New Special Collection on classification and diversity of European forests and forest fringes launched by VCS

We welcome both original research papers and review papers at any spatial scale, from local to continental.

The European Vegetation Survey and the IAVS’ gold open access journal Vegetation Classification and Survey are proud to launch a joint Special Collection dedicated to the classification and diversity of European forests and forest fringes.

Editors: Idoia Biurrun (Spain), Pavel Novák (Czech Republic) & Wolfgang Willner (Austria)

This is the call for the submission of manuscripts for a Special Collection in the journal Vegetation Classification and Survey, dedicated to papers dealing with the classification and diversity of European forests and forest fringes. We welcome both original research papers and review papers at any spatial scale, from local to continental. Presenters at the 31st conference of the European Vegetation Survey in Rome are especially welcome to submit papers related to their presentations, but the Special Collection is open to any paper fitting its scope. The publication of the SC is scheduled for issue 5 of VCS, along 2024, but papers with longer peer-review process might be published in VCS issue 6, in 2025.

Vegetation Classification and Survey is an international, peer-reviewed, online journal on plant community ecology published on behalf of the International Association for Vegetation Science (IAVS) together with its sister journals, Journal of Vegetation Science (JVS) and Applied Vegetation Science (AVS). It is devoted to vegetation survey and classification at any organizational and spatial scale and without restriction to certain methodological approaches. It is a specially attractive venue for vegetation survey papers, as long articles are welcome, and offers free reproduction of color figures. Vegetation Classification and Survey is indexed in the Scopus database, and it is expected that if will be included in the Web of Science soon.

Image by Dalibor Ballian under a CC BY 4.0 license.

Since the journal was launched in 2020, five thematic Special Collections have been published or are in preparation: Neotropical vegetation, Grasslands of Asia, African vegetation studies, The “International Vegetation Classification” initiative: case studies, syntheses, and perspectives on ecosystem diversity around the globe, and Classification of grasslands and other open vegetation types in the Palaearctic. Therefore, this would be the sixth thematic Special Collection, and the first one focused on European forests.

Image by Sarah Marchildon under a CC BY-NC-ND 2.0 license

Procedure and deadlines

  • Until 15 October 2023: Please submit your abstract to Idoia Biurrun (idoia.biurrun@ehu.eus). The abstract must follow the VCS Author Guidelines
  • Until 31 October 2023: Authors will be notified whether their planned work is eligible for submission
  • Until 31 December 2023: Submission of invited papers. Non-invited manuscripts might also be considered on a one-by-one basis
  • Manuscripts will undergo a double-blind peer review process and be published on a one-by-one basis once accepted
  • We anticipate that we will conclude the whole Special Collection at the end of 2024

For detailed author guidelines please consult the earlier issues of the Journal or contact one of the editors of the Special Collection directly: Idoia Biurrun (idoia.biurrun@ehu.eus), Pavel Novák (Pavenow@seznam.cz) and Wolfgang Willner (wolfgang.willner@univie.ac.at). In case we receive many abstracts with promising potential articles, we are open to inviting more guest editors.

Please note that Vegetation Classification and Survey is a gold open access journal, which normally requests Article Processing Charges (APCs) from authors. Thanks to the generous support by IAVS, contributions first-authored by an IAVS member and submitted until 31 December 2023 are exempt from article processing charges, except those authors based on institutions or countries providing specific funding for APCs. 

Follow Vegetation Classification and Survey on Facebook and Twitter.

Jewel of the forest: New electric blue tarantula species discovered in Thailand

The species was previously known on the commercial tarantula market as the “Chilobrachys sp. Electric Blue Tarantula” but no documentation existed describing its distinctive features or natural habitat.

In an exciting discovery, a new species of tarantula with electric blue coloration was found in Thailand.

New electric blue tarantula species discovered in Thailand. Photo by Yuranan Nanthaisong

“In 2022, the bamboo culm tarantula was discovered, marking the first known instance of a tarantula species living inside bamboo stalks. Thanks to this discovery, we were inspired to rejoin the team for a fantastic expedition, during which we encountered a captivating new species of electric blue tarantula” researcher Dr. Narin Chomphuphuang said.

Following the announcement of Taksinus bambus in Thailand, he and his research team, along with JoCho Sippawat, a local wildlife YouTuber, embarked on a survey expedition in the Phang-Nga province. During their survey, they not only identified this new tarantula species by its distinctive electric-blue coloration but also discovered its unique natural history. This is the first tarantula species ever found in a Thai mangrove forest.

The Chilobrachys natanicharum electric-blue tarantula exhibits a blue-violet hue resembling the color of electrical sparks. Photo by Yuranan Nanthaisong

“The first specimen we found was on a tree in the mangrove forest. Collecting them was challenging due to the muddy and waterlogged ground. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions. During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them,” Narin said.

The research team conducting a site area survey recently discovered an electric-blue tarantula near the type locality.  Photo by Narin Chomphuphuang

“The first specimen we found was on a tree in the mangrove forest. Collecting them was challenging due to the muddy and waterlogged ground. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions. During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them,” Narin said.

Catching an electric-blue tarantula is challenging due to the need to climb a tree and lure it out from a complex of hollows with a humid and slippery surface. Photo by Narin Chomphuphuang

“Allow us to introduce our exciting discovery: a new species of tarantula that exhibits a mesmerizing blue-violet hue, reminiscent of electric blue sparks. The secret behind the vivid blue coloration of our tarantula lies not in the presence of blue pigments, but rather in the unique structure of their hair, which incorporates nanostructures that manipulate light to create this striking blue appearance,” Narin said.

Blue is one of the rarest colors to appear in nature, which makes blue coloration in animals particularly fascinating. The scarcity of the color blue in nature can be attributed to the challenges associated with absorbing and reflecting specific wavelengths of light. Blue is difficult to produce in nature because, to appear blue, an object needs to absorb very small amounts of energy while reflecting high-energy blue light. This is challenging, because blue light has shorter wavelengths and higher energy compared to other colors. Generating molecules capable of absorbing this energy is complex, making blue in nature relatively rare. 

Close-up of the font C. natanicharum displaying a blue-violet hue. Photo by Yuranan Nanthaisong

In essence, what we perceive as a blue tarantula is, in fact, a result of how light interacts with the nanostructure-covered hairs on the tarantula’s body, causing some colors to cancel each other out and allowing only blue to be reflected. These biological photonic nanostructures create a remarkable iridescent effect that changes as you alter your viewing angle, making the tarantula even more captivating.

What’s even more fascinating is its ability to not only display blue but also a beautiful violet hue. Violet light occupies only a small portion of the visible light spectrum, and there are very few nanostructures precise enough to exclusively scatter violet light. Moreover, violet wavelengths are even more energetic than blue.

The violet hue of the top view depends on the viewing angle due to the iridescent effect from biological photonic nanostructures. Photo by Yuranan Nanthaisong

In terms of coloration, female and juvenile male C. natanicharum exhibit unique characteristics attributed to the presence of two distinct types of hair. Notably, they possess a more pronounced metallic-blue coloration on various parts of their bodies, while violet hues are predominantly observed in specific areas such as the chelicera, carapace, and certain leg segments. In adult male C. natanicharum, a similar coloration pattern is retained on the chelicera, carapace, and legs, although it appears less intense compared to females. Furthermore, there is a notable shift in coloration on their legs and body, transitioning to white due to the increased density of white setae.

“This species was previously found on the commercial tarantula market. There, it was known as the “Chilobrachys sp. Electric Blue Tarantula” but no documentation existed describing its distinctive features or natural habitat. The exact location where the Electric Blue Tarantula lived remained a mystery until our recent discovery. This has led us to speculate that C. natanicharum may be present in the southern region of Thailand, especially in the remaining forest areas close to where it was found,” Narin said.

The habitat of C. natanicharum includes mangrove forests (left) and highland (right) Photos by Narin Chomphuphuang

According to a study just published in the journal ZooKeys, C. natanicharum exhibits adaptability in inhabiting evergreen and mangrove forests, where tarantulas live inside tree hollows. They can be found at elevations ranging from sea level to highland areas, and live in both arboreal and terrestrial burrows within evergreen forests, at elevations of up to 57 m.

“Unlike our previous discovery, the bamboo culm tarantula, which is specifically associated with bamboo, the electric blue tarantula demonstrates remarkable adaptability. These tarantulas can thrive in arboreal as well as terrestrial burrows in evergreen forests. However, when it comes to mangrove forests, their habitat is restricted to residing inside tree hollows due to the influence of tides, and they cannot be found living terrestrially within mangroves.” Narin said.

Photo by Narin Chomphuphuang

The scientific name of Chilobrachys natanicharum was chosen after an auction campaign for naming the new species. The winner of the auction campaign was Nichada Properties Co., Ltd., Thailand, which suggested a combination of the names of Mr. Natakorn Changrew and Ms. Nichada Changrew, who are company executives.

All proceeds from the auction were donated to support the education of Lahu children in Thailand and poor cancer patients.

“The Lahu people are an indigenous hill tribe in northern Thailand (Musoe) and are known for their vibrant culture and traditional way of life. Unfortunately, many Lahu children are denied access to education due to poverty, leaving them with limited opportunities for their future. The goal is to help change this by providing educational opportunities for Lahu children, giving them a chance to break out of the cycle of poverty. Additionally, cancer remains a significant public health issue globally, affecting millions of people each year. Many cancer patients struggle with financial hardship, which can make accessing quality care even more difficult. We believe that everyone deserves access to quality healthcare, regardless of their financial situation,” the researchers write in their paper.

The proceeds from the auction campaign to choose the scientific name of the new species C. natanicharum were used to support Lahu children in Thailand. Photo by JoCho Sippawat


“We often encounter the question, ‘What are the benefits of studying new species of tarantulas?’ It’s essential for the general public to understand the significance of taxonomy as a fundamental aspect of research. Taxonomy serves a vital role, ranging from the basic, such as when people inquire on social media about the name of a spider, to conducting crucial research aimed at preserving these species from extinction.” Narin said.

These mangrove forest areas serve as the habitat for the electric-blue tarantula C. natanicharum. Photo by Narin Chomphuphuang.

Mangrove forests are invaluable ecosystems offering numerous benefits. However, they face the looming threat of deforestation, which is a destructive process caused by activities such as logging, commercial development, pollution, overfishing, and the impacts of climate change. The electric blue tarantula, the first tarantula species discovered in the mangrove forests of Thailand, is also one of the world’s rarest tarantulas. “When we examine the causes behind the decline of mangrove forests, it becomes apparent that many of these threats are human-induced, both directly and indirectly. This raises a critical question: Are we unintentionally contributing to the destruction of their natural habitats, pushing these unique creatures out of their homes? Or should we advocate for the protection of mangrove forests, not only for the sake of the Electric-Blue Tarantula but also for the preservation of this remarkable jewel of the forest?,” the researchers ask.

Research article:

Chomphuphuang N, Sippawat Z, Sriranan P, Piyatrakulchai P, Songsangchote C (2023) A new electric-blue tarantula species of the genus Chilobrachys Karsh, 1892 from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1180: 105-128. https://doi.org/10.3897/zookeys.1180.106278

The “Sooty Bark Disease”, harmful for maples and humans, can be monitored by pollen sampling stations

The hyper-allergenic spores of the fungus causing Sooty bark disease in maples were detected in six European countries.

Sycamore maples destroyed by the Sooty bark disease. Photo by Dr Miloň Dvořák

Especially after the last few COVID-affected years, nobody doubts that emerging infectious diseases can threaten the whole world. But humans are not the only ones at risk! With intensive global trade, many tree parasites are accidently introduced to Europe in packaging or directly on goods. Traveling in the wood, on plants or in the soil of their pots, they can remain undetected for a long time.

“Forms of life of parasitic fungi are extremely diverse and very often practically invisible,” says Dr Miloň Dvořák of the Department of Forest Protection and Wildlife Management at Mendel University in Brno, Czechia. “An infected tree may look completely healthy for some time, which complicates the control of the disease enormously. It reminds me of the ancient Trojan Horse, where European trees are so surprised, defenceless, and later defeated, like the Trojan warriors.”

How can an infected tree look healthy and then suddenly get sick? “Like in the human body, in trees too, the trigger can be stress,” explains Dr Dvořák. The tolerance of trees to a pathogenic fungus turns lower under the conditions of changing climate and so the tree starts to die of the disease.

One typical example of such a disease is the Sooty Bark Disease (SBD) on maples, caused by a microscopic fungus called Cryptostroma corticale. “The fungus was probably introduced to Europe during the Second World War and for the rest of the 20th century we did not hear much about it,” says Dr Dvořák.  

Sooty Bark Disease (Cryptostroma corticale) on Sycamore. Photo by gailhampshire used under a CC BY 2.0 license

The situation has changed and over the last twenty years the fungus has been reported more and more often. After dry and hot periods, the trees start to die of the infection, which is accompanied by the creation of brown-black masses of “soot” under the peeling bark of the maples.

The “soot” is in fact spores, which help the fungus spread and infect other trees. It is harmful for wounded trees, but it can also cause hypersensitivity pneumonitis in humans.

So, the species became a target for a group of phytopathologists gathered by an European HORIZON 2020 project entitled “Holistic management for emerging forest pests and diseases (HOMED)”. Scientists from six countries (Czechia, France, Italy, Portugal, Sweden and Switzerland), including Dr Dvořák, decided to develop a precise, DNA based (real-time PCR) diagnostic method to detect and monitor the pathogen in air samples. They published their method, the outcomes of its use, and their new findings about SBD epidemiology in the open-access journal NeoBiota.

Volumetric air sampler installed in Brno, Czech Republic, sampling pollen for allergen forecast. Photo by Aneta Lukačevičová

How to look for DNA in air samples? Simple devices called volumetric air samplers can suck the air against a piece of sticky tape, where every particle gets stuck and can be analyzed. “These devices are not really cheap, moreover, they demand regular maintenance,” explains Dr Dvořák. “But, actually, they are in common and regular use in the whole of Europe – remember the weather forecast, particularly that part about the “pollen report” for allergic people. This forecast is based on data of more than 600 stations united by the European Aeroallergen Network (EAN). Every station permanently maintains one volumetric air sampler and keeps an archive of the samples.”

The HOMED team got in contact with their national EAN collaborators and processed their samples with molecular techniques (real-time PCR).

Thanks to this sensitive detection method, the survey among samples was very successful. The “sooty” fungus was found in air samples from countries where the disease has been reported, and, in a more detailed study in France, the pathogen was found in the air 310km from currently diseased trees! This result suggests that the fungus can disperse long distances by wind.

Black stromata – source of billions of hyper-allergenic spores. Photo by Dr Miloň Dvořák

“Our results show that the SBD disease is at an exponentially increasing phase in France and Switzerland with an increase in the magnitude of the number of disease cases that peaks following a marked water deficit,” the researchers write in their study. They hope that early aerial detection of C. corticale in disease-free countries could help implement more efficient measures for SBD detection and eradication in the field.

“This European experiment fully confirmed the potential of this approach to monitor the pathogen’s outbreaks in early stages of its spread,” concludes Dr Dvořák. 

Research article:

Muller E, Dvořák M, Marçais B, Caeiro E, Clot B, Desprez-Loustau M-L, Gedda B, Lundén K, Migliorini D, Oliver G, Ramos AP, Rigling D, Rybníček O, Santini A, Schneider S, Stenlid J, Tedeschini E, Aguayo J, Gomez-Gallego M (2023) Conditions of emergence of the Sooty Bark Disease and aerobiology of Cryptostroma corticale in Europe. In: Jactel H, Orazio C, Robinet C, Douma JC, Santini A, Battisti A, Branco M, Seehausen L, Kenis M (Eds) Conceptual and technical innovations to better manage invasions of alien pests and pathogens in forests. NeoBiota 84: 319-347. https://doi.org/10.3897/neobiota.84.90549

Follow NeoBiota on Facebook and Twitter. Follow the HOMED project on Twitter.

New NeoBiota special issue: tackling invasive alien forest pests in Europe

The issue comprises 16 articles on various aspects of the ecology and management of invasive alien insects and fungal pathogens in Europe’s forests.

Every year, new alien species of insects and fungi invade European forests. Some of them are exotic pests and diseases that can affect the survival and growth of trees.

To help develop strategies for monitoring and managing these non-native forest pests, a consortium of over 50 scientists representing 23 research institutions and 15 countries from across the globe joined their skills in the Horizon 2020 project HOMED “Holistic management of emerging forest pests and diseases.”

Alex Stemmelen during his presentation at the XXVI ICE Congress 2022. He is the first author of a paper on the pests of Douglas fir in NeoBiota‘s special issue.

Between 2018 and 2022, the HOMED consortium developed a full panel of scientific knowledge and practical solutions to better deal with emerging native and alien invasive pests and diseases.

Fruiting bodies of Austropuccinia psidii on Myrtus communis (symptoms of myrtle rust). Photo by Alberto Santini

This includes targeting the successive phases of invasion, and developing innovative methods for each phase: risk analysis, prevention/detection, surveillance, eradication/containment, and control.

To share the results of this cooperation and help researchers further improve the management of emerging forest pests and pathogens, HOMED has made the main outcomes of its research publically available.

They are now published in a special issue in the open-access journal NeoBiota, called “Conceptual and technical innovations to better manage invasions of alien pests and pathogens in forests”. The issue comprises 16 articles on various aspects of the ecology and management of invasive alien insects and fungal pathogens in Europe’s forests.

The cover of NeoBiota’s new special issue.

“Because forests provide irreplaceable goods and materials for people and the European economy, because maintaining healthy forests is essential for their contribution to climate change mitigation through sequestration and storage of atmospheric carbon, it is urgent to develop more effective protective measures against the ever-increasing threat of invasive forest pests,” the editors of the special issue write in an editorial.

More tools are needed that can help identify, prevent and monitor invasive alien species and improve early warning methods, which makes the research in this issue so crucial and timely.

“The role of researchers is to develop, test and promote the most relevant methods and tools at each stage of the invasion framework, i.e., for the early detection of these invasive alien organisms, for the identification of the species and for the monitoring of their damage and spread, but also for new eradication and control solutions,” the editors continue.

Hervé Jactel, Lukas Seehausen and Martin Gossner at HOMED’s and Pensoft’s stand during the XXVI ICE Congress 2022.

One highlight in the published research is a study exploring how using the methods of citizen science at schools can increase invasive species awareness. Another explores the efficiency of artificial intelligence in pest detection.

“The publications collected in this special issue demonstrate that current conceptual, methodological, and technological advances allow a great progress in the anticipation, monitoring and management of invasive pest species in forests,” the editors conclude.

Follow HOMED on Twitter. Follow NeoBiota on Twitter and Facebook. See the latest tweets on the special issue using the hashtag #HOMED_SI.

A new “groins of fire” frog, from the Peruvian Amazon

“When we found this new species in the Amazon lowlands of central Peru, we were quite surprised and kind of speechless.”

Guest blog post by Germán Chávez

As a South American herpetologist, it is inevitable to be absolutely buzzed every time I hear “Germán, you have to go to the Amazon jungle”. Going to the Amazon forest in Peru is perhaps the most joyful way to do your work. The chances to find so many frogs, lizards, snakes, turtles, and even caimans are really high, so one can’t help but get excited.

The Agua Blanca forest. Photo by Germán Chávez

The thing is, to someone like me who focuses their work on describing new species, the expectations shouldn’t be that high. The Amazon has always been a place full of mysteries, so many explorers, seduced by its enigmatic atmosphere, have gone deeper and deeper into the Amazonia. This has resulted in the description of so many species and very few unexplored places left.

So, when Wilmar Aznaran and I found this new species in the Amazon lowlands of central Peru, a well-visited area, we were quite surprised and kind of speechless. I have to confess that my reaction was “Bloody hell!” Externally, the frog is clearly different from any other similar species, and that was evident for us at the very moment we caught it. Indeed, the first option for the title of our new paper in Evolutionary Systematics was “Expect the unexpected: a new treefrog from the Amazon lowlands of Peru.” We could not believe that a medium-sized arboreal frog had passed in front of other researchers’ eyes, and remained unseen.

Scinax pyroinguinis. Photo by Germán Chávez

Soon we found out that it is not a common species in the area: after catching two individuals, we were unable to find more. Not ready to give up, we went once more time to that site a few months later and our efforts to find it were unsuccessful, so we suggest it is not a common frog.

At that point, we knew that we had a new species on hands, but describing it with only two specimens was challenging. Luis A. García-Ayachi went to the area and his efforts were also unsuccessful. That is when Alessandro Catenazzi joined us, so we decided to add an integrative approach to our work, basing our research on morphological and genetic differences. I can only say thanks to all our co-authors: from then on, everything started to work out.

Scinax pyroinguinis. Photo by Germán Chávez

We noticed there were wildfires in the area, are a serious threat to the frog’s habitat. So it is really curious that the orange pattern on the groins, thighs and shanks of the new species, resembles flames, like those threatening its habitat. No better name for our frog than Scinax pyroinguinis, which literally means “groins of fire”.

We hope that this discovery encourages people  and institutions to protect these remnant forests in central Peru, because they may yet harbour unknown species. If these forests disappear, we will probably lose a diversity that we do not even know now yet, and may never will. It is sort of a race against deforestation and habitat loss, but this doesn’t mean there’s nothing we can do. Research like ours is really important to help put the focus on this place, at least in the short term, and try to attract people to join forces in the conservation of Scinax pyroinguinis and its habitat.

Research article:

Chávez G, Aznaran W, García-Ayachi LA, Catenazzi A (2023) Rising from the ashes: A new treefrog (Anura, Hylidae, Scinax) from a wildfire-threatened area in the Amazon lowlands of central Peru. Evolutionary Systematics 7(1): 183-194. https://doi.org/10.3897/evolsyst.7.102425

How non-native tree species affect biodiversity

Non-native forest tree species can reduce native species diversity if they are planted in uniform stands, finds an international review study.

Non-native forest tree species can reduce native species diversity if they are planted in uniform stands. In contrast, the effects of introduced species on soil properties are small. This was found by an international review study with the participation of the Swiss Federal Institute for Forest, Snow and Landscape Research WSL.

Curse or blessing? Opinions are divided on non-native tree species. In addition to native species, many foresters also plant non-native species that can withstand the increasing summer drought. In various parts of Europe, the latter are already important suppliers of timber. However, conservationists fear ecological damage, for example if native species are displaced or tree pathogens and insect pests are introduced.

In Switzerland, Douglas fir is partly used for afforestation. However, large pure stands, such as those found in Germany, are prohibited there. Photo by Thomas Reich

Now a team of European researchers, led by Thomas Wohlgemuth of WSL, has looked at the state of knowledge on the ecological consequences of alien tree species in Europe. They analysed the results of 103 studies on seven such species. All of these studies had investigated how stands dominated by non-native tree species affected biodiversity or soil condition under the trees compared to stands of native tree species. The organisms studied included plants, mosses, microorganisms and insects from the forest floor to the treetops.

Of the seven alien species studied, only the Douglas fir is currently planted in larger numbers in the Swiss forests. While foresters used to value its fast, straight growth and its versatile wood, today they appreciate its higher drought tolerance compared to spruce. Other species are problematic because they can spread uncontrollably. The North American Robinia, for example, is invasive and can displace native species. It was already introduced in Europe 400 years ago and used in Switzerland, among other things, to stabilise soils.

Robinia can spread rapidly and form stands as here in Valais. Photo by Thomas Reich

Negative effects on biodiversity predominate

Across the 103 studies, the consequences of non-native species for biodiversity were negative. Comparisons from 20 studies show, for example, that on average fewer insect species live on and in Douglas fir than in spruce or beech stands. Robinia also reduces the diversity of insects, eucalyptus that of birds. This is hardly surprising, says Wohlgemuth, head of the WSL Forest Dynamics Research Unit. Because: “These results apply to comparisons between pure stands.” In continuous, uniform plantations, many alien species clearly have worse impacts than native species.

Proportion of cases with increasing (green), decreasing (red) or non-significant (grey) effects of tree species non-native to Europe on diversity attributes (abundance, species richness or diversity) of different taxonomic groups in comparison to native vegetation. Numbers of cases are shown next to the NNTs names, below the diversity attributes and above the bars.

But alien species do not only have negative impacts. Most of them do not affect soil properties. The easily degradable needles of Douglas firs can even make more nutrients available than the poorly degradable spruce needles. “When it comes only to soil properties, the Douglas fir has no negative impact,” Wohlgemuth says. In general, an equal number of studies found positive and negative effects of the seven non-native species on the soil.

Douglas firs are attractive for forestry because of their fast growth, good wood properties and – in regard to climate change – their drought resistance. Photo by Thomas Reich

Furthermore, it makes a difference whether the alien species are more closely or more distantly related to European tree species. “Tree species without closer relatives, such as eucalyptus and acacia from Australia, reduce species diversity more strongly across all studies than closely related species, such as Douglas fir and wild black cherry from North America,” adds Martin Gossner, head of the WSL Forest Entomology Group and second author of the study.

A Douglas fir. Photo by Neptuul under a CC BY-SA 4.0 license

It all depends on the management

Management has a significant influence on whether Douglas fir or other tree species are good or bad for a forest overall. Uniform and dense Douglas fir stands are unsuitable habitats for many organisms. However, the same is true for spruces, which have been planted extensively for timber production in lowland areas of Central Europe over the last 100 years. On the other hand, Douglas firs in stands of native forest trees, individually or in small groups, would hardly disturb the ecosystem, Wohlgemuth says: “We conclude that the impact on native biodiversity is low with mixed-in Douglas firs.”

Should foresters plant non-native tree species or not? Despite certain negative aspects, Wohlgemuth does not recommend total renunciation. “Particularly in the case of Douglas fir, the facts show that moderate admixture in stands has little impact on native biodiversity, while at the same time preserving ecosystem services such as the production of construction timber. This is especially true when other, less drought-resistant conifers are increasingly lacking with regard to unchecked climate change.”

Research article:

Wohlgemuth T, Gossner MM, Campagnaro T, Marchante H, van Loo M, Vacchiano G, Castro-Díez P, Dobrowolska D, Gazda A, Keren S, Keserű Z, Koprowski M, La Porta N, Marozas V, Nygaard PH, Podrázský V, Puchałka R, Reisman-Berman O, Straigytė L, Ylioja T, Pötzelsberger E, Silva JS (2022) Impact of non-native tree species in Europe on soil properties and biodiversity: a review. NeoBiota 78: 45-69. https://doi.org/10.3897/neobiota.78.87022

Web news piece originally published by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. Republished with permission.

Follow NeoBiota on Twitter and Facebook.

In the Atlantic Forest, the lowland tapir is at risk of extinction

Lowland tapir populations in the Atlantic Forest in South America are at risk of almost complete disappearance, scientists have estimated. The main long-term threat to their well-being is population isolation, as hunting and highways keep populations away from each other. Urgent measures need to be taken to connect isolated populations and ensure the long-term conservation of tapirs, warn the authors of a new study published in the open-access journal Neotropical Biology and Conservation.

Lowland tapir populations in the Atlantic Forest in South America are at risk of almost complete disappearance, scientists have estimated. Weighing up to 250 kg, the animal can adapt to most habitats in South America—but its populations continue to decline across its range.

Today, its survival is seriously threatened: it can be found in just 1.78% of its original distributional range in the Atlantic Forest biome, which covers parts of Brazil, Argentina and Paraguay. The main long-term threat to its well-being is population isolation, as hunting and highways keep populations away from each other.

Lowland tapir. Photo by Patricia Medici

Urgent measures need to be taken to connect isolated populations and ensure the long-term conservation of tapirs, warn the authors of a new study on the distribution and conservation status of lowland tapirsin the South American Atlantic Forest, published in the open-access journal Neotropical Biology and Conservation

The research was done by Kevin Flesher, PhD, researcher at the Biodiversity Study Center, Michelin Ecological Reserve, Bahia, and Patrícia Medici, PhD, coordinator of the Lowland Tapir Conservation Initiative, a project developed by the Institute for Ecological Research in Brazil, and chair of the Tapir Specialist Group at the Species Survival Commission in the International Union for Conservation of Nature.

 “Of the 48 tapir populations identified during the study, between 31.3% and 68.8% are demographically unviable (low number of individuals), and between 70.8% and 93.8% of the populations are genetically unviable (low gene flow). Only 3-14 populations are still viable in the long run when both criteria are considered. The evidence suggests that with the appropriate conservation actions, the lowland tapir could be broadly distributed throughout the Atlantic Forest,” says Kevin Flesher. 

Lowland tapir. Photo by Alexander Blanco

“Tapirs have low reproductive potential, including a long reproductive cycle with the birth of just one young after a gestation period of 13-14 months and intervals of up to three years between births. Our populational simulations clearly show how, in the case of small populations, even the loss of a single individual per year can result in rapid extinction of an entire local population,” adds Medici. 

Lowland tapir. Photo by Bill Konstant

Kevin Flesher dedicated 15 years to visiting 93 reserves in the Atlantic Forest, talking to people and analyzing 217 datasets, before he compiled the necessary data to design conservation actions that can ensure the survival of tapirs in the area. 

The states of São Paulo and Paraná in Brazil have the largest number of remaining populations: 14 and 10, respectively. The two largest populations are in Misiones, Argentina, and in the neighboring Iguaçu and Turvo reserves, in Paraná and Rio Grande do Sul, Brazil.

“As far as our knowledge goes, there is no evidence of movement of tapirs between these populations,” points out Medici.

The distance between population fragments, however, is not what is stopping them.

“The central problem is the multiple threats they face while crossing the habitat,” explains Flesher. Highways are one major obstacle that limits the access of tapirs to forests with adequate habitat. “For example, the heavy traffic on highway BR-101 (which cuts the Brazilian Atlantic Forest from North to South) is a death trap to wildlife. Tapirs often die when attempting to cross it,” explains Medici. 

The construction of highways and expansion of traffic in and around natural areas is a serious threat to large tapir populations that might otherwise have the chance to thrive, like those in Misiones, Argentina, and Serra do Mar, Brazil. 

“Roadkill is a significant cause of death in six of the eight reservations in which highways cross tapir populations, and the expansion of the roadway grid in the country threatens to cause population fragmentation in at least four populations,” points out Flesher. This is why finding ways to allow tapirs to cross highways safely is an urgent conservation priority.

Lowland tapir. Photo by Patricia Medici

The results of the study, however, give cause for “cautious optimism” for the future of tapirs in the area: after decades of dedicated conservation efforts, the situation is starting to improve. 

“Despite these continuing challenges for tapir conservation, most populations appear to be stable or increasing and the conservation outlook for the species is better than several decades ago, when the first efforts to protect the species began,” Kevin Flesher concludes.

Research article:

Flesher KM, Medici EP (2022) The distribution and conservation status of Tapirus terrestris in the South American Atlantic Forest. Neotropical Biology and Conservation 17(1): 1-19. https://doi.org/10.3897/neotropical.17.e71867

19th-century bee cells in a Panamanian cathedral shed light on human impact on ecosystems

About 120 clusters of 19th-century orchid bee nests were found during restoration work on the altarpiece of Basilica Cathedral in Casco Viejo (Panamá). Having conducted the first pollen analysis for these extremely secretive insects, the researchers identified the presence of 48 plant species, representing 23 families.

Casco Viejo, Panamá in 1875, as seen from the summit of Cerro Ancón.
A white tower of the Cathedral where bees were nesting is visible in the distant background in the centre of the peninsula.
Photo by Eadweard Muybridge, courtesy of the Smithsonian American Art Museum; gift of Mitchell and Nancy Steir.

Despite being “neotropical-forest-loving creatures,” some orchid bees are known to tolerate habitats disturbed by human activity. However, little did the research team of Paola Galgani-Barraza (Smithsonian Tropical Research Institute) expect to find as many as 120 clusters of nearly two-centuries-old orchid bee nests built on the altarpiece of the Basilica Cathedral in Casco Viejo (Panamá). Their findings are published in the open-access Journal of Hymenoptera Research.

Locations of nest cell aggregations of Eufriesea surinamensis within the Cathedral in Casco Viejo, Panamá
Photo by Paola Galgani-Barraza

This happened after restoration work, completed in 2018 in preparation for the consecration of a new altar by Pope Francis, revealed the nests. Interestingly, many cells were covered with gold leaf and other golden material applied during an earlier restoration following an 1870 fire, thus aiding the reliable determination of the age of the clusters. The cells were dated to the years prior to 1871-1876.

The bee species, that had once constructed the nests, was identified as the extremely secretive Eufriesea surinamensis. Females are known to build their nests distant from each other, making them very difficult to locate in the field. As a result, there is not much known about them: neither about the floral resources they collect for food, nor about the materials they use to build their nests, nor about the plants they pollinate.

However, by analysing the preserved pollen for the first time for this species, the researchers successfully detected the presence of 48 plant species, representing 43 genera and 23 families. Hence, they concluded that late-nineteenth century Panama City was surrounded by a patchwork of tropical forests, sufficient to sustain nesting populations of what today is a forest-dwelling species of bee.

Not only did the scientists unveil important knowledge about the biology of orchid bees and the local floral diversity in the 19th century, but they also began to uncover key information about the functions of natural ecosystems and their component species, where bees play a crucial role as primary pollinators. Thus, the researchers hope to reveal how these environments are being modified by collective human behaviour, which is especially crucial with the rapidly changing environment that we witness today.

The orchid bee Eufriesea surinamensis
Photo by Paola Galgani-Barraza

Original source:

Galgani-Barraza P, Moreno JE, Lobo S, Tribaldos W, Roubik DW, Wcislo WT (2019) Flower use by late nineteenth-century orchid bees (Eufriesea surinamensis, Hymenoptera, Apidae) nesting in the Catedral Basílica Santa María la Antigua de Panamá. Journal of Hymenoptera Research 74: 65-81. https://doi.org/10.3897/jhr.74.39191