The leaf-mining pygmy moths (family Nepticulidae) and the white eyecap moths (family Opostegidae) are among the smallest moths in the world with a wingspan of just a few millimetres. Their caterpillars make characteristic patterns in leaves: leaf mines. For the first time, the evolutionary relationships of the more than 1000 species have been analysed on the basis of DNA, resulting in a new classification.
Today, a team of scientists, led by Dr Erik J. van Nieukerken and Dr. Camiel Doorenweerd, Naturalis Biodiversity Center, Leiden, The Netherlands, published three inter-linked scientific publications in the journal Systematic Entomology and the open access journal ZooKeys, together with two online databases, providing a catalogue with the names of all species involved.
The evolutionary study, forming part of the PhD thesis of Doorenweerd, used DNA methods to show that the group is ancient and was already diverse in the early Cretaceous, ca. 100 million years ago, partly based on the occurrence of leaf mines in fossil leaves. The moths are all specialised on some species of flowering plants, also called angiosperms, and could therefore diversify when the angiosperms diversified and largely replaced ecologically other groups of plants in the Cretaceous. The study lead to the discovery of three new genera occurring in South and Central America, which are described in one of the two ZooKeys papers, stressing the peculiar character and vastly undescribed diversity of the Neotropic fauna.
Changing a classification requires a change in many species names, which prompted the authors to simultaneously publish a full catalogue of all 1072 valid species names that are known worldwide and the many synonymic names from the literature from the past 150 years.
Creating such a large and comprehensive overview became possible from the moths and leaf-mine collections of the world’s natural history museums, and culminates the past 35 years of research that van Nieukerken has spent on this group. However, a small, but not trivial, note in one of the publications indicates that we can expect at least another 1000 species of pygmy leafminer moths that are yet undiscovered.
###
Original sources:
Doorenweerd C, Nieukerken EJ van, Hoare RJB (2016) Phylogeny, classification and divergence times of pygmy leafmining moths (Lepidoptera: Nepticulidae): the earliest lepidopteran radiation on Angiosperms? Systematic Entomology, Early View. doi: 10.1111/syen.1221.
Nieukerken EJ van, Doorenweerd C, Nishida K, Snyers C (2016) New taxa, including three new genera show uniqueness of Neotropical Nepticulidae (Lepidoptera). ZooKeys 628: 1-63. doi: 10.3897/zookeys.628.9805.
Nieukerken EJ van, Doorenweerd C, Hoare RJB, Davis DR (2016) Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera: Nepticuloidea). ZooKeys 628: 65-246. doi: 10.3897/zookeys.628.9799.
Nieukerken EJ van (ed) (2016) Nepticulidae and Opostegidae of the world, version 2.0. Scratchpads, biodiversity online.
Nieukerken EJ van (ed) (2016). Nepticuloidea: Nepticulidae and Opostegidae of the World (Oct 2016 version). In: Species 2000 & ITIS Catalogue of Life, 31st October 2016 (Roskov Y., Abucay L., Orrell T., Nicolson D., Flann C., Bailly N., Kirk P., Bourgoin T., DeWalt R.E., Decock W., De Wever A., eds). Digital resource at http://www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858. http://www.catalogueoflife.org/col/details/database/id/172
New earthworm family, named Kazimierzidae, has been established for a South African indigenous genus of 21 species. Although the circulatory system in the group has been regarded as exclusive upon their original description in 2006, their raising to a family status have only recently been confirmed by a research team from South Africa.
Scientists Mrs Thembeka Nxele, Dr Danuta Plisko (original discoverer of the genus Kazimierzus, now known as family Kazimierzidae), affiliated with Natal Museum (NMSA), Oliver Tendayi Zishiri, affiliated with University of KwaZulu-Natal, and Dr Taro Mwabvu, University of Mpumalanga, looked into the earthworm collection at the NMSA, as well as the type material and the available literature. Their study is published in the open access journal African Invertebrates.
When compared to the rest of the members in the family Microchaetidae, where the former genus had been placed, the studied earthworms show a number of distinct characters, including an “exclusive” circulatory system. In these species it is a simple single tube stretching along the whole body.
All 21 earthworm species, now members of the newly established family, can only be found in small areas restricted in the western and south-western Atlantic coast of South Africa. These locations have long been known for their endemic invertebrates and diverse flora.
In their paper, the authors note that it is actually the restricted range, and therefore the specific ecological requirements, that might have led these earthworms to become that different from other species. Their distribution and, hence, poor dispersal ability, are also the reason why the newly established group would be particularly vulnerable if the habitat is transformed.
“The species distribution of earthworms in Southern Africa is presently poorly known hence the urgency for extended study on earthworm diversity and their distribution patterns,” point out the scientists. “Extensive earthworm collection in the western Atlantic coast may bring more data on this and other taxa.”
###
Original source:
Nxele TC, Plisko JD, Mwabvu T, Zishiri TO (2016) A new family Kazimierzidae for the genus Kazimierzus, earlier recorded to the composite Microchaetidae (Annelida, Oligochaeta). African Invertebrates 57(2): 111-117. doi: 10.3897/AfrInvertebr.57.10042
While new ant species are usually discovered in surveys involving researchers searching through leaf litter, it turns out that sifting through the stomach contents of insect-eating frogs might prove no less effective, especially when it comes to rare species. Such is the case of a new species of rarely collected long-toothed ant, discovered in the belly of a Little Devil poison frog in Ecuador.
The new ant species, named Lenomyrmex hoelldobleri after renowned myrmecologist Bert Hölldobler on the occasion of his 80th birthday, was described based on a single individual – a female worker, recovered from a Little Devil poison frog. It is the seventh known species in this rarely collected Neotropical genus.
Similarly to its relatives within the group, this ant amazes with its slender and elongate mouthpart, yet it is larger than all of them. The remarkable jaws speak of specialised predatory habits, however, so far, nothing is known about these ants’ feeding behavior.
The amphibian, whose diet majorly consists of ants, was collected from the Ecuadorian region Choco, which, unfortunately, despite being one of the most biologically diverse areas in the world with exceptionally high levels of endemism, is also one of Earth’s most threatened areas.
In conclusion, the authors point out that “studying vertebrate stomach contents is not only a way of studying the trophic ecology” (meaning the feeding relationships between organisms), “but also an interesting source of cryptic and new arthropod species, including ants.”
Furthermore, the scientists note that nowadays there is no need to kill a frog, in order to study its stomach. “Stomach flushing methods have been developed and successfully applied in numerous studies, which avoids killing individuals.”
Original source:
Rabeling C, Sosa-Calvo J, O’Connell LA, Coloma LA, Fernández F (2016) Lenomyrmex hoelldobleri: a new ant species discovered in the stomach of the dendrobatid poison frog, Oophaga sylvatica (Funkhouser). ZooKeys 618: 79-95. doi: 10.3897/zookeys.618.9692
Shimmering carapaces and rattling claws make colourful freshwater crabs attractive to pet keepers. To answer the demand, fishermen are busy collecting and trading with the crustaceans, often not knowing what exactly they have handed over to their client.
Luckily for science and nature alike, however, such ‘stock’ sometimes ends up in the hands of scientists, who recognise their peculiarities and readily dig into them to make the next amazing discovery. Such is the case of three researchers from University of New South Wales, Australia, The Australian Museum, Sun Yat-sen University, China, and National Chung Hsing University, Taiwan, who have found a new species and even a new genus of freshwater crab, and now have it published in the open access journal ZooKeys.
Knowing about the growing demand for eye-catching freshwater crabs from southern China, the authors took a look at the ornamental fish market to eventually identify an individual with unusually structured male gonopod, which in crustaceans is a swimming appendage modified to serve as a reproductive organ. Having their interest drawn by the peculiar crab, lead author Chao Huang managed to persuade the fish dealer to let them survey the collection site located in northern Guangdong, southern China.
Despite superficial resemblance to an already existing freshwater crab genus, at second glance, the crab turned out to be quite distinct thanks to a unique set of features including the carapace, the gonopod and the relatively long and slender legs. Once the molecular analyses’ results were also in, the authors had enough evidence to assign the freshwater crab as a species and even a genus new to science.
Being a primarily aquatic species, the new crab prefers the pools of limestone hillstreams, therefore its name Yuebeipotamon calciatile, where calciatile means ‘living on limestone’. To adapt to the habitat, the species seems to have developed its characteristic slender legs, which make it easier for the crab to climb and move around whenever the short-lived limestone hillstreams make it search for a new home.
The carapace of the new crab is usually coloured in maroon to dark brown, while the claws and legs are reddish to purplish. Interestingly, the adults are much more vivid compared to the juveniles.
###
Original source:
Citation: Huang C, Shih H-T, Mao SY (2016) Yuebeipotamon calciatile, a new genus and new species of freshwater crab from southern China (Crustacea, Decapoda, Brachyura, Potamidae). ZooKeys 615: 61-72. doi: 10.3897/zookeys.615.9964
As many as 24 assassin bugs new to science were discovered and described by Dr. Guanyang Zhang and his colleagues. In their article, published in the open access Biodiversity Data Journal, they describe the new insects along with treating another 47 assassin bugs in the same genus. To do this, the scientists examined more than 10,000 specimens, coming from both museum collections and newly undertaken field trips.
Assassin bugs are insects that prey upon other small creatures, an intriguing behavior that gives the common name of their group. There are some 7000 described species of assassin bugs, but new species are still being discovered and described every year.
Linnaeus, the Swedish scientist, who established the universally used Linnean classification system, described the first species (Zelus longipes) of Zelus in 1767. Back then, he placed it in the genus Cimex, from where it was subsequently moved to Zelus. All of Zhang & Hart’s new species are from the Americas. Mexico, Panama, Peru, Colombia and Brazil are some of the top countries harboring new species.
To conduct the research, Zhang examined more than 10,000 specimens and nearly all of them have been databased. These specimen records are now freely and permanently available to everybody. Zhang’s work demonstrates the value of natural history collections. The specimens used in his work come from 26 museums in nine countries. The discovery of the new species would not have been possible without these museums actively collecting and maintaining their insect collections.
It took more than a century for some of the new species to be formally recognized and described. The first specimens of the species Zelus panamensis and Zelus xouthos, for example, had been collected in 1911 and 1915 from Panama and Guatemala. However, since then they had been waiting quietly in the collection of the Smithsonian National Museum of Natural History, USA. Now, over 100 years later, they are finally discovered and given scientific names.
Meanwhile, more recently collected specimens also turned out to be new species. Specimens of Zelus lewisi and Zelus rosulentus were collected in 1995 and 1996 from Costa Rica and Ecuador, about two decades ago, a timeframe considered relatively short for taxonomic research. These interesting patterns of time lapse between specimen collecting and scientific description suggest that it is equally important to examine both long deposited in museums specimens and those newly collected from the field.
The kind of research performed by Zhang and his colleagues is called revisionary taxonomy. In revisionary taxonomy a researcher examines a large number of specimens of a group of organisms of his or her interest. This can be either a monophyletic lineage or organisms from a particular region. The scientist’s goal is to discover and describe new species, but also examine and revise previously published species.
Besides describing new species, the present taxonomic monograph treats another 47 previously described species. Nearly all species now have images of both males and females and illustrations of male genitalia. Some of these insects are strikingly brightly colored and some mimic wasps.
###
Original source:
Zhang G, Hart E, Weirauch C (2016) A taxonomic monograph of the assassin bug genusZelusFabricius (Hemiptera: Reduviidae): 71 species based on 10,000 specimens. Biodiversity Data Journal 4: e8150.doi: 10.3897/BDJ.4.e8150
The image that comes to mind when we think of new species being discovered is that of scientists sampling in remote tropical forests, where humans have barely set foot in. However, new species waiting to be discovered can in fact be very close to us, even if we live in a strongly humanized continent like Europe.
Scientists Eduardo Morano, University of Castilla-La Mancha, and Dr Raul Bonal, University of Extremadura, have discovered a new species of spider, formally called Cheiracanthium ilicis, in an area which does not match the image of a pristine habitat at all.
The new species was found in a strongly humanized area in central Spain, specifically, in isolated trees at the borders of cereal fields. These trees, mainly Holm oaks (Quercus ilex), are those remaining of the former oak woodlands that once covered the Iberian Peninsula and which have been cleared for centuries.
The systematic sampling revealed the newly discovered spider had a an exclusive preference for Holm Oaks, as all individuals were collected from the trunks and branches of these trees. Therefore, it was named after this tree’s scientific name “ilicis”.
While adults measure about a centimetre in body length, juveniles are smaller and have greenish colouration that mimics new oak shoots.
The mouthparts are proportionally large, as in the case of other species of the genus, like closely related C. mildei. In the case of the latter, the mouthparts are large enough to penetrate human skin, although the effects of the poison appear mild.
From a conservation perspective, the present study puts forward the need to preserve isolated trees in agricultural landscapes. They are not only a refuge to common forest organisms but to novel species yet to be discovered as well.
###
Original source:
Morano E, Bonal R (2016) Cheiracanthium ilicis sp. n. (Araneae, Eutichuridae), a novel spider species associated with Holm Oaks (Quercus ilex). ZooKeys 601: 21-39. doi: 10.3897/zookeys.601.8241
With its extraordinary defensive hairs, a Colombian tarantula proved itself as not only a new species, but also a new genus. It is hypothesised that the new spider is the first in its subfamily to use its stinging hairs in direct attack instead of ‘kicking’ them into the enemy.
Described in the open access journal ZooKeys by an international research team, led by Carlos Perafán, University of the Republic, Uruguay, the name of the new spider genus honours an indigenous people from the Caribbean coast region, whose language and culture are, unfortunately, at serious risk of extinction. Meanwhile, its species’ name pays tribute to renowned Colombian author and Nobel laureate for his novel ‘One Hundred Years of Solitude’ Gabriel García Márquez.
The new tarantula, formally called Kankuamo marquezi, was discovered in Sierra Nevada de Santa Marta, Colombia. When examined, the arachnid showed something extraordinary about its defensive hairs and its genitalia. The hairs were noted to form a small oval patch of lance-shaped barbs, hypothesised by the scientists to have evolved to defend their owners by direct contact.
On the other hand, when defending against their aggressors, the rest of the tarantulas in this subfamily need to first face the offender and then vigorously rub their hind legs against their stomachs. Aimed and shot at the enemy, a ball of stinging hairs can cause fatal injuries to small mammals when landed into their mucous membrane (the layer that covers the cavities and shrouds the internal organs in the body). Once thrown, the hairs leave a bald spot on the tarantula’s belly.
“This new finding is a great contribution to the knowledge of the arachnids in Colombia and a sign of how much remains to be discovered,” point out he authors.
“The morphological characteristics present on Kankuamo marquezi open the discussion about the phylogenetics relationship between subfamilies of Theraphosidae tarantulas and the evolutionary pressures that gave rise to the urticating hairs.”
###
Original source:
Perafán C, Galvis W, Gutiérrez M, Pérez-Miles F (2016) Kankuamo, a new theraphosid genus from Colombia (Araneae, Mygalomorphae), with a new type of urticating setae and divergent male genitalia. ZooKeys 601: 89-109. doi: 10.3897/zookeys.601.7704
Several individuals of P. pluvialis were found during nocturnal surveys near Manu National Park, a region recognized as having the highest diversity of reptiles and amphibians of any protected area.
The species has also been collected within the private conservation area Bosque Nublado, owned by the Peruvian NGO Perú Verde, and within the Huachiperi Haramba Queros Conservation Concession, the first such type of concession granted to a native community in Peru.
The new species is likely found within the park as well, bringing the number of known amphibian species in this area to 156. Similarly to other species within its genus, which is among the largest vertebrate genera, the new rain frog exhibits direct development. This means that it is capable of undergoing its entire life cycle without a free-living tadpole stage.
It can be distinguished from other members of its genus by call, skin texture, and the presence of a rostral papilla. It was given the name “pluvialis”, translatable to “rainy” from Latin, to denote the incredibly rain-soaked habitat it lives in (>8 meters of rain yearly), and because it was found calling only after heavy rains.
Unfortunately, when a fungal disease, known as the amphibian chytrid fungus, arrived in the area back in the early 2000s, many frog species in and around the region began to decline. Out of the studied ten individuals of the presently described new species, four were found to be infected. However, the impact of the disease on these particular rain frogs is still unknown, and their numbers do not seem to have decreased.
“This discovery highlights the need for increased study throughout the tropics, for example Manu NP and its surrounding areas have been well studied, but despite these efforts, new species are being continuously discovered,” points out first author Alex Shepack, a PhD student in the laboratory of co-author Dr Alessandro Catenazzi at Southern Illinois University.
###
Original source:
Shepack A, von May R, Ttito A, Catenazzi A (2016) A new species of Pristimantis (Amphibia, Anura, Craugastoridae) from the foothills of the Andes in Manu National Park, southeastern Peru. ZooKeys 594: 143-164. doi: 10.3897/zookeys.594.8295
Innovation in ‘Big Data’ helps address problems that were previously overwhelming. What we know about organisms is in hundreds of millions of pages published over 250 years. New software tools of the Global Names project find scientific names, index digital documents quickly, correcting names and updating them. These advances help “Making small data big” by linking together to content of many research efforts. The study was published in the open access journal Biodiversity Data Journal.
The ‘Big Data’ vision of science is transformed by computing resources to capture, manage, and interrogate the deluge of information coming from new technologies, infrastructural projects to digitise physical resources (such as our literature from the Biodiversity Heritage Library), or digital versions of specimens and records about specimens by museums.
Increased bandwidth has made dialogue among distributed data centres feasible and this is how new insights into biology are arising. In the case of biodiversity sciences, data centres range in size from the large GenBank for molecular records and the Global Biodiversity Information Facility for records of occurrences of species, to a long tail of tens of thousands of smaller datasets and web-sites which carry information compiled by individuals, research projects, funding agencies, local, state, national and international governmental agencies.
The large biological repositories do not yet approach the scale of astronomy and nuclear physics, but the very large number of sources in the long tail of useful resources do present biodiversity informaticians with a major challenge – how to discover, index, organize and interconnect the information contained in a very large number of locations.
In this regard, biology is fortunate that, from the middle of the 18th Century, the community has accepted the use of latin binomials such as Homo sapiens or Ba humbugi for species. All names are listed by taxonomists. Name recognition tools can call on large expert compilations of names (Catalogue of Life, Zoobank, Index Fungorum, Global Names Index) to find matches in sources of digital information. This allows for the rapid indexing of content.
Even when we do not know a name, we can ‘discover’ it because scientific names have certain distinctive characteristics (written in italics, most often two successive words in a latinised form, with the first one – capitalised). These properties allow names not yet present in compilations of names to be discovered in digital data sources.
The idea of a names-based cyberinfrastructure is to use the names to interconnect large and small distributed sites of expert knowledge distributed across the Internet. This is the concept of the described Global Names project which carried out the work described in this paper.
The effectiveness of such an infrastructure is compromised by the changes to names over time because of taxonomic and phylogenetic research. Names are often misspelled, or there might be errors in the way names are presented. Meanwhile, increasing numbers of species have no names, but are distinguished by their molecular characteristics.
In order to assess the challenge that these problems may present to the realization of a names-based cyberinfrastructure, we compared names from GenBank and DRYAD (a digital data repository) with names from Catalogue of Life to assess how well matched they are.
As a result, we found out that fewer than 15% of the names in pair-wise comparisons of these data sources could be matched. However, with a names parser to break the scientific names into all of their component parts, those parts that present the greatest number of problems could be removed to produce a simplified or canonical version of the name. Thanks to such tools, name-matching was improved to almost 85%, and in some cases to 100%.
The study confirms the potential for the use of names to link distributed data and to make small data big. Nonetheless, it is clear that we need to continue to invest more and better names-management software specially designed to address the problems in the biodiversity sciences.
###
Original source:
Patterson D, Mozzherin D, Shorthouse D, Thessen A (2016) Challenges with using names to link digital biodiversity information. Biodiversity Data Journal, doi: 10.3897/BDJ.4.e8080.
We want to stress at this point that the import functionality itself is agnostic of the data source and any metadata file in EML 2.1.1 or 2.1.0 can be imported. We have listed these three most likely sources of metadata to illustrate the workflow.
In the remainder of the post, we will go through the original post from October 13, 2015 and highlight the latest updates.
At the time of the writing of the original post, the Biodiversity Information Standards conference, TDWG 2015, was taking place in Kenya. Data sharing, data re-use, and data discovery were being brought up in almost every talk. We might have entered the age of Big Data twenty years ago, but it is now that scientists face the real challenge – storing and searching through the deluge of data to find what they need.
As the rate at which we exponentially generate data exceeds the rate at which data storage technologies improve, the field of data management seems to be greatly challenged. Worse, this means the more new data is generated, the more of the older ones will be lost. In order to know what to keep and what to delete, we need to describe the data as much as possible, and judge the importance of datasets. This post is about a novel way to automatically generate scientific papers describing a dataset, which will be referred to as data papers.
The common characters of the records, i.e. descriptions of the object of study, the measurement apparatus and the statistical summaries used to quantify the records, the personal notes of the researcher, and so on, are called metadata. Major web portals such as DataONE, the Global Biodiversity Information Facility(GBIF), or the Long Term Ecological Research Network store metadata in conjunction with a given dataset as one or more text files, usually structured in special formats enabling the parsing of the metadata by algorithms.
To make the metadata and the corresponding datasets discoverable and citable, the concept of the data paper was introduced in the early 2000’s by the Ecological Society of America. This concept was brought to the attention of the biodiversity community by Chavan and Penev (2011) with the introduction of a new data paper concept, based on a metadata standard, such as the Ecological Metadata Language, and derived from metadata content stored at large data platforms, in this case the Global Biodiversity Information Facility (GBIF). You can read this article for an in-depth discussion of the topic.
Therefore, in the remainder of this post we will explain how to use an automated approach to publish a data paper describing an online dataset in Biodiversity Data Journal. The ARPHA system will convert the metadata describing your dataset into a manuscript for you after reading in the metadata. We will illustrate the workflow on the previously mentioned DataONE and GBIF.
The Data Observation Network for Earth (DataONE) is a distributed cyberinfrastructure funded by the U.S. National Science Foundation. It links together over twenty five nodes, primarily in the U.S., hosting biodiversity and biodiversity-related data, and provides an interface to search for data in all of them(Note: In the meantime, DataONE has updated their search interface).
Since butterflies are neat, let’s search for datasets about butterflies on DataONE! Type “Lepidoptera” in the search field and scroll down to the dataset describing “The Effects of Edge Proximity on Butterfly Biodiversity.” You should see something like this:
As you can notice, this resource has two objects associated with it: metadata, which has been highlighted, and the dataset itself. Let’s download the metadata from the cloud! The resulting text file, “Blandy.235.1.xml”, or whatever you want to call it, can be read by humans, but is somewhat cryptic because of all the XML tags. Now, you can import this file to the ARPHA writing platform and the information stored in it would be used to create a data paper!Go to the ARPHA web-site, and click on “Start a manuscript,” then scroll all the way down and click on “Import manuscript”.
Upload the “blandy” file and you will see an “Authors’ page,” where you can select which of the authors mentioned in the metadata must be included as authors of the data paper itself. Note that the user of ARPHA uploading the metadata is added to the list of the authors even if they are not included in the metadata. After the selection is done, a scholarly article is created by the system with the information from the metadata already in the respective sections of the article:
Now, the authors can add some description, edit out errors, tell a story, cite someone – all of this without leaving ARPHA – i.e. do whatever it takes to produce a high-quality scholarly text. After they are done, they can submit their article for peer-review and it could be published in a matter of hours. Voila!
Let’s look at GBIF. Go to “Data -> Explore by country” and select “Saint Vincent and the Grenadines,” an English-speaking Caribbean island. There are, as of the time of writing of this post, 166 occurrence datasets containing data about the islands. Select the dataset from the Museum of Comparative Zoology at Harvard. If you scroll down, you will see the GBIF annotated EML. Download this as a separate text file (if you are using Chrome, you can view the source, and then use Copy-Paste). Do the exact same steps as before – go to “Import manuscript” in ARPHA and upload the EML file. The result should be something like this, ready to finalize:
To finish it up, we want to leave you with some caveats and topics for further discussion. Till today, useful and descriptive metadata has not always been present. There are two challenges: metadata completeness and metadata standards. The invention of the EML standard was one of the first efforts to standardize how metadata should be stored in the field of ecology and biodiversity science.
Currently, our import system supports the last two versions of the EML standard: 2.1.1 and 2.1.0, but we hope to further develop this functionality. In an upcoming version of their search interface, DataONE will provide infographics on the prevalence of the metadata standards on their site (as illustrated below), so there is still work to be done, but if there is a positive feedback from the community, we will definitely keep elaborating this feature.
Regarding metadata completeness, our hope is that by enabling scientists to create scholarly papers from their metadata with a single-step process, they will be incentivized to produce high-quality metadata.
Now, allow us to give a disclaimer here: the authors of this blog post have nothing to do with the two datasets. They have not contributed to any of them, nor do they know the authors. The datasets have been chosen more or less randomly since the authors wanted to demonstrate the functionality with a real-world example. You should only publish data papers if you know the authors or you are the author of the dataset itself. During the actual review process of the paper, the authors that have been included will get an email from the journal.
Additional information:
This project has received funding from the European Union’s FP7 project EU BON (Building the European Biodiversity Observation Network), grant agreement No 308454, and Horizon 2020 research and innovation project BIG4 (Biosystematics, informatics and genomics of the big 4 insect groups: training tomorrow’s researchers and entrepreneurs) under the Marie Sklodovska-Curie grant agreement No. 642241 for a PhD project titled Technological Implications of the Open Biodiversity Knowledge Management System.