An international research team including the University of Göttingen has described seven previously unknown species of leaf insects, also known as walking leaves. The insects belong to the stick and leaf insect order, which are known for their unusual appearance: they look confusingly similar to parts of plants such as twigs, bark or – in the case of leaf insects – leaves.
This sophisticated camouflage provides excellent protection from predators as well as presenting a challenge to researchers. Genetic analysis enabled the researchers to discover “cryptic species”, which cannot be distinguished by their external appearance alone. The findings are not only important for the systematic study of leaf insects, but also for the protection of their diversity. The results were published in the scientific journal ZooKeys.
Taxonomy – meaning the naming, description and classification of species – is difficult in the case of leaf insects: individuals of different species can be difficult to tell apart, yet there can be huge variations within a species. “Individuals of different species are often counted as belonging to the same species based on their appearance. We were only able to identify some of the new species by their genetic characteristics,” explains the Project Lead, Dr Sarah Bank-Aubin, Göttingen University’s Animal Evolution and Biodiversity Department.
Some individual insects from India were previously thought to belong to a species that is widespread in Southeast Asia. But now the researchers have found out that they are a completely new species of leaf insects. Bank-Aubin emphasises: “The finding is important for species conservation: if all the individuals die out in India, it is not just a group within a species that is reduced, as was previously thought. In fact, a whole distinct species is being wiped out. This means that the Indian species is particularly important to protect.” Other newly discovered species come from Vietnam, Borneo, Java and the Philippines.
The researchers from Göttingen University worked with leaf insect expert Royce Cumming, City University New York. This research collaboration has led to the identification of over twenty new species. Dr Sven Bradler, who has been researching the evolution of stick and leaf insects at the University of Göttingen for more than 20 years, explains: “There are around 3,500 known species of stick and leaf insects and there are currently just over 100 described species of leaf insect. Although they only make up a small fraction of this diverse family of insects, their spectacular and unexpected appearance makes them unique.”
Research article:
Cumming RT, Le Tirant S, Linde JB, Solan ME, Foley EM, Eulin NEC, Lavado R, Whiting MF, Bradler S, Bank S (2023) On seven undescribed leaf insect species revealed within the recent “Tree of Leaves” (Phasmatodea, Phylliidae). ZooKeys 1173: 145-229. https://doi.org/10.3897/zookeys.1173.104413
Guest blog post by Dr Alireza Zamani (@Arachno_AZ)
In the latest issue (1174th) of the scientific open-access journal ZooKeys, you can find our paper describing a new species of tarantula (family Theraphosidae) found in northwestern Iran.
This species belongs to Chaetopelma, a relatively small genus, distributed in Crete, Sudan, and the Middle East, and one of the only two tarantula genera inhabiting the Mediterranean region.
Our discovery is significant for several reasons. Firstly, it marks the first record of this genus in Iran and the third known species of tarantulas in this country. Additionally, it extends the known range of Chaetopelma spiders by almost 350 km eastwards.
We named this species Chaetopelma persianum, paying homage to its occurrence in Iran, which has historically been known as Persia. As a potential common name, we suggest “Persian Gold Tarantula”, where we are also making a reference to the “woolly, golden hairs’’ on its carapace.
For the purpose of our study, we only had one specimen: a female with a leg span of almost 9 cm, available. Yet, its distinct characteristics allowed us to confidently differentiate it from other known Chaetopelma species.
This tarantula is an obligate burrower and inhabits high elevations in well-vegetated mountainous regions of the northern Zagros Mountains. The holotype specimen was collected from a self-made ground burrow on sloped rocky ground, amidst sparse low vegetation and grasses.
It all started with local nature enthusiast Mehdi Gavahyan, who photographed a wandering male and sent me the photo. When I figured it was most likely an undescribed species, I asked him to team up with Amir Hossein Aghaei, a nature enthusiast and a friend of mine, and send me specimens of these spiders for further examination. Unfortunately, they only managed to collect that one female. However, it turned out to be enough for us to describe the Persian Gold Tarantula!
Additionally, thanks to local citizen scientists and naturalists, we later also got hold of photos of another two males of the same genus, taken very close to the type locality of the new species: one in Sardasht in West Azerbaijan Province of Iran, and the other in the surroundings of Sulaymaniyah in Iraq. While it is highly probable that both these males belong to Ch. persianum, this cannot be confirmed until further examination of collected material from both sexes is conducted.
Burrow of Persian Gold Tarantulas in West Azerbaijan Province, Iran. The arrow in the photo on the right indicates the location of the burrow. Photos by Amir Hossein Aghaei.
During our research, we also noted that one species of Chaetopelma described from Cameroon is misclassified and should be transferred to another genus. However, this transfer is pending until the type material undergoes examination.
Looking ahead, we believe that more comprehensive investigations employing integrative methods would greatly benefit the taxonomy of Chaetopelma.
For example, Ch. olivaceum, a species with seven junior synonyms and one of the broadest ranges within the entire family, covering an area of approximately 1,493,978 km2, might potentially have cryptic species within its range. Moreover, the disjunct distribution of Ch. olivaceum in Turkey, where it occurs both in the southern regions and as far north as Istanbul, raises the possibility of distinct species status for the latter population, which is geographically isolated from the rest of the recorded occurrences. Integrative studies incorporating molecular data could offer insights into this.
Additionally, further collection efforts in lesser-sampled or completely unexplored regions, such as Saudi Arabia, Syria, Iraq, eastern Turkey and western Iran, could lead to the discovery of additional Chaetopelma species or records. These findings would be instrumental in gaining a more comprehensive understanding of the taxonomy and distribution of this genus.
Through the collaborative efforts of botanists and citizen scientists, these plants have been rediscovered after decades, some even after more than a century.
Deep in the tropical Andes are hiding plants that were discovered and then forgotten; plants that we knew almost nothing about. Now, thanks to the combined efforts of botanists from Germany, Ecuador, Peru and Costa Rica and amateur plant enthusiasts, these plants have been rediscovered, some of them after more than 100 years. The findings were described in the open-access journal PhytoKeys.
The plants belong to Nasa, a genus from the Blazing Star family (Loasaceae) that has long caused headaches to scientists as its delicate but painfully urticant leaves make it difficult to collect. Most of them are rare, highly endemic, and only around for short periods, which makes them even more unlikely to end up in a herbarium collection.
Luckily, today’s scientists don’t have to rely on herbaria as their sole source of material and clues. Thanks to the advent of global networking and the increasing use of free data repositories, there is a lot more biodiversity data now that is available to use and easily accessible, for example as geo-referenced occurrence records and photos. Citizen science platform iNaturalist, where users can, among others, post photographic occurrence records, has turned into a valuable tool for biodiversity scientists, and plays a significant role in the rediscovery of these Andean plants.
One notable species, Nasa colanii, had only been recorded once, in 1978, until the research team came upon a photograph from 2019. This scarcity in records might have to do with the fact that the plant grows in a highly inaccessible region: in a cloud forest in the buffer zone of Peru’s Cordillera de Colán National Sanctuary, at an elevation of 2605 m.
Another species hadn’t been reported for approximately 130 years when iNaturalist users confirmed its existence in 2022 by uploading photographs. Nasa ferox had been known for centuries, but it didn’t get its scientific description until 2000. “Given the location of the park close to the [Ecuadorian] city of Cuenca, and the fact that the important road 582 goes through the park makes it particularly surprising that the species has not been reported in such a long time, even more so if we consider the numerous botanical expeditions that have been carried out in the general region,” the researchers write in their paper. In fact, only a small population of about ten fertile plants of N. ferox has been found, with the plants always growing in sheltered places such as in rock crevices or at the base of shrubs.
Remarkably, the typical form of Nasa humboldtiana called Nasa humboldtiana subspecies humboldtiana was rediscovered after 162 years, when the research team found a specimen in a conserved remnant of montane Andean forest in the province of Chimborazo, Ecuador.
Flower of Nasa humboldtiana subspecies humboldtiana. Photo by X. Cornejo
But probably the most exciting discoveries happened when the team found species that have been considered extinct in the wild. Two species of Nasa, namely N. hastata and N. solaria, were believed to share this fate, both from the Peruvian Department of Lima, a comparably well sampled area, given the proximity to the national capital. Until very recently, both species “remained unknown (or almost so) in the wild.” Earlier attempts to recollect these species near their type localities where they have been found some 100 years ago failed and it needed the help of iNaturalist to reveal that they are still present in the area.
Nasa solaria. Photo by P. Gonzáles
Nasa hastata was recently rediscovered, after, for the first time, photos of living plants showed up taken by the sister of one of the authors. Only a handful of plants have since been reported from two sites, some 7 km apart. Similarly, a few dozens of plants have been found so far from N. solaria occurring in four small relict populations in remnants of forest that once covered larger areas in this region.
Flower of Nasa hastata. Photo by P. Gonzáles
Observations uploaded to iNaturalist also revealed important information on another species, Nasa ramirezii,providing the first photographs of living plants from Ecuador and the first data on its exact location.
“All these discoveries serve as a reminder that even well-studied regions harbor diversity that can so easily remain overlooked and unexplored, and point to the role of botanists in documenting biodiversity which is an essential prerequisite for any conservation effort.” leading author Tilo Henning from the Leibniz Center for Agricultural Landscape Research (ZALF) says.
“Hopefully, as more scientists and members of the public contribute to the database, and more professionals get involved in the curation, more undescribed or ‘long lost’ taxa will be found. Our examples of the rediscovery of Nasa ferox after 130 years and Nasa hastata after 100 years, both ‘found’ on iNaturalist underscore this point,” the researchers say in their study.
Original source:
Henning T, Acuña-Castillo R, Cornejo X, Gonzáles P, Segovia E, Wong Sato AA, Weigend M (2023) When the absence of evidence is not the evidence of absence: Nasa (Loasaceae) rediscoveries from Peru and Ecuador, and the contribution of community science networks. PhytoKeys 229: 1-19. https://doi.org/10.3897/phytokeys.229.100082
BKH is a one-stop portal that allows users to access FAIR and interlinked biodiversity data and services in a few clicks. BKH was designed to support a new emerging community of users over time and across the entire biodiversity research cycle providing its services to anybody, anywhere and anytime.
The Knowledge Hub is the main product from our BiCIKL consortium, and we are delighted with the result!
BKH can easily be seen as the beginning of the major shift in the way we search interlinked biodiversity information.”
Biodiversity researchers, research infrastructures and publishers interested in fields ranging from taxonomy to ecology and bioinformatics can now freely use BKH as a compass to navigate the oceans of biodiversity data. BKH will do the linkages.
says Prof. Lyubomir Penev,BiCIKL’s Project coordinator and Founder of Pensoft Publishers.
The BKH is designed to serve a new emerging community of users over time and across the entire biodiversity research cycle.
We have invested our best energies and resources in the development of BKH and the Fair Data Place (FDP), which is the beating heart of the portal,”
BKH has been designed to support a new emerging community of users across the entire biodiversity research cycle.
Its purpose goes beyond the BiCIKL project itself: we are thrilled to say that BKH is meant to stay, aiming to reshape the way biodiversity knowledge is accessed and used.
The BKH outlines how users can navigate and access the linked data, tools and services of the infrastructures cooperating in BiCIKL.
By revealing how they harvest, liberate and reuse data, these increasingly integrated sources enable researchers in the natural sciences to move more seamlessly between specimens and material samples, genomic and metagenomic data, scientific literature, and taxonomic names and units.
For an eighth year in a row, all conference abstracts will be submitted to TDWG via the Association’s own journal: Biodiversity Information Science and Standards (BISS Journal), published by Pensoft and powered by the end-to-end publishing platform ARPHA. Using the ‘mini-paper’ format, participants are not only openly and efficiently sharing their work with the world, but they also get to enjoy many features typically exclusive to ‘standard’ research papers, including DOI registration on Crossref, semantic enrichment and structural elements (e.g., tables, figures), all of which are stored as easily exported data.
Apart from an abstract submission portal, BISS Journal also serves as a permanent, openly accessible scholarly source for all contributions concerning the creation, maintenance, and promotion of open community-driven data standards to enable sharing and use of biodiversity data for all.
As in previous years, the abstracts will be published ahead of the event itself to provide the community with a sneak preview of the conference. The 2023 collection of abstracts, will allow readers to explore the abstracts by session (e.g., symposia, posters, contributed presentations, keynotes). Sometime after the conference, check out the media tab on most abstracts for slides presented and a link to session video when it is posted on TDWG’s YouTube channel.
***
Visit the TDWG 2023 conference website for more information about the scientific program, registration, abstract submission and more. Ahead, during and after the conference, join the conversation on Twitter and Mastodon via #tdwg2023.
A spectacular crocodile newt from the Central Highlands of Vietnam was just published in the international peer-reviewed open-access academic journal ZooKeys.
“It is an exceptional discovery as it is one of the most colourful species in the genus Tylototriton. This is also the first time that a crocodile newt species is recorded from the Central Highlands of Vietnam. Occurring at elevations from 1,800 to 2,300 m above sea level, this discovery sets an elevational record for the genus in the country, with former distribution ranges between 250 m and 1,740 m.”
says discoverer and first author of the study Trung My Phung.
Furthermore, the discovery by the Vietnamese-German researcher team, which was supported by the Vietnam Academy of Science and Technology and the Cologne Zoo (Germany), represents the southernmost distribution range of the genus known to date.
The habitat of the new species is located approximately 370 air km away from the nearest Tylototriton population, which makes it an important discovery in terms of evolution and zoogeography.
The name “ngoclinhensis” refers to the type locality of the new species, Ngoc Linh Mountain. Restricted to evergreen montane forest, the Ngoc Linh Crocodile Newt is currently known only from the Ngoc Linh Nature Reserve, Kon Tum Province, in the Central Highlands of Vietnam. This is the eighth salamander taxon described from Vietnam, and is the thirty-ninth Tylototriton species officially recognized.
The newly described crocodile newt Tylototritonngoclinhensis sp. nov. Photo by Prof. Dr. Tao Thien Nguyen.
Crocodile newts, scientifically known as the genus Tylototriton,include nearly 40 species inhabiting montane forest areas throughout the Asian monsoon climate zone. Remarkably, 15 of these species have been described in the past five years, and there remain several unnamed taxa, which contain cryptic species that are morphologicallydifficult to distinguish.
Established in 1986, Ngoc Linh Nature Reserve is a key biodiversity area for rare species like the endangered Golden-winged Laughingthrush and the Truong Son Muntjac. The Ngoc Linh Crocodile Newt certainly will represent another flagship species of this protected area and its surroundings, say the researchers.
“[The Central Highlands is] where the highest amphibian species diversity was recorded for Vietnam, with 130 species, while also containing the highest number of regionally occurring, micro-endemic amphibians, amounting for 26 species,”
This recent discovery is another remarkable case, “demonstrating that the Central Highlands play a special role in Vietnamese amphibian diversification and evolution,” by the words of co-author Dr. Cuong The Pham from IEBR.
The Ngoc Linh Crocodile Newt belongs to the group of range-restricted, so-called micro-endemic species, which face the greatest risk of extinction because of their presumably small population size. Unfortunately, on top of its special zoogeographic situation and rarity, its particularly colorful appearance will likely make it highly attractive to illegal collectors.
“Therefore, this discovery is of high conservation relevance,”
Now, conservation activities on site have priority, but the team is already working on breeding conservation measures, which is in line with the One Plan Approach to Conservation, developed by IUCN’s Conservation Planning Specialist Group, which combines in-situ and ex-situ efforts and various expertises for the optimum protection of a species.
“This has already been successfully implemented for another recently discovered, micro-endemic crocodile newt species from Vietnam, Tylototriton vietnamensis, of which already more than 350 individuals could have successfully been reproduced at the Cologne Zoo in Germany and also at the Melinh Station for Biodiversity in Vietnam, which is a promising example for IUCN’s Reverse the Red campaign and the idea of the conservation zoo”,
says Prof. Dr. Thomas Ziegler, Vietnam conservation team member and coordinator from Cologne Zoo, Germany.
***
Research article:
Phung TM, Pham CT, Nguyen TQ, Ninh HT, Nguyen HQ, Bernardes M, Le ST, Ziegler T, Nguyen TT (2023) Southbound – the southernmost record of Tylototriton (Amphibia, Caudata, Salamandridae) from the Central Highlands of Vietnam represents a new species. ZooKeys 1168: 193-218. https://doi.org/10.3897/zookeys.1168.96091
“Brian has provided critical support to visiting researchers for many years,” writes the team of researchers in their new study in the journal ZooKeys.
When introducing a new species to science, taxonomists always get to choose its scientific name. And while there are some general rules to naming, there’s also relative freedom. Often, new species are named after the area where they were found, or their key diagnostic features, but researchers may also choose names that recognize those who helped or inspired them in their career: prominent scientists, celebrities, and, sometimes, their grandma, or their dog. In Amazonia, a new species of butterfly was discovered whose name honors the decades-long work of someone who has worked patiently behind the scenes in museum collections to provide invaluable support to researchers.
Caeruleuptychia harrisi
Caeruleuptychia harrisi was named in recognition of Brian P. Harris, museum specialist at the Smithsonian National Museum of Natural History, “for his tireless effort in facilitating butterfly research at USNM by going above and beyond to support visiting researchers,” according to a study which was just published in the journal ZooKeys. “Brian has provided critical support to visiting researchers for many years, including several co-authors on the paper,” writes the team of researchers, led by Harvard University’s Shinichi Nakahara.
In fact, Harris personally collected the type specimen that later facilitated the scientific description of the new species. After collecting it in Brazil, he deposited it at USNM, where it could be studied as a reference for this species.
Brian P. Harris at the Smithsonian Institution holding Morpho hecuba. Photo by Lynn Cooper
“I think it is really important to recognize someone who has dedicated а good amount of his lifetime providing technical help to support research,” says Shinichi Nakahara.
Brian Harris started working at the Smithsonian Institution in July 2005. There, he served as a museum specialist for Lepidoptera (moths and butterflies) and Hymenoptera (ants, bees, and wasps) until he retired in July 2019.
Caeruleuptychia harrisi
“Brian’s job curating Lepidoptera and Hymenoptera collections is critical for us visiting researchers to conduct research based on these specimens, but sadly this kind of technical support is often not well recognized well in the current scientific community,” says Shinichi Nakahara. “I visited the Smithsonian’s Lepidoptera collection three times, in 2015, 2018, and 2023 (after his retirement!), and Brian provided me with the best support I could ever receive in all of these three visits. It was evident to me that he wanted us visitors to make the most out of the collections and he went out of his way to support my short visits to the collection.”
“He always communicated with me in advance about which butterfly group I wanted to examine, would set up an imaging system in advance, and even tried to help me find field notes left by a deceased collector by taking me to the stock room and spending time exploring the museum with me!,“ he adds.
Before working at the Smithsonian Institution, Brian Harris spent 18 years at the Natural History Museum of Los Angeles County (LACM). In the mid-1970s and early 1980s, he played drums for a band before starting at LACM.
Research article:
Nakahara S, Kleckner K, Barbosa EP, Lourenço GM, Casagrande MM, Willmott KR, Freitas AVL (2023) Reassessment of the type locality of Euptychia stigmatica Godman, 1905, with the description of two new sibling species from Amazonia (Lepidoptera, Nymphalidae, Satyrinae, Satyrini). ZooKeys 1167: 57-88.https://doi.org/10.3897/zookeys.1167.102979
A group of researchers from the Mississippi Entomological Museum taking break after exploring a site in Texas for grasshoppers. Left to right: Brady Dunaway, JoVonn Hill, Matthew Thorn. Photo by JoVonn Hill
The central region of Texas is a known hotspot of biological wonders. For the last five years, Dr. JoVonn Hill, an Assistant Professor and Director of the Mississippi Entomological Museum (MEM) at Mississippi State University, and his colleagues have made scientific expeditions to the area that have now revealed an extraordinary find.
The team uncovered seven previously unknown flightless grasshopper species, six of them endemic to the Edwards Plateau, which underscores the region’s extraordinary biodiversity.
With this discovery, Dr. Hill is paying tribute to two iconic musicians. In recognition of the “immense contributions” of Texas legends Willie Nelson and Jerry Jeff Walker, he has named two of these flightless grasshopper species after them.
Melanoplus nelsoni held by Dr. JoVonn Hill. Photo by JoVonn Hill
“Melanoplus nelsoni and Melanoplus walkeri immortalize the enduring contributions of these legendary musicians and their connection to Texas,” he says.
Melanoplus walkeri.
“After these last few summers [of field studies], just like Mr. Nelson, we too have a little Texas in our souls,” he writes in his study, which was just published in the journal ZooKeys.
On Melanoplus walkeri, he writes: “Walker’s songs such as Hill Country Rain, Leavin’ Texas, and Sangria Wine brought me and my field team joy while traveling between field sites and added to the amazing ambiance of the Edwards Plateau.” In fact, the artist recorded his most influential album not far away from the spot where the new species was discovered.
Additionally, the team acknowledges the cultural heritage and deep connection to the region of the Comanche and Tonkawa tribes, naming two species after them, Melanoplus commanche and Melanoplus tonkawa respectively.
“These designations recognize the profound historical and cultural significance of the tribes in the region,” Dr. Hill explains.
Melanoplus tonkawa.
“These seven newly described species, alongside two preexisting ones, form a cohesive species group, highlighting their shared characteristics and evolutionary relationships,” Dr. Hill says in conclusion. “The formation of this new species group presents a significant contribution to our understanding of the diverse ecosystems present in central Texas,” he adds.
Melanoplus commanche.
The discovery of these seven flightless grasshopper species and the formation of a new species group underscore the ecological uniqueness of central Texas, Dr. Hill says. He and the staff of the Mississippi Entomological Museum remain committed to scientific exploration and understanding, promoting the conservation of biodiversity, and inspiring a sense of wonder and appreciation for the natural world.
Research article:
Hill JG (2023) Diversification deep in the heart of Texas: seven new grasshopper species and establishment of the Melanoplus discolor species group (Orthoptera, Acrididae, Melanoplinae). ZooKeys 1165: 101-136. https://doi.org/10.3897/zookeys.1165.104047
Working with the scientific travel agency Taxon Expeditions, citizen scientists studed specimens, and analyse their DNA in a field camp in the heart of the forest.
Semislugs, or ‘snugs’ as they are affectionately known among mollusc researchers, are like the squatters of the snail world: they do carry a home on their back but it is too small to live in. Still, it offers a sort of protection, while not getting in the way of the worm-like physique of the slug. For reasons unknown, on the island of Borneo, which is shared among the countries of Brunei, Malaysia, and Indonesia, most slugs are of the semislug type. The genus Microparmarion there consists of around 10 semislug species, most of which are found in the cooler forests of the mountains. So, when citizen scientists discovered a Microparmarion in the hot lowland forest of Ulu Temburong National Park, Brunei, as part of their expedition, they were surprised.
A team of citizen scientists in the Brunei forest, searching for slugs and snails.The type locality of the new species.
For the past years, the scientific travel agency Taxon Expeditions, in collaboration with Universiti Brunei Darussalam (UBD) has been organising biodiversity discovery trips for scientists, students, and laypersons to this forest. On the first trip, in 2018, during a night walk, participant Simon Berenyi, who runs an ethical pest control company in the UK, reached up to a dead leaf suspended over the trail. Everybody—the other participants, even the resident snail expert—had ducked and passed underneath this dead leaf without so much as giving it a glance. But something on its surface caught Simon’s eye. “Oi, is that a slug?” he exclaimed, and picked a slimy, well-camouflaged mollusc off it.
Microparmarion sallehi.
At the time, the team’s zoologists already suspected it was a new species – nothing like it had ever been found in this corner of the island. But that single specimen was not enough to publish its description as a new species. Over the years, successive expeditions to the same area came up with several more specimens of the same species, which made it clear that it was really a species never seen before.
On the 2022 expedition, a team composed of UBD students Nurilya Ezzwan and Izzah Hamdani and citizen scientist Harrison Wu from Virginia, USA, finished the description. Using the portable lab that Taxon Expeditions always carries with them, the team studied the animals’ shell, reproductive organs, and DNA, and prepared a paper for the open-access Biodiversity Data Journal, where it was published this week.
As usual on Taxon Expedition trips, on the last night the team voted on the scientific name for the new species. With an overwhelming majority, the ‘snug’ was named after Mr. Md Salleh Abdullah Bat, the field centre supervisor, who would retire just weeks after the team left. Mr. Salleh himself agrees that it is indeed a very fitting farewell gift.
Research article:
Schilthuizen M, Berenyi S, Ezzwan NSMN, Hamdani NIAA, Wu H, De Antoni L, Vincenzi L, de Gier W, van Peursen ADP, Njunjić I, Delledonne M, Slik F, Grafe U, Cicuzza D (2023) A new semi-slug of the genus Microparmarion from Brunei, discovered, described and DNA-barcoded on citizen-science ‘taxon expeditions’ (Gastropoda, Stylommatophora, Ariophantidae). Biodiversity Data Journal 11: e101579. https://doi.org/10.3897/BDJ.11.e101579
UC Berkeley entomologist Kipling Will discovered a specimen of Bembidion brownorum while sampling for insects near Freshwater Creek on former Gov. Jerry Brown’s ranch.
When University of California, Berkeley, entomologist Kipling Will first heard that former Gov. Jerry Brown was hosting field scientists on his Colusa County ranch, he jumped at the chance to hunt for beetles on the property.
“I reached out and said, ‘Hey, I want to sample your beetles,’” Will said. “And [Brown] was quite game to let me come up there.”
Will, a professor of environmental science, policy and management, has travelled to all corners of California to study carabid beetles, ground beetles that are important predators of other insects. But Will’s repeated visits to Brown’s ranch proved especially fruitful.
While sampling for insects near Freshwater Creek, Will collected a rare species of beetle that had never been named or described — and which, according to records, had not been observed by scientists in over 55 years. The new species will be named Bembidion brownorum, in honor of Brown and his wife, Anne Brown.
Former California Gov. Jerry Brown (right) and his wife, Anne Brown, with their dogs, Colusa and Cali, on the Browns’ Colusa County ranch. Photo courtesy Evan Westrup
“I’m very glad that [my ranch] is advancing science in some interesting and important ways,” said Brown, who has hosted a wild variety of field researchers, including geologists, anthropologists and botanists, on the property. “There are so many undiscovered species. I think it’s very important that we catalog and discover what we have and understand their impact on the environment — how it’s functioning and how it’s changing.”
Brown’s 2,500-acre ranch is about an hour’s drive north of Sacramento, in an agricultural region where most of the land is privately owned and insect biodiversity is historically understudied. For more than two years, Will has regularly sampled for insects on the ranch, sometimes even showing the beetles that he finds to the Browns.
Jerry Brown said his dedication to welcoming researchers onto his land is rooted in the ranch’s history as a stagecoach stop called Mountain House, and in his own interest in climate change and conservation.
“We don’t have stagecoach stop, but we have a place of gathering, of research and collaboration,” said Brown, who is currently chair of the California-China Climate Institute at UC Berkeley.
The location on Freshwater Creek where Kipling Will discovered the Bembidion brownorum beetle. Photo courtesy Kipling Will
After collecting a beetle at the ranch that didn’t resemble any species he was familiar with, Will called up Bembidion expert David Maddison, a professor of integrative biology at Oregon State University, to help identify the specimen. Together, the scientists used morphological and DNA analysis to confirm that the beetle represented a completely new species.
Will then combed through entomology collections at museums throughout California in search of other specimens that may have been unlabeled or misidentified. He found only 21 other specimens of the species, the most recent of which was collected in 1966.
UC Berkeley entomologist Kipling Will discovered a specimen of Bembidion brownorum while sampling for insects near Freshwater Creek on former Gov. Jerry Brown’s ranch. The species had not been observed by scientists in more than 55 years. Photo courtesy David Maddison
The lack of any more recent specimens indicated to him that the species likely collapsed during the second half of the 20th century, driven out of its natural habitat by rapid urbanization and agricultural development across the state.
“The sad truth is, [the species] has probably been in a huge decline. If you look at the places that it was found the ‘20s and ‘30s and ‘40s, almost none of that natural habitat is left,” Will said. “But we don’t know for sure. So, the thing to do is to get it out there, describe it and tell people, ‘Hey, look for this thing,’ because maybe we’ll find some place where it’s doing fine.
“Having access to Jerry’s ranch in Colusa County gives me the opportunity to really spend time sampling, to look for rare things like this.”
Will and Maddison describe Bembidion brownorum in a study published in the journal Zookeys.
Big for a Bembidion
To the naked eye, Bembidion brownorum isn’t particularly remarkable: The diminutive beetle is brown in color and measures around 5 millimeters in length, about the diameter of a standard pencil. But under magnification, it glows with a green and gold metallic shimmer.
The Bembidion brownorum beetle is approximately 5 millimeters long, slightly larger than other Bembidion beetles. The section of the insect behind the head, called the prothorax, is also larger than usual. Photo courtesy David Maddison
It was the unusual shape of the beetle’s prothorax, the segment of the insect that sits right behind its head, that first caught Will’s eye.
“I was looking at this one beetle thinking, ‘It just doesn’t fit any of the ones that I can identify,’” Will said. “The shape of prothorax is just not like any of the others.”
According to Maddison, Bembidion brownorum is also relatively large compared to other Bembidion beetles, which are usually closer to 3 to 4 millimeters in length.
“It’s big for a Bembidion,” Maddison said. “At first glance, it was pretty obvious that it was probably something new.”
With so few examples to study, it’s difficult to describe the lifestyle and behavior of Bembidion brownorum with any certainty, Will said. However, given where the beetle was found on Brown’s ranch — in the vicinity of Freshwater Creek, which occasionally dries into a series of trellis-like pools in the summer months — it is likely that the beetle lives near the edges of bodies of water that periodically flood and then evaporate.
The 21 historical specimens of Bembidion brownorum are housed at either the Essig Museum Entomology Collection at UC Berkeley or at the California Academy of Sciences in San Francisco, which both have insect specimens going back more than 100 years. The discovery highlights the vital importance of maintaining these collections for current and future research, the scientists said.
“One of the things that I find interesting about is that, before Kip found that specimen, there were already specimens in collections — there was this hidden diversity that people didn’t recognize,” Maddison said. “At one point, [the beetle] probably was much more widespread and much more common, and Kip and I have some ideas as to where you would target to try to find more.”
Drawers containing prepared specimens of carabid beetles that Kipling Will collected on Jerry Brown’s ranch. Photo courtesy Kipling Will
Previous specimens were collected at locations throughout the Central Valley and in the Los Angeles Basin, regions that have been transformed over the last century. While the beetle may still survive in some areas, Will said that the patchwork of private landownership may make it difficult to find.
“There is a lot of desire to conserve the environment and combat climate change, but in many cases, we’re not keeping up with the rate of extinction — we’re not able to describe the species that need to be described as fast as things are going extinct,” Will said. “And this certainly is true in California, where there are an awful lot of undescribed insects out there and not a lot being done to get them described. I think that having more knowledge of what they are and where they where they live is really fundamental.”
John S. Sproul of the University of Nebraska Omaha is also a co-author of the study. This research was supported by the Harold E. and Leona M. Rice Endowment Fund at Oregon State University.
Research article:
Maddison DR, Sproul JS, Will K (2023) Re-collected after 55 years: a new species of Bembidion (Coleoptera, Carabidae) from California. ZooKeys 1156: 87-106. https://doi.org/10.3897/zookeys.1156.101072
Press release originally published by Kara Manke, UC Berkeley. Republished with permission.