David Maddison

The lack of any more recent specimens indicated to him that the species likely collapsed during the second half of the 20th century, driven out of its natural habitat by rapid urbanization and agricultural development across the state.

“The sad truth is, [the species] has probably been in a huge decline. If you look at the places that it was found the ‘20s and ‘30s and ‘40s, almost none of that natural habitat is left,” Will said. “But we don’t know for sure. So, the thing to do is to get it out there, describe it and tell people, ‘Hey, look for this thing,’ because maybe we’ll find some place where it’s doing fine.

“Having access to Jerry’s ranch in Colusa County gives me the opportunity to really spend time sampling, to look for rare things like this.”

Will and Maddison describe Bembidion brownorum in a study published in the journal Zookeys.

Big for a Bembidion

To the naked eye, Bembidion brownorum isn’t particularly remarkable: The diminutive beetle is brown in color and measures around 5 millimeters in length, about the diameter of a standard pencil. But under magnification, it glows with a green and gold metallic shimmer.

The Bembidion brownorum beetle is approximately 5 millimeters long, slightly larger than other Bembidion beetles. The section of the insect behind the head, called the prothorax, is also larger than usual. Photo courtesy David Maddison

It was the unusual shape of the beetle’s prothorax, the segment of the insect that sits right behind its head, that first caught Will’s eye.

“I was looking at this one beetle thinking, ‘It just doesn’t fit any of the ones that I can identify,’” Will said. “The shape of prothorax is just not like any of the others.”

According to Maddison, Bembidion brownorum is also relatively large compared to other Bembidion beetles, which are usually closer to 3 to 4 millimeters in length.

“It’s big for a Bembidion,” Maddison said. “At first glance, it was pretty obvious that it was probably something new.”

With so few examples to study, it’s difficult to describe the lifestyle and behavior of Bembidion brownorum with any certainty, Will said. However, given where the beetle was found on Brown’s ranch — in the vicinity of Freshwater Creek, which occasionally dries into a series of trellis-like pools in the summer months — it is likely that the beetle lives near the edges of bodies of water that periodically flood and then evaporate.

The 21 historical specimens of Bembidion brownorum are housed at either the Essig Museum Entomology Collection at UC Berkeley or at the California Academy of Sciences in San Francisco, which both have insect specimens going back more than 100 years. The discovery highlights the vital importance of maintaining these collections for current and future research, the scientists said.

“One of the things that I find interesting about is that, before Kip found that specimen, there were already specimens in collections — there was this hidden diversity that people didn’t recognize,” Maddison said. “At one point, [the beetle] probably was much more widespread and much more common, and Kip and I have some ideas as to where you would target to try to find more.”

Drawers containing prepared specimens of carabid beetles that Kipling Will collected on Jerry Brown’s ranch. Photo courtesy Kipling Will

Previous specimens were collected at locations throughout the Central Valley and in the Los Angeles Basin, regions that have been transformed over the last century. While the beetle may still survive in some areas, Will said that the patchwork of private landownership may make it difficult to find.

“There is a lot of desire to conserve the environment and combat climate change, but in many cases, we’re not keeping up with the rate of extinction — we’re not able to describe the species that need to be described as fast as things are going extinct,” Will said. “And this certainly is true in California, where there are an awful lot of undescribed insects out there and not a lot being done to get them described. I think that having more knowledge of what they are and where they where they live is really fundamental.”

John S. Sproul of the University of Nebraska Omaha is also a co-author of the study. This research was supported by the Harold E. and Leona M. Rice Endowment Fund at Oregon State University.

Research article:

Maddison DR, Sproul JS, Will K (2023) Re-collected after 55 years: a new species of Bembidion (Coleoptera, Carabidae) from California. ZooKeys 1156: 87-106. https://doi.org/10.3897/zookeys.1156.101072

Press release originally published by Kara Manke, UC Berkeley. Republished with permission.

Tax man turned taxonomist: a citizen scientist’s journey into botany

“I have absolutely no formal training in botany, but now I find myself as a coauthor in the publication of 18 new species in Costaceae.”

Guest blog post by David Skinner

Costus prancei, one of the 18 newly described species in Costaceae.

I am a retired government bureaucrat who worked for 40 years as an administrator in state and federal taxation. I have absolutely no formal training in botany, but now I find myself as an active participant in a major taxonomic revision and a coauthor in the publication of 18 new species in a plant family called Costaceae. This is the story of how my gardening hobby turned into an avocation and led me to work with some of the premier botanists in the world. It is also the story of how I have met several other plant enthusiasts from countries throughout the tropics who have contributed so very much to our work. I write this story in the hopes of encouraging more professional scientists to incorporate the observations of such “citizen scientists” in their research, and to encourage these enthusiasts to more carefully document their observations and post their photos and notes to resources like Inaturalist.org.

My story started about 30 years ago when my wife gave me a rhizome of the white butterfly ginger (Hedychium coronarium) as a Christmas present. I became interested in gingers, species of the family Zingiberaceae, but soon my interests began to focus almost exclusively on the closely related “spiral gingers” in the family Costaceae. I loved the architecture of the plants with their spiral staircase of leaves leading up to a variety of shapes and colors of bracts and flowers. I started collecting any cultivated Costus plants I could find in nurseries or mail-order catalogues. Soon, I learned that only a few species can survive outdoors in the winter where I live, so built a greenhouse.

Costus convexus, one of the 18 newly described species in Costaceae.

My serious interest in Costaceae began after I obtained a copy of the 1972 monograph of New World Costaceae by Dr. Paul Maas. It became my bible.

As I studied his descriptions of the species and applied his identification keys to the cultivated plants, I soon realized that many of the popular Costus species in cultivation had been incorrectly identified. I started doing presentations to garden clubs and posting to online groups. I developed a website called “Gingers ‘R’ Us.”

My “real job” had me traveling to Washington, DC periodically and I always tried to carve out time to visit Mike Bordelon at the Smithsonian Greenhouses in Suitland, Maryland. On one of these trips, I met Dr. Chelsea Specht, who was working at the Smithsonian Institution as a postdoctoral fellow.

Chelsea Specht and Mike Bordelon at the Smithsonian Greenhouses in 2004.

She had written what I believe is the first molecular study in Costaceae in 2001.This opened up a whole new world of interest for me as I tried to understand these new-to-me terms, like “clades” and “phylogenetic relationships”. In this paper she introduced the new generic divisions of the family that were solidified five years later in a more complete phylogenetic study . Chelsea very patiently answered my novice questions about phylogenetic trees and how they relate to the taxonomy of the plants.

Reinaldo Aguilar in 2013 at the type locality of Costus maritimus, now a synonym in the Costus comosus complex.

In 2005 I made my first trip to the New World tropics looking for Costus in its native habitat. On the Osa Peninsula of Costa Rica, I was incredibly lucky to meet Reinaldo Aguilar, the world-famous “para-taxonomist” who has studied the plants of the Osa for over 30 years. He is is self-taught like me and does not have a botanical degree, but has coauthored many scientific articles. He worked closely with the late Scott Mori of the New York Botanical Garden and was honored in a 2017 article in NYBG Science Talk.

That first trip to Costa Rica had me hooked. I fell in love with tropical forests and over the next few years made trips to several other Latin American countries as well as back to Costa Rica. Always, my focus was on Costus and the other members of its family.

Along the way, I met several “unsung heroes” in the plant world,  like Marco Jiménez Villata, whom I met in the town of Zamora in southern Ecuador. Marco specializes in orchids, but he is also a generalist and knows a lot about the plants of southern Ecuador. He (now retired) was a school administrator and had traveled to many remote villages in the province and was always on the lookout for interesting plants. I have traveled with Marco and his son Marco Jiménez León several other times and we have become good friends.

Marco Jimenez and son Marco with Costus convexus.

In 2015 we went to the type locality of the species Costus zamoranus and took the first photographs of this species. At that trip, Marco showed me an area of high elevation near the Podocarpus National Park, where I found an unusual-looking Costus that we are now describing as Costus oreophilus. He also showed me unexplored places where I found another new species, Costus convexus. I made sure we credited him with his role in the discovery and documentation of those new species in our publication in PhytoKeys.

I have also traveled several times in Panama and Ecuador with another very well known, but non-doctorate plant enthusiast – Carla Black. Carla is the president of the Heliconia Society International, an organization uniting enthusiasts (scientists and non-scientists) in the order Zingiberales.

Carla Black with Juan Carlos Amado on the old Camino Real.

In 2015 we searched for the critically endangered Costus vinosus. We found a few plants growing deep in the forest of the Chagres National Park along an old Spanish trail used to transport gold to the Atlantic coast. There is still a mystery regarding the true form of the flower of C. vinosus, and I am in touch with another Inaturalist observer who has found it (not in flower) in the mountains northeast of Panama City. He will let me know when he finds it in flower!

Costus callosus, one of the 18 newly described species in Costaceae.

In 2019 Carla and I visited the “Willie Mazu” site in Panama to photograph and study the new species Costus callosus, and in Santa Fé de Veraguas, we looked for a species proposed by Dr. Maas that is now described as Costus alleniopsis.

My serious collaboration with Dr. Maas began in 2017, when I was preparing for a trip to Oaxaca in southern Mexico. He asked me to be on the lookout for  two species of Costus from that region that he had identified as new based solely on his examination of herbarium specimens, without any good data on the floral parts.

By that time, I was posting my Costus observations on Inaturalist.org and using that resource to look for interesting plants. I also used it to find plant people to contact for local information. For this Mexico trip I found a huge number of observations posted by Manuel Gutiérrez from Oaxaca City.

Manuel Gutiérrez photographing the plant that turned out to be Costus sepacuitensis.

I found that he had extensive knowledge of the Chinantla region in the mountains east of Oaxaca City and had worked with the indigenous tribe there. Together, we explored the indigenous lands of Santa Cruz Tepetotutla.

We found many plants in flower of what Dr. Maas wanted to describe as Costus alticolus. We also found the species he planned to describe as Costus oaxacus, but I later found the same species in Guatemala, already described as Costus sepacuitensis.

Later I learned of the plans to prepare a complete revision to the taxonomy of the New World Costaceae. Together with Paul and Hiltje Maas, we spent several days at the Naturalis Herbarium in Leiden, comparing my photos against the hundreds of Costus herbarium specimens there. I had a long list of species that was curious about, and we were able to get through it and figure out what questions remained, even though we had not come up with all the answers.

Dave Skinner and Paul Maas discussing some Costus spp. in Leiden in 2017.

It was soon apparent that there are major changes needed in the taxonomy and nomenclature of these plants, and that information from the field would be an essential supplement to the observations made from the herbarium specimens.

Paul and Hiltje Maas in Leiden in 2017.

In 2016 I visited the type locality of Costus laevis in central Peru. I was surprised to find that the plants there are nothing at all like the Costus laevis of Central America, but match perfectly to the herbarium specimen that was deposited in Spain over 230 years ago. It was clear to me that the herbarium specimen designated as the type had been misinterpreted. I wrote an article explaining the problem – but I had no idea what the solution might be.

Dr. Maas agreed that there was a problem with that species that we eventually resolved. This resolution will be a part of the forthcoming revision of the New World Costaceae that is in preparation, nearing completion.

An image of Costus guanaiensis posted by Anthony Batista on iNaturalist.org on October 27, 2021.

Another major problem involved the Costus guanaiensis complex. Paul and Hiltje, along with Chelsea, had visited the New York Botanical Garden Herbarium, where the holotype of that species is held, and realized that it had been misinterpreted due to the lack of a good flower description. What had been identified as Costus guanaiensis in the herbarium was actually a completely different species that Maas had planned to describe as a new species.

Dave Skinner with a plant in cultivation of Costus gibbosus at Rio Palenque Science Center, Ecuador.

The entire C. guanaiensis complex needed name changes and redefinitions of species boundaries, ultimately resulting in the description of Costus gibbosus that is published in PhytoKeys. The resolution of the other members of that complex will be explained in the forthcoming revision. Over the next several years, Paul and I exchanged 1,626 emails (yes, I counted them – with the help of MS Outlook) pounding out the details of the changes needed in the taxonomy of New World Costaceae. In collaboration with him, I made many more field trips to resolve the remaining questions we had.

My extensive collaboration with Paul Maas has been one of the most rewarding experiences of my lifetime. He has taught me so much about the rules of nomenclature and the process of describing a new species. The one thing he could never teach me was his almost uncanny ability to look at a dried herbarium specimen and make a determination of the species. I suppose that only comes from experience as  he has examined over 11,000 specimens of Costaceae that will become our list of exxicatae when the full revision is published.

I should not fail to mention my time working with Dr. Thiago André. In 2014 I flew to Rio de Janeiro and then Thi and I, along with his academic advisor and another student, went to the state of Espirito Santo to look for the endangered species Chamaecostus cuspidatus. Thi has been our expert in that genus and has helped with the review of the new species published in PhytoKeys, Chamaecostus manausensis. In 2014 he was still finishing his doctorate and was in process of preparing a molecular phylogeny and morphological study of the species complex of Chamaecostus subsessilis.

Thiago André with Chamaecostus cuspidatus in 2014.

Thi and I have stayed in close contact, and he came to Florida one year to visit in my home and see the Costaceae in my private garden, Le Jardín Ombragé. He is now a professor at the Universidade de Brasília.

Finally, I should discuss my collaboration with Eugenio Valderrama and the other members of the Specht Lab at Cornell University. In 2018 I went to Cornell to visit Eugenio and we discussed the sampling to be used in the molecular phylogeny that will be a very important part of the full revision when it is published.

Eugenio Valderrama and Chelsea Specht with Costus convexus.

At Cornell, Eugenio produced a novel baiting schema for extracting specific genes from across all Costus species and in 2020 published a paper. With further sampling, another paper was published in 2022 to reveal interesting data on a whole package of pollination-related characters, and how they show evidence of convergent evolution. Eugenio’s phylogenies very well support the new species we are publishing in PhytoKeys, and the full molecular phylogeny will be included in our full revision when it is published.

Eugenio checking out a Renealmia sp. Antioquia, Colombia 2022.

Just this past December I went to Colombia to attend the Heliconia Society Conference at Quindío, and Eugenio and I each made presentations there about our work with Costaceae. Then we traveled together to investigate several other interesting species of Costaceae, including the new species Costus antioquiensis, and a strange yellow bracted form of Costus comosus found in the species-rich area of San Juan de Arama in Meta.

How did I know to look there? An observer, a citizen scientist, had posted his records and photos on Inaturalist.org. I have my account set to filter all Costaceae and send me a daily email with all the new postings of the family, and this plant will now be appearing as a sample in a molecular phylogeny and as an observed species in a monograph.

I hope this blog article will provide some background and insight into what I think must be an unusual collaboration between a citizen scientist and the much more qualified lead authors of our PhytoKeys article describing eighteen new species in Costaceae. It has certainly been a rewarding experience for me, and I hope other plant enthusiasts will be encouraged to share their observations on forums like Inaturalist.org, providing detailed and accurate information and photos. At least for the one plant family I have some expertise in, I will continue to monitor and curate those observations on Inaturalist.

 To see all of my own field observations of Costaceae, including the new species we are describing in PhytoKeys, go to https://www.inaturalist.org/observations?user_id=selvadero.

References

André T, Specht CD, Salzman S, Palma-Silva C, Wendt T (2015) Evolution of species diversity in the genus Chamaecostus (Costaceae): Molecular phylogenetics and morphometric ap­proaches. Phytotaxa 204(4): 265-276. https://doi.org/10.11646/phytotaxa.204.4.3

Maas, P. J. M. (1972). Costoideae (Zingiberaceae). Flora Neotropica 8, 1–139. doi: 10.1093/aob/mch177

Maas PJM, Maas-van de Kamer H, André T, Skinner D, Valderrama E, Specht CD (2023) Eighteen new species of Neotropical Costaceae (Zingiberales). PhytoKeys 222: 75-127. https://doi.org/10.3897/phytokeys.222.87779

Salzman S, Driscoll HE, Renner T, André T, Shen S, Specht CD (2015) Spiraling into his­tory: A molecular phylogeny and investigation of biogeographic origins and flo­ral evolution for the genus Costus. Systematic Botany 40(1): 104–115. https://doi.org/10.1600/036364415X686404

Skinner D (2008) Costus of the Golfo Dulce Region. Heliconia Society Bulletin 14(4):1-6

Skinner D and Jiménez M (2015) Costus zamoranus: An endemic species to Zamora-Chinchipe Province in Southeastern Ecuador. Heliconia Society Bulletin 21(3):4-9

Skinner D (2016) Following Ruiz. Heliconia Society Bulletin 22(4): 7–14.

Skinner D and Black C. (2016) Search for the Mysterious Lost Plant (Costus vinosus). Heliconia Society Bulletin 22(3):1-3

Skinner D (2019) A Tale of Two Costus (Costus sepacuitensis) and Costus cupreifolius) Heliconia Society Bulletin 25(1):1-3

Specht CD, Kress WJ, Stevenson DW, DeSalle R (2001) A molecular phylogeny of Costa­ceae (Zingiberales). Molecular Phylogenetics and Evolution 21(3): 333–345. https://doi.org/10.1006/mpev.2001.1029

Specht CD, Stevenson DW (2006) A new phylogeny-based generic classification of Costaceae (Zingiberales). Taxon 55(1): 153–163. https://doi.org/10.2307/25065537

Valderrama E, Sass C, Pinilla-Vargas M, Skinner D, Maas PJM, Maas-van de Kamer H, Landis JB, Guan CJ, AlmeidaA., Specht CD (2020) Unraveling the spiraling radiation: A phylogenomic anal­ysis of neotropical Costus L. Frontiers in Plant Science 11: 1195. https://doi.org/10.3389/fpls.2020.01195

Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kamer H, Sass C, Pinilla-Vargas M, Guan CJ, Phillips R, Almeida A, Specht CD (2022) The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L.Frontiers in Plant Science 13: https://doi.org/10.3389/fpls.2022.874322

Don Quixote gives his name to a new plant species only known from La Mancha, Spain

“In the present biodiversity crisis scenario, it is critical that we do not neglect basic scientific disciplines like taxonomy, since cataloguing biodiversity is a fundamental step towards its preservation.”

The knowledge of biodiversity in allegedly well-known places is not as complete as one would expect and its detailed study by researchers continues to offer surprises, is what we find out in a new study of the flora of south-central Spain. 

Now, Spanish botanists from Pablo de Olavide University (Seville, Spain) have described a new plant species of the papyrus family (Cyperaceae) restricted to the La Mancha region in south-central Spain. This region is in fact well-known for classic literary fans, who might recognise the name as the main setting in Miguel de Cervantes’ (1547–1616) masterpiece Don Quixote.

Artistic recreation depicting Don Quixote and his squire Sancho Panza with the iconic La Mancha windmills, and a Carex quixotiana’s habitat.
Image by Faro Míguez.

The epic novel, which tells the story of the life and journeys of Alonso Quijano, a Spanish hidalgo (nobleman), who becomes the knight-errant Don Quixote de la Mancha, is commonly considered to be one of the greatest literary works ever written, with its number of editions and translations thought to be only surpassed by those of the Bible.

The new species, now scientifically known as Carex quixotiana, belongs to sedges of the genus Carex, a group of herbs included in the papyrus family (Cyperaceae). The classification (taxonomy) of these plants is difficult, as it is a highly diverse and widely distributed genus, whose species are frequently hard to tell apart. In fact, C. quixotiana has itself evaded the eyes of expert botanists for decades, because of its close resemblance to related species.

“Cryptic species are frequent in complex plant groups, such as sedges, and integrative studies encompassing different data sources (e.g. morphology, molecular phylogeny, chromosome number, ecological requirements) are needed to unravel systematic relationships and accurately describe biodiversity patterns,”

says Dr. Martín-Bravo, senior author of the paper.

After a preliminary genetic study pointed to something odd about specimens of what was later to be known as Carex quixotiana, the authors set off on exhaustive field collecting campaigns across La Mancha. As they studied additional populations of the plant in further detail, using morphology, phylogenetics, and chromosome number, the scientists confirmed that they were looking at a species previously unknown to science. Understandably, the distribution range of the newly discovered species, restricted to the mountain ranges surrounding La Mancha (Sierra Madrona and Montes de Toledo), made the authors think about Cervantes’ masterpiece.

So far only known from 16 populations, Carex quixotiana prefers habitats with high water availability, such as small streams, wet meadows and riverside (riparian) forests. 

Since little is known about the species’ demographics, including the number of mature individuals in the wild, further investigation is required to determine its conservation status. However, based on what they have learnt so far about the species, the authors of the present study assume that:

“it is an Iberian endemic with a relatively small number of populations and distribution range, which would benefit from legal protection and inclusion in in-situ/ex-situ conservation programmes.”

“In the present biodiversity crisis scenario, it is critical that we do not neglect basic scientific disciplines like taxonomy, since cataloguing biodiversity is a fundamental step towards its preservation and, thus, sustainable management,”

say the researchers.

In conclusion, the scientists point to their results as yet another proof of how much there is still to learn about Earth’s biodiversity, even when it comes to supposedly well-known organisms, such as flowering plants, and countries, whose flora is presumed to be fully documented. The “Flora Iberica”, for example, which covers Spain and Portugal, has only recently been finalised, the team reminds us.

Close-up images of reproductive parts (inflorescences known as spikes) of the newly described species Carex quixotiana. Photo by Modesto Luceño.

Research article:

Benítez-Benítez C, Jiménez-Mejías P, Luceño M, Martín-Bravo S (2023) Carex quixotiana (Cyperaceae), a new Iberian endemic from Don Quixote’s land (La Mancha, S Spain). PhytoKeys 221: 161-186. https://doi.org/10.3897/phytokeys.221.99234

Follow PhytoKeys on Facebook and Twitter.

Two striking new species of carnivorous plants discovered in the Andes of Ecuador

The two new species of butterworts were discovered in poorly explored, remote areas in the Amotape-Huancabamba zone, a biodiversity hotspot in southern Ecuador.

A team of botanists from Ecuador, Germany, and the United States has described two new species of carnivorous plants with striking appearance. They are part of the butterworts (genus Pinguicula), a group of flowering plants with about 115 species that can catch and digest small insects with their sticky leaves. Whereas the majority of butterwort species is distributed in the northern hemisphere, these new species were discovered in the high Andes of southern Ecuador, close to the border with Peru.

Pinguicula ombrophila sp. nov. Photograph by Álvaro J. Pérez.

Carnivorous plants use animals (usually small insects) as an additional source of nutrients to compensate the nutrient deficiency of the substrate they’re growing in. This gives them a competitive advantage over other plants and enables them to thrive in challenging habitats. The tropical high Andes have a variety of such habitats, for example marshland and rocky slopes covered in constant rain and clouds.

The two new species described in the study, Pinguicula jimburensis and Pinguicula ombrophila, were found on the shore of a highland lagoon at 3400 m and on a nearly vertical rock face at 2900 m, respectively. Their small-scale habitats lie within the so-called Amotape-Huancabamba zone, which encompasses large portions of southern Ecuador and northern Peru. This area is characterized by exceptional biodiversity, due in part to the fact that the rugged terrain and varied climate of the Andes provide so many microhabitats.

Pinguicula jimburensis sp. nov. Photograph by Kabir Montesinos.

“And as small and scattered as the species’ suitable habitats are, so is the species composition,”

says senior author Tilo Henning of Leibniz Center for Agricultural Landscape Research (ZALF), who is a specialist in this plant family in this region.

His colleague Álvaro Pérez of the Pontifica Universidad Catolica del Ecuador and his team were the first to discover the plants. They then got in touch with Henning.

“Both of these new species are only known from a single location, where only a few dozens of plant individuals occur in each case.”

For one of them, only one population with about 15 mature individuals was discovered, making it vulnerable even if it is hidden in an isolated, difficult-to-access area. This narrow endemism (limited distribution in a particular area) is typical of the Amotape-Huancabamba zone, and there are many more new plant and animal species awaiting discovery, Henning says.

With the description of these two new species, the number of Pinguicula species recorded in Ecuador has tripled, as previously only P. calyptrata was known, discovered by none other than Alexander von Humboldt. The authors are convinced that there are many more new species awaiting formal scientific recognition, but admit that lately it has been a race against time.

“The results presented in this study show that the assessment of the Neotropical biodiversity is far from complete. Even in well-known groups such as the carnivorous plants, new taxa are continuously discovered and described, in particular from remote areas that become accessible in the course of the unlimited urban sprawl,” Henning, Pérez, and their colleagues write in a scientific article dedicated to the new plants that was published in the peer-reviewed journal PhytoKeys. “This is both encouraging and worrying at the same time“.

“Relentless urban sprawl and the accompanying destruction of habitats pose a massive threat to biodiversity in general, and to the tightly-knit and specialized organisms that depend on their fragile microhabitats in particular,”

Henning points out.

Although the two new species are relatively safe from direct human interference – as they both occur within protected areas – human-induced climate change is increasingly affecting ecosystems regardless of location, especially those that rely on regular precipitation, such as mountain wetlands.

The dependence on a constant climate is even reflected in the name of one of the two new species: Pinguicula ombrophila means “rain-loving butterwort”, as the plant prefers very wet conditions, receiving moisture from the waterlogged paramo-soil and enjoying the frequent rain and fog typical for this area.

Pinguicula ombrophila sp. nov. Photograph by Álvaro J. Pérez.

Additional information:

The expedition to Cerro Plateado in 2016 was supported by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación de la República del Ecuador (SENESCYT, Arca de Noé Initiative; S. R. Ron and O.Torres–Carvajal, Principal Investigators) and in 2021 by the International Palm Society (IPS) Endowment Fund and by Claes Persson (University of Gothenburg), the expedition also received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 865787, GLOBAL project). The Open Access Fund of the Leibniz Association covered the publication costs for the article.


Original source:

Pérez ÁJ, Tobar F, Burgess KS, Henning T (2023) Contributions to Ecuadorian butterworts (Lentibulariaceae, Pinguicula): two new species and a re-evaluation of Pinguicula calyptrata. PhytoKeys 222: 153-171. https://doi.org/10.3897/phytokeys.222.98139

You can also follow PhytoKeys on Twitter and Facebook.

New frog species named after fantasy author J.R.R. Tolkien

The frog lives in the pristine streams of the Río Negro-Sopladora National Park, a protected area with thousands of hectares of almost primary forests in Ecuador.

In a stream in the forest there lived a Hyloscirtus. Not a nasty, dirty stream, with spoor of contamination and a muddy smell, nor yet a dry, bare, sandy stream with nothing in it to perch on or to eat: it was a Hyloscirtus-stream, and that means environmental quality.
(adapted from the opening of “The Hobbit” by J. R. R. Tolkien)

A magnificent new species of stream frog from the Andes of Ecuador was named after J. R. R. Tolkien, creator of Middle-earth and author of famous fantasy works “The Hobbit” and “The Lord of the Rings. It lives in the pristine streams of the Río Negro-Sopladora National Park, a recently declared protected area that preserves thousands of hectares of almost primary forests in southeastern Ecuador.

Stream frogs are a group of amphibians that inhabit the high Andes of Venezuela, Colombia, Ecuado, Peru, and Bolivia. Their life is closely linked to the pure rivers and streams in the mountain areas of the Andes, hence the name “stream frogs”. The adults live in the riparian vegetation, and their tadpoles develop among the rocks of the rapid waters of the rivers.

The researchers, Juan C. Sánchez-Nivicela, José M. Falcón-Reibán, and Diego F. Cisneros-Heredia, named the new frog Hyloscirtus tolkieni in honour of one of their favourite writer. JRR Tolkien, a renowned author, poet, philologist and academic, is the creator of Middle-earth and the father of fantastic works such as “The Hobbit” and “The Lord of the Rings”. The amazing colours of this new frog species reminded them of the magnificent creatures from Tolkien’s fantasy worlds. 

Expeditions carried out since 2020 in the Río Negro-Sopladora National Park in Ecuador have allowed the discovery of a large number of species yet unknown to science. A protected area since 2018, this national park, located in the south of the country, is home to large forested areas that remain unstudied.

“For weeks, we explored different areas of the Río Negro-Sopladora National Park, walking from paramo grasslands at 3,100 meters elevation to forests at 1,000 m. We found a single individual of this new species of frog, which we found impressive due to its colouration and large size.”, indicated Juan Carlos Sánchez Nivicela, associate researcher at the Museum of Zoology of the Universidad San Francisco de Quito USFQ and the National Institute of Biodiversity, and co-author of the study where the frog is described.

The Río Negro Stream Frog is easily differentiated from all its frog releatives by its appearance and unique colouration. It is relatively large (65 mm long), a greyish green back with yellow spots and black specks, and a pale pink and black iris. Its throat, belly and flanks as well as the undersides of its legs are golden yellow with large black spots and dots, and its fingers and toes have black bars and spots and broad skin stripes.

The new species of frog has amazing colours, and it would seem that it lives in a universe of fantasies, like those created by Tolkien. The truth is that the tropical Andes are magical ecosystems where some of the most wonderful species of flora, funga, and fauna in the world are present. Unfortunately, few areas are well protected from the negative impacts caused by humans. Deforestation, unsustainable agricultural expansion, mining, invasive species, and climate changes are seriously affecting Andean biodiversity”, said Diego F. Cisneros-Heredia, director of the Museum of Zoology of the Universidad San Francisco de Quito USFQ and associate researcher of the National Institute of Biodiversity, and co-author of the study.

The species is still only known from one locality and one individual, so information is insufficient to assess its conservation status and the risk of extinction. However, the authors agree that it is urgent to establish research and monitoring actions to study its life history and ecology, as well as its population size and dynamics. In addition, they suggest exploring new sites where additional populations may exist, and assessing whether their long-term conservation is affected by any threats, such as invasive species, mining, emerging diseases, or climate change.

The description of new species is an important mechanism to support global strategies for the conservation of vulnerable environments, since it reveals the great wealth of biodiversity that is linked to countless natural resources and environmental services. For example, amphibians are important pest controllers and play vital ecological roles in the stability of nature. Unfortunately, 57% of amphibian species in Ecuador are threatened by extinction.

Research article:

Sánchez-Nivicela JC, Falcón-Reibán JM, Cisneros-Heredia DF (2023) A new stream treefrog of the genus Hyloscirtus (Amphibia, Hylidae) from the Río Negro-Sopladora National Park, Ecuador. ZooKeys 1141: 75-92. https://doi.org/10.3897/zookeys.1141.90290

Photos by Juan Carlos Sánchez-Nivicela / Archive Museo de Zoología, Universidad San Francisco de Quito

Follow ZooKeys on Facebook and Twitter.

Hidden in plain sight: snake named 46 years after first discovery

Although it had been documented and studied for years, it took molecular analyses to confirm that the snake was in fact a species new to science.

A new species of snake was described from western Panama. First documented in 1977 by Dr. Charles Myers, a scientist studying amphibians and reptiles throughout Panama, it was only now that it got a scientific description.

The new snake has been given the name Dipsas aparatiritos. The genus Dipsas includes the snailsuckers, a unique group of snakes that feed on soft-bodied prey including snails extracted from their shells, slugs, and earthworms. The species epithet “aparatiritos” is Greek for unnoticed: a reference to the fact that the snake had remained hidden in plain sight for over forty years at a very well-studied field site.

A snail-eating snake.
Live individual of Dipsas aparatiritos in Parque Nacional General de División Omar Torrijos Herrera photographed in the wild. Photo by Kevin Enge

Scientists Dr. Julie Ray, University of Nevada – Reno, Paola Sánchez-Martínez, Abel Batista, Daniel G. Mulcahy, Coleman M. Sheehy III, Eric N. Smith, R. Alexander Pyron and Alejandro Arteaga, have described the new species in a paper published in the open-access journal ZooKeys.

Dipsas aparatiritos has the characteristic bulbous head and brown-and-black patterning of many of the snakes in the genus. It looks very similar to its closest known relative, Dipsas temporalis, which is also found in Panama. It is now known that D. aparatiritos is endemic to, or known only from, the western and central parts of the country.

The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray

Panama has a rich diversity of snakes, with over 150 documented species in a country the size of Ireland or the U.S. state of South Carolina. Dr. Ray has documented over 55 species of snakes in Parque Nacional General de División Omar Torrijos Herrera where the newly described snake is best studied, and over 80 species in Coclé Province in Central Panama. She published a field guide, Snakes of Panama, in 2017.

Four individuals of Dipsas aparatiritos intertwined on one plant at Parque Nacional General de División Omar Torrijos Herrera. Photo by Noah Carl

Co-author of the species description Dr. Alex Pyron, The George Washington University, visited Parque Nacional General de División Omar Torrijos Herrera in June 2013 with Dr. Frank Burbrink, American Museum of Natural History. “That was my first trip to Central America,” he says. “We were able to see the after-effects of the amphibian declines. But I was struck by the diversity and abundance of snakes that were still present, including this species of snail-eater we have just described, the rare Geophis bellus [a small leaf litter snake known from just one specimen prior to this discovery] and an unusual Coralsnake.”

Despite being a new species, Dipsas aparatiritos is relatively common in Parque Nacional General de División Omar Torrijos Herrera and has been studied for years before it was described. Dr. Ray has published a paper about the diet of snail-eating snakes, where it was found that earthworms from bromeliads compose a large portion of the diet of Dipsas aparatiritos. She also co-authored a paper on trophic cascades following amphibian declines, where it was found that Dipsas aparatiritos actually was increasing in numbers due to a diet independent of amphibians.

The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray

Dipsas aparatiritos is already considered Near Threatened based on IUCN Red List standards. The snake is endemic to Panama and comes from a limited range in the cloud forests of mid-elevation, where at least 44% of the overall range has been deforested. In addition, as snakes are constantly persecuted by humans, almost all snake species are in danger of extinction in the near future. Efforts must be made to conserve these rare species, the researchers believe, especially as so many are just being described now.

 “This work was a true collaboration of scientists from different countries each contributing their expertise to thoroughly understand this new species, morphologically and molecularly,” said Dr. Ray.

“We are in an exciting time in science. Naturalists and scientists must continue to document the natural world; there are many species out there yet to be found and described. The usage of molecular techniques is exciting and facilitates the confirmation of so many new species.”

Research article:

Ray JM, Sánchez-Martínez P, Batista A, Mulcahy DG, Sheehy III CM, Smith EN, Pyron RA, Arteaga A (2023) A new species of Dipsas (Serpentes, Dipsadidae) from central Panama. ZooKeys 1145: 131-167. https://doi.org/10.3897/zookeys.1145.96616

Seven new species of whitefish described in Central Switzerland

Biologists at Eawag identified whitefish species in the lakes of the Reuss river system. Of them, seven are described as new to science.

Biologists at Eawag have identified ten species of whitefish in the lakes of the Reuss river system. Of these, seven have been described as distinct species for the first time – although in two cases this required inspection of specimens from historical collections, since eutrophication of lakes in the 20th century also led to the extinction of fish species in Central Switzerland.

These seven whitefish were described as separate species for the first time, including the “Albeli” from Lake Lucerne, which now bears the name Coregonus muelleri in memory of the whitefish expert Rudolf Müller. Image by Eawag

The “Edelfisch” (Coregonus nobilis) was, after the smaller “Albeli”, the second most commonly caught species of whitefish in Lake Lucerne until, in the second half of the 20th century, phosphate from domestic wastewater and nutrient-rich run-off from farmland led to a massive increase in algal blooms. Compared to the lakes of the Central Plateau, nutrient levels in Lake Lucerne were moderate, and eutrophication was short-lived; even so, due to algal decomposition, oxygen was depleted in the deeper layers of the lake. The “Edelfisch”, which reproduces in the late summer at a spawning depth of 80 metres or more, suffered as a result. Shortly before nutrient inputs decreased following the ban on phosphates in detergents and the expansion of wastewater treatment plants, stocks of this species collapsed and it was considered to be extinct in 1980. Only from the late 1990s were individual specimens caught once again, unequivocally identified as C. nobilis in 2000 by the whitefish specialist and Eawag researcher Rudolf Müller.

Coregonus nobilis, Lake Lucerne, Switzerland.

Five whitefish species in Lake Lucerne

Coregonus nobilis, Lake Lucerne, Switzerland.

As the “Edelfisch” is now a protected species, Lake Lucerne has not lost any of its historically recorded whitefish species. Indeed, in addition to the familiar “Edelfisch”, “Albeli” and “Bodenbalchen”, Eawag scientists have identified two new species – two large whitefish, differing from the previously known species in their habits, morphological characteristics and genetic composition. The pelagic “Schwebbalchen” (Coregonus suspensus) probably lives permanently in the open water, not only for foraging but also for reproduction – a spawning behaviour only previously observed in the “Blaufelchen” (C. wartmanni) of Lake Constance. Occupying a position intermediate to the pelagic “Schwebbalchen” (C. suspensus) and the “Bodenbalchen” (C. litoralis) is the littoral “Schwebbalchen” (C. intermundia).

Lake Zug survivor

Coregonus supersum.

Particularly affected by eutrophication in the mid-20th century were whitefish in Lake Zug, which – like other Central Plateau lakes – was exposed to higher nutrient levels, for a longer period, than waterbodies further upstream. As only the uppermost water layers of this 200-metre-deep lake maintained oxygen levels sufficient to support fish, two whitefish species spawning in the depths of the lake died out – the (Lake Zug) “Albeli” (C. zugensis) and “Albock” (C. obliterus). Indeed, the Lake Zug “Albock” would have been completely forgotten if specimens had not been found by Eawag scientists Oliver Selz and Ole Seehausen in the historical Steinmann-Eawag Collection. Its morphology and historical accounts indicate that the Lake Zug “Albock” was a deep‑water specialist – a specialisation only otherwise observed to the same degree in the (likewise extinct) Lake Constance Kilch (C. gutturosus) and the (still extant) Lake Thun Kropfer (C. profundus).

The only whitefish species still found in Lake Zug today, spawning near the shore, is the “Balchen”. Testifying to its survival is its new scientific name – Coregonus supersum (“I have survived”).

Species endemic to each lake

Also new are the scientific names of the Lake Lucerne “Bodenbalchen” (C. litoralis) and “Albeli” (C. muelleri). For the morphological and genetic studies carried out by Oliver Selz and Ole Seehausen in order to revise the taxonomy of whitefish showed that almost every lake in Central Switzerland has its own species of “Albeli” and “Bodenbalchen”.

Previously, the “Albeli” of Lakes Zug and Lucerne had been classified as members of the same species (C. zugensis), while the “Balchen” spawning near the shore of the various Central Swiss lakes were known as C. suidteri. These collective species names have now been inherited by the extinct Lake Zug “Albeli” (C. zugensis) and the Lake Sempach “Balchen” (C. suidteri).

The Lake Lucerne “Albeli” received the new name C. muelleri in honour of the fisheries biologist and whitefish specialist Dr Rudolf Müller (1944–2023).

Ruedi Müller with the then Lucerne fisheries and hunting administrator, Josef Muggli, catching whitefish. Photo by Robert Muggli, Archive

A reflection of Switzerland

The lakes of the Reuss river system are a reflection of Switzerland as a whole. Since the last ice age, at least 35 whitefish species evolved in the pre-alpine lakes, usually two or more in each lake. Switzerland lost a third of these species during the period of lake eutrophication around the middle of the 20th century. Many of the lost species are known to researchers only thanks to historical collections, such as that created before the eutrophication period by the naturalist Paul Steinmann and currently curated by the Natural History Museum of Bern.

Original source:

Selz OM, Seehausen O (2023) A taxonomic revision of ten whitefish species from the lakes Lucerne, Sarnen, Sempach and Zug, Switzerland, with descriptions of seven new species (Teleostei, Coregonidae). ZooKeys 1144: 95-169. https://doi.org/10.3897/zookeys.1144.67747

Save the Nautilus! Three new species described from the Coral Sea and South Pacific

The enigmatic animals with beautiful shells are facing population declines and, possibly, even extinctions due to the activity of unregulated fisheries.

Guest blog post by Dr Gregory Barord, marine biology instructor at Central Campus and conservation biologist at the conservation organization Save the Nautilus

Nautiloids were once quite plentiful throughout the oceans, based upon the fossil record. Today, they are represented by just a handful of species, including the newly described Nautilus vitiensis of Fiji, Nautilus samoaensis of American Samoa, and Nautilus vanuatuensis of Vanuatu. These descriptions highlight the concept of allopatric speciation, or biogeographic isolation, where populations are geographically separated from other populations, resulting in a barrier to gene flow. Over time, these populations may eventually evolve into distinct species.

Nautilus samoaensis.
Nautilus trap construction. Photo by Gregory Barord

But what does it take to be able to collect the evidence needed to determine if three different populations of nautiluses are in fact three different species? For me, this is the best/worst part of the overall process, because nautilus fishing is not easy. For our team, it starts with building large, steel traps that are about a meter cubed. Then, we wrap the steel frame (ouch), with chicken wire (ouch) mesh (ouch), create an entry hole (ouch), attach it to a surface buoy with about 300 meters of fishing line, and bait it with (ouch) raw meat, usually chicken! Trap construction may take place on a nice beach or a bit inland in the rain or in a warm warehouse. Wherever it takes place, you will have some memories, I mean little scars, on your hands from working with the chicken wire. Looking down at my hands right now, I can remember where I was by looking at each of those scars… worth it!

Tossing the traps into the sea at dusk is the easy part. Load them on the boat, find the right depth, and tip them over the side of the boat. The hard part is retrieving the traps the next day, after about 12 hours of the raw chicken scent moving through the currents. There are a number of methods we’ve used to pull the traps up, from mechanical winches, hand-powered winches, float systems, boat pulls, and of course, just pulling with one hand at a time. Invariably, something happens in each location where we are just pulling the trap up from 300 meters one meter at a time, which takes a good half hour at least. But, at least you are getting a VERY good work-out. Eventually, you see the trap and these white little orbs in it and you know you’ve caught some nautiluses and the pulling is almost done, for now.

Nautilus trap in water with nautiluses in it. Photo by Gregory Barord

The next step might be my favorite. One of us jumps in the water and free dives about 5 meters to carefully (ouch, that chicken wire) reach for the nautiluses in the trap and bring them to the surface. You are face to face with these uniquely, misunderstood organisms who seem like this is just another day for them. For me, this is exhilarating! Once on the boat, they are placed in chilled seawater and from then on, the data collection happens fast. With the living organism in hand, you can start to glean even more of the differences between the species, examining the hood ornaments, or lack thereof. After some photos, measurements, and non-lethal tissue samples, the nautiluses are released and burped.

Nautilus vanuatuensis.

Maybe nautilus burping is my favorite part. To do this, we either dive with SCUBA or free dive with the nautiluses, and ensure there are no air bubbles trapped in the shell that may cause them to be positively buoyant. Imagine, you have one nautilus in each hand and you start swimming down, your feet and the nautilus tentacles pointed toward the surface. At a sufficient depth, you release them and observe their buoyancy. As the nautiluses compose themselves and jet back down to their nektobenthic habitat 300 meters below, you realize you may never see that individual nautilus again, and that nautilus may never see another human, well, maybe they will…

For me, the impetus for this publication in ZooKeys is rooted in nautilus conservation efforts. Over the last 20 years, I have studied nautiluses from many angles and for over 10 years now, have worked with an international team of folks to address nautilus conservation issues. For many nautiluses, probably millions, they were caught in much the same way that our team collected nautiluses. However, their first meeting with humans was their last as they were pulled from the trap, ripped from their protective shell, and tossed back in the ocean, used as bait, or, rarely, consumed. The shell is the attractive piece for shell traders and the living body has no value. It is like shark finning in that sense. As a direct result of these unregulated fisheries, populations of nautiluses have crashed, some have reportedly gone extinct, and international and country level legislation and regulations has been enacted.

A nautilus shell shop. Photo by Gregory Barord
Nautilus vitiensis.

Currently, there are no known fisheries in Fiji, American Samoa, or Vanuatu so the risk of these populations decreasing from fisheries is low, at the moment. Now, what is the risk to these same populations from ocean acidification, increased sedimentation, eutrophication, warming seas, and over-fishing of other species connected to the ecosystem nautiluses reside in? Right now, we simply do not know. Our conservation efforts started with simply counting how many nautiluses were left in different areas across the Indo-Pacific, then recording them in their natural habitat, then tracking their migrations, and now describing new species. There are still many questions to address regarding where they lay eggs, what they eat, and how they behave.

All nautiluses have long been grouped together when describing their natural history, but as we continue to uncover the nautilus story, it is increasingly obvious that each population of nautiluses is different, as exemplified by these three new species descriptions. This is certainly an exciting time for nautilus research, as we uncover more and more information about the secret life of nautiluses. I just hope that this is also an exciting time for nautiluses as well, and they continue doing their nautilus thing as they have done for millions of years.

DiCaprio and Sheth name new species of tree-dwelling snakes threatened by mining

Five new drop-dead-gorgeous tree-dwelling snake species were discovered in the jungles of Ecuador, Colombia, and Panama.

Five new drop-dead-gorgeous tree-dwelling snake species were discovered in the jungles of Ecuador, Colombia, and Panama. Conservationists Leonardo DiCaprio, Brian Sheth, Re:wild, and Nature and Culture International chose the names for three of them in honor of loved ones while raising awareness about the issue of rainforest destruction at the hands of open-pit mining operations. The research was conducted by Ecuadorian biologist Alejandro Arteaga, an Explorers Club Discovery Expedition Grantee, and Panamanian biologist Abel Batista.

The mountainous areas of the upper-Amazon rainforest and the Chocó-Darién jungles are world-renowned for the wealth of new species continually discovered in this region. However, it is becoming increasingly clear that they also house some of the largest gold and copper deposits in the world. During the COVID-19 pandemic, the proliferation of illegal open-pit gold and copper mining operations in the jungles of Ecuador, Colombia, and Panama reached a critical level and is decimating tree-dwelling snake populations.

Illegal mining activity in the upper Ecuadorian Amazon doubled between 2021 and 2022. Photo by Jorge Anhalzer

Neotropical snail-eating snakes (genera Sibon and Dipsas) have a unique lifestyle that makes them particularly prone to the effects of gold and copper mining. First, they are arboreal, so they cannot survive in areas devoid of vegetation, such as in open-pit mines. Second, they feed exclusively on slugs and snails, a soft-bodied type of prey that occurs mostly along streams and rivers and is presumably declining because of the pollution of water bodies.

“When I first explored the rainforests of Nangaritza River in 2014, I remember thinking the place was an undiscovered and unspoiled paradise,” says Alejandro Arteaga, author of the research study on these snakes, which was published in the journal ZooKeys. “In fact, the place is called Nuevo Paraíso in Spanish, but it is a paradise no more. Hundreds of illegal gold miners using backhoe loaders have now taken possession of the river margins, which are now destroyed and turned into rubble.”

Biologist Alejandro Arteaga examines a snail-eating snake in the museum. Photo by Jorge Castillo

The presence of a conservation area may not be enough to keep the snail-eating snakes safe. In southeastern Ecuador, illegal miners are closing in on Maycu Reserve, ignoring landowner rights and even making violent threats to anyone opposed to the extraction of gold. Even rangers and their families are tempted to quit their jobs to work in illegal mining, as it is much more lucrative. A local park ranger reports that by extracting gold from the Nangaritza River, local people can earn what would otherwise be a year’s salary in just a few weeks. “Sure, it is illegal and out of control, but the authorities are too afraid to intervene,” says the park ranger. “Miners are just too violent and unpredictable.”

Gold mining activities in Napo, Ecuador. Photo by Ivan Castaneira

In Panama, large-scale copper mining is affecting the habitat of two of the new species: Sibon irmelindicaprioae and S. canopy. Unlike the illegal gold miners in Ecuador and Colombia, the extraction in this case is legal and at the hands of a single corporation: Minera Panamá S.A., a subsidiary of the Canadian-based mining and metals company First Quantum Minerals Ltd. Although the forest destruction at the Panamanian mines is larger in extent and can easily be seen from space, its borders are clearly defined and the company is under the purview of local environmental authorities.

Sibon irmelindicaprioae, named after Leonardo DiCaprio’s mother, is the rarest of the lot. It occurs in the Chocó-Darién jungles of eastern Panama and western Colombia. Photo by Alejandro Arteaga of Khamai Foundation.

“Both legal and illegal open-pit mines are uninhabitable for the snail-eating snakes,” says Arteaga, “but the legal mines may be the lesser of two evils. At the very least they respect the limit of nearby protected areas, answer to a higher authority, and are presumably unlikely to enact violence on park rangers, researchers, and conservationists.”

Gold mining activities in Napo province, Ecuador. Photo by Ivan Castaneira

Sibon canopy, one of the newly described species, appears to have fairly stable populations inside protected areas of Panama, although elsewhere nearly 40% of its habitat has been destroyed. At Parque Nacional Omar Torrijos, where it is found, there has been a reduction in the number of park rangers (already very few for such a large protected area). This makes it easier for loggers and poachers to reach previously unspoiled habitats that are essential for the survival of the snakes.

Sibon canopy is named in honor of the Canopy Family system of reserves, particularly its Canopy Lodge in Valle de Antón, Coclé province, Panama. Photo by Alejandro Arteaga

Lack of employment and the high price of gold aggravate the situation. No legal activity can compete against the “gold bonanza.” More and more often, farmers, park rangers, and indigenous people are turning to illegal activities to provide for their families, particularly during crisis situations like the COVID-19 pandemic, when NGO funding was at its lowest.

An Ecuadorian miner shows the gold she has collected and that she will use to pay for any family emergency. Photo by Ivan Castaneira

“These new species of snake are just the tip of the iceberg in terms of new species discoveries in this region, but if illegal mining continues at this rate, there may not be an opportunity to make any future discoveries,” concludes Alejandro Arteaga.

A gold mine in Nangaritza. Photo by Alejandro Arteaga

Fortunately, three NGOs in Ecuador and Panama (Khamai, Nature and Culture International, and Adopta Bosque) have already made it their mission to save the snake’s habitat from the emerging gold mining frenzy. Supporting these organizations is vital, because their quest for immediate land protection is the only way to save the snakes from extinction.

Research article:

Arteaga A, Batista A (2023) A consolidated phylogeny of snail-eating snakes (Serpentes, Dipsadini), with the description of five new species from Colombia, Ecuador, and Panama. ZooKeys 1143: 1-49. https://doi.org/10.3897/zookeys.1143.93601

Support Khamai Foundation’s mission to save the upper Amazon rainforest from gold mining: https://www.khamai.bio/save_amazon_rainforest_from_gold_mining.html

Support Nature and Culture International: https://www.natureandculture.org

Support Fundación Adopta Bosque: https://adoptabosque.org

Follow ZooKeys on Twitter and Facebook.

Homo sapiens or insapiens? A new insect species from Kosovo cries for help

A new insect species from Kosovo challenges the idea of the intelligence and cleverness of humankind, compared to other organisms, with its scientific name.

Type locality of the new species. Photo by Halil Ibrahimi

Lying at the center of the Balkan Peninsula, Kosovo harbors a diversity of ecosystems and conditions, which have favored processes leading to the existence of many endemic and rare species. In the past few years, several new species of aquatic insects have been discovered from the small Balkan country, making it unique in terms of biodiversity. Unfortunately, as elsewhere in the Balkans, many of these ecosystems have deteriorated heavily.

A team of scientists from Kosovo, led by Professor Halil Ibrahimi of the University of Prishtina, recently found a new species of aquatic insect, a caddisfly, from the Sharr Mountains in Kosovo, and named it Potamophylax humoinsapiens.

The species epithet humoinsapiens is a combination of two Latin words, “humo”, which in English means “to cover with soil, to bury,” and “insapiens,” meaning “unwise”. The researchers explain this name refers to the unwise and careless treatment of the habitats of the new species: hydropower plant, illegal logging and pollution have greatly degraded the area in the past years. “In some segments, whole parts of the Lepenc River are “buried” in large pipes,” they write in their study, which was published in the open-access Biodiversity Data Journal.

Potamophylax humoinsapiens. Photo by Halil Ibrahimi

“The species name ‘humoinsapiens’ ironically sounds like Homo insapiens, and this new species is right in calling us unwise,” thinks Prof. Ibrahimi. “With its actions, humankind has caused the extinction of many species of insects and other organisms during the past decades and has degraded greatly all known ecosystems in the planet. The debate on questioning wise nature of humans is already ongoing.

In the past few years, Professor Halil Ibrahimi and his team have found several new species of aquatic insects from the Balkans, Middle East and North Africa. In an attempt to raise awareness for this group of vulnerable creatures, endangered greatly by human activities, the team of scientists has given their species unique names. One of their previous discoveries was named Potamophylax coronavirus in order to raise the attention to the silent and dangerous “pandemic” humans have caused in freshwater ecosystems in the Balkans.

The research team behind the discovery. Photo by Halil Ibrahimi

“By combining classical taxonomy and modern molecular analysis techniques with the unique names, we are making insect species talk to our collective consciousness. It is in humankind’s capacity to earn the name Homo sapiens again,” the researchers conclude.

The study was financed by the Ministry of Education, Science, Technology and Information of the Republic of Kosovo and was conducted in the Laboratory of Zoology-Department of Biology of the University of Prishtina.

Original source:

Ibrahimi H, Bilalli A, Gashi A, Grapci Kotori L, Slavevska Stamenkovič V, Geci D (2023) Potamophylax humoinsapiens sp. n. (Trichoptera, Limnephilidae), a new species from the Sharr Mountains, Republic of Kosovo. Biodiversity Data Journal 11: e97969. https://doi.org/10.3897/BDJ.11.e97969

Follow Biodiversity Data Journal on Facebook and Twitter.