New ant species named in recognition of gender diversity

A newly discovered miniature trap jaw ant from the evergreen tropical forests of Ecuador bears the curious Latin name Strumigenys ayersthey, among hundreds, which are also named in honour of people, but end with -ae (after females) and –i (after males). This makes the newly described ant perhaps the only species in the world to have a scientific name with the suffix –they, thus celebrating gender diversity.

A view of the head of Strumigenys ayersthey

The insect was first found by Philipp Hoenle of the Technical University of Darmstadt, Germany, during a cooperative investigation of the Reserva Río Canandé in 2018. The reserve belongs to the NGO Jocotoco, and preserves a small part of the highly threatened biodiversity hotspots called the Chocó.

Hoenle reached out to taxonomic expert Douglas Booher of Yale University. Soon, Booher responded with excitement that this species was unlike any other of the 850+ species belonging to its genus. As a result, the team described the previously unknown to science species and its remarkable trap-jaw morphology in a research paper, published in the peer-reviewed, open-access journal ZooKeys.

Curiously, it was no other but lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in the writing of the etymology section for the research article. This is the part in the publication, where they honor their mutual friend, activist and artist Jeremy Ayers and explain the origin of the species name.

“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments – Strumigenys ayersthey”. The ‘they’ recognizes non-binary gender identifiers in order to reflect recent evolution in English pronoun use – ‘they, them, their’ and address a more inclusive and expansive understanding of gender identification.”

A side view of Strumigenys ayersthey

Current nomenclature practice on how to name animal species after people only differentiates between male and female personal names, offering respectively the ending -ae for a woman or -i for a man.

The research team additionally propose that the -they suffix can be used for singular honorific names of non-binary identifiers.

A micro-CT scan of Strumigenys ayersthey

When asked about the choice of a name for the ant, Booher said: “Such a beautiful and rare animal was just the species to celebrate both biological and human diversity. Small changes in language have had a large impact on culture. Language is dynamic and so should be the change in naming species – a basic language of science”. 

With their choice, the team invites the scientific community to keep pace with the likes of Oxford English Dictionary, Merriam-Webster Unabridged Dictionary and HSBC Bank, who have also adapted their own institutional practices, language usage and recognition to represent gender diversity.

“The discovery of such an unusual rare ant highlights the importance of scientific exploration and conservation of the Chocó region in Ecuador, which is at the same time one of the most biodiverse and threatened areas on our planet.”

the researchers add in conclusion.

Strumigenys ayersthey can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus. The researchers haven’t been able to obtain more specimens of the species, which suggests that it’s rare. 

Original source:

Booher DB, Hoenle PO (2021) A new species group of Strumigenys (Hymenoptera, Formicidae) from Ecuador, with a description of its mandible morphology. ZooKeys 1036: 1–19. https://doi.org/10.3897/zookeys.1036.62034

New deadly snake from Asia named after character from Chinese myth ‘Legend of White Snake’

In 2001, the famous herpetologist Joseph B. Slowinski died from snakebite by an immature black-and-white banded krait, while leading an expedition team in northern Myanmar. The very krait that caused his death is now confirmed to belong to the same species identified as a new to science venomous snake, following an examination of samples collected between 2016 and 2019 from Yingjiang County, Yunnan Province, China.

The new krait species, found in Southwestern China and Northern Myanmar, is described by Dr Zening Chen of Guangxi Normal University, PhD candidate Shengchao Shi, Dr Li Ding from the Chengdu Institute of Biology at the Chinese Academy of Sciences, Dr Gernot Vogel of the Society for Southeast Asian Herpetology in Germany and Dr Jingsong Shi of the Institute of Vertebrate Paleontology and Paleoanthropology at Chinese Academy of Sciences. Their study is published in the open-access, peer-reviewed journal ZooKeys.

The new krait species Bungarus suzhenae. Photo by Dr Li Ding

The researchers decided to name the new species Bungarus suzhenae – Suzhen’s krait, after the mythical figure of Bai Su Zhen (白素贞) – a powerful snake goddess from the traditional Chinese myth ‘Legend of White Snake (白蛇传)’.

The legend says that, after thousands of years of practicing magic power, the white snake Bai Su Zhen transformed herself into a young woman and fell in love with the human man Xu Xian. Together, they ran a hospital, saving lots of human lives with medicine and magic. However, this love between goddess and human was forbidden by the world of the gods and, eventually, Bai Su Zhen was imprisoned in a tower for eternity. Since then, the Chinese regard her as a symbol of true love and good-heartedness. 

Illustration of the Legend of the White Snake, by Xin Wang, Chongqing museum of natural history

“The black-and-white banded krait is one of the snakes most similar to the white snake in nature, so we decided to name it after Bai Su Zhen,” say the authors.

In fact, the discovery of Suzhen’s krait was inspired by another accident from 2015, when the Chinese herpetologist Mian Hou was bitten by a black-and-white banded krait in Yingjiang. “It hurt around the wound, and the skin around it turned dark,” said the unfortunate man, who luckily survived. 

The skull of Bungarus suzhenae (3d-reconstructed model, by Jingsong Shi)

The authors of the present study realized that the bite was different from those of the many-banded krait B. multicinctus, which go without clear symptoms or pain around the wound. This clue eventually led to the discovery of Suzhen’s krait.

Because kraits are highly lethal, understanding their species diversity and geographic distribution is vital for saving human lives. Thanks to adequate description and classification of deadly snakes, research on venom, antivenom development and proper snakebite treatment can advance more rapidly. 

Suzhen’s krait Bungarus suzhenae preying on Yunnan Caecilian Ichthyophis bannanicus. Credit: GTO

The new study makes it easier to distinguish between krait species from China and adjacent southeastern Asia. “Three species of the black-and-white banded kraits from China were previously put under the same name – many-banded krait, which would hinder appropriate medical treatment,” the authors point out. Additionally, they suggest that antivenom for the many-banded krait be reevaluated accordingly.

Celebrating Taxonomist Day with Elvis Worms and Sneaky Pipefish

Happy Taxonomist Appreciation Day! On this day dedicated to the scientists who name, define and classify all living things, the World Register of Marine Species (WoRMS) also honors discoveries in marine biology by posting a “Top 10” of the marine species discovered throughout the year. The year 2020 saw fascinating discoveries in the world of sea life, and, once more, species first described in Pensoft‘s open-access journal ZooKeys made it to the Top 10!

The Fabulous, Rowdy Elvis Worm   

The sparkliest entry in this year’s Top 10, and arguably the most glamorous deep-sea animal discovered in 2020, is undoubtedly a scale worm described in ZooKeys by scientists of the University of California San Diego, the French National Centre for Scientific Research and Sorbonne University.

Peinaleopolynoe orphanae

Deep in the Pacific Ocean, researchers found not one, not two, but four species of iridescent scale worms. They have yet to figure out why these critters shimmer, but the Internet was already calling them ‘Elvis worms’ or ‘glitter worms’, because their scales evoked associations with Elvis’ shiny costumes. One species was even formally named Peinaleopolynoe elvisi in honor of the King of Rock ‘n’ Roll.

It was however one of the other three species, Peinaleopolynoe orphanae, that made it to the Top 10 –  because, in the words of the committee, it has “both the most stunning iridescence and the feistiest temperament!”

P. orphanae was first collected from a hydrothermal vent in the Gulf of California at a depth of 3700 m and named after geobiologist Victoria Orphan. The first part of its name, Peinaleopolynoe, comes from a Greek word for hungry, in reference to the attraction of these worms to food falls.

Surprisingly, Peinaleopolynoe orphanae engage in fights between each other before the eyes of the researchers! In what has never been seen in scale worms before, the scientists recorded a “face-off”, where two individuals kept attacking one another back and forth for several minutes.

The Red Pipefish, Master of Disguise

The Red Wide-Bodied Pipefish (Stigmatopora harastii) dwells in New South Wales, Australia, at 10-25 m depth, and is so good at camouflage that you might have a hard time spotting it even when you’re looking straight at it. It was first reported by underwater photographers in Jervis Bay in 2002, but was only described as a new species in 2020 by scientists from the Australian Museum, California Academy of Sciences, Burke Museum, and the University of British Columbia.

This curious new fish associates with red algae or finger sponges, which allows it to stay hidden in plain sight. It is colored bright red, but curiously that only helps it to go unnoticed. Oriented vertically or at an angle, it camouflages itself among the red algae. Virtually indistinguishable from its surroundings, it only occasionally darts out of its cozy cover to munch on small copepods and shrimp.

Stigmatopora harastii

Stigmatopora harastii was named after David Harasti, one of the first people to recognize it as a new species and a pronounced fan of the Stigmatopora genus. According to the research paper, “David has stated he counts green pipefish to fall asleep.” We don’t know how he feels about red pipefish, but this one charms with both looks and skills, so we hope it becomes one of his favorites.

Stigmatopora harastii

Researchers believe the red pipefish might have a wider distribution in New South Wales and possibly New Zealand – it can be very hard to detect because of its preferred depth range and its remarkable camouflaging ability.

The 10 remarkable new marine species from 2020 listed by WoRMS are a celebration of all wonderful and sometimes even quite weird creatures that dwell in the sea, and a reminder of how important it is to explore and protect marine life. Here’s to another year of fun little creatures and amazing scientific discoveries!

Two species and a single name: ‘Double identity’ revealed in a venomous banana spider

Phoneutria boliviensis in the Peruvian Amazon
Photo by N. Hazzi

Spiders from the genus Phoneutria – also known as banana spiders – are considered aggressive and among the most venomous spiders in the world, with venom that has a neurotoxic action. These large nocturnal spiders usually inhabit environments disturbed by humans and are often found in banana plantations in the Neotropical region. 

One of these spiders, P. boliviensis, is a medically important species widely distributed in Central and South America, whose behaviour, habitat, venom composition, toxicity and bites on humans have already been paid considerable attention in previous research work. Nevertheless, after examining a large pool of museum specimens, biologists from The George Washington University (N. Hazzi and G. Hormiga) began to wonder if samples named P. boliviensis were actually belonging to one and the same species. 

Everything started when N. Hazzi was examining specimens of banana spiders identified in the past by experts as P. boliviensis. The research team quickly realized that the morphological features currently used to identify this species were not sufficient. Then, they discovered two well-defined morphological groups of P. boliviensis that were separated by the Andean mountain range, a geographic barrier that separates many other species.

To prove that these two “forms” were different species, the authors conducted fieldwork in the Amazon, Andes, and Central America, collecting specimens of these venomous spiders to explore if the genomic signal also suggests two species. They discovered that genetic differences separating these two forms were similar compared to the genetic differences separating other recognized species of banana spiders. Using morphological, genomic and geographic distribution data, the authors concluded that P. boliviensis represents not a single species, but two different ones. They uncovered that the true P. boliviensis was only found in the Amazonian region, and the second species, P. depilata (an old name revalidated by the research team), was found in the Andes, Chocó and Caribbean regions. Their findings are published in the open-access, peer-reviewed journal ZooKeys.

To obtain more distribution records for these species, the research team used the citizen science platform iNaturalist. Since the two species are among the few spiders that can be identified using only images, the platform turned out to be a very helpful tool. Data submitted by the iNaturalist community helped identify where the two species of Phoneutria are found. Curiously enough, for these two species, iNaturalist presented higher and more widely distributed records than the scientists’ own database. 

“To our knowledge, this is the first study that has used iNaturalist to gather occurrence records on venomous species to estimate distribution models,”

the researchers say.

This is how the two spiders can be distinguished using only photographs: P. boliviensis has two lateral white-yellow bands in the anterior area of the carapace, while P. depilata has four series of yellow dots in the ventral side of the abdomen. In addition, for P. depilata’s identification, information is needed on where the image was taken, because this is the only species of Phoneutria found in the Andes, Chocó, and Central America. However, the most reliable approach to identify these species requires examination under a stereomicroscope.  

Interestingly, P. depilata has been mislabeled as P. boliviensis throughout many studies, including works on venom composition and toxicity, ecology, geographic distribution, and human epidemiology of bites. There have been human bite records of this species reported in Costa Rica and in banana plantations in Colombia, most of them with mild to moderate envenomation symptoms. Except for brief anecdotal mentions by field explorers in the Amazon, little is known about P. depilata. 

Genetic evolutionary tree of the banana spiders genus Phoneutria
Photo by N.Hazzi

The study provides detailed diagnoses with images to distinguish both species and distribution maps. 

“This valuable information will help identify risk areas of accidental bites and assist health professionals in determining the identity of the species involved, especially for P. depilata. This is a significant discovery that will affect studies about toxicology, opening new opportunities to compare the venom composition and the effect of these two species,” the authors conclude.

Research article: 

Hazzi NA, Hormiga G (2021) Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae). ZooKeys 1022: 13-50. https://doi.org/10.3897/zookeys.1022.60571

King of the Cave: New centipede on top of the food chain in the sulphurous-soaked Movile

A new species of endemic, troglobiont centipede was discovered by an international team of scientists in the Romanian cave Movile: a unique underground ecosystem, isolated several millions years ago during the Neogene, whose animal life only exists because of the chemosynthetic bacteria. As the largest Movile’s inhabitant, the new species can easily be crowned as the ‘king’ of this ‘hellish’ ecosystem. Aptly named Cryptops speleorex, the cave-dweller is described in the open-access, peer-reviewed journal ZooKeys.

A photo of the newly discovered species (Cryptops speleorex), the largest inhabitant of the Movile cave (Romania) known to date
Photo by Mihai Baciu

Deemed to never see the light of the day, a new species of endemic, troglobiont centipede was discovered by an international team of scientists in the Romanian cave Movile: a unique underground ecosystem, where the oxygen in the air might be half of the amount of what we’re used to, yet the sulphurous abounds; and where the animal life only exists because of chemosynthetic bacteria feeding on carbon dioxide and methane.

This hellish ecosystem–where breathing alone could be lethal for most of us–seems to have finally crowned its king. At a size of between 46 and 52 mm in length, the centipede Cryptops speleorex is the largest of the cave’s inhabitants known to date. The new species is described in the open-access, peer-reviewed journal ZooKeys.

Already isolated from the outside world several millions years ago during the Neogene, the Movile cave has been drawing the attention of scientists ever since its unexpected discovery in 1986 by Romanian workers, searching for locations suitable for building a power plant in the southeastern parts of the country.

Surprisingly enough, despite its harsh living conditions, the Movile ecosystem was soon found to harbor a diverse and unique fauna, characterised by exceptional species endemism and specific trophic links. So far, the cave has been known to give home to the troglobiont water scorpion, liocranid and nesticid spiders, cave leeches and certainly many more yet to be discovered.

In fact, it was long thought that this unique underground ecosystem was also inhabited by surface-dwelling species widespread in Europe. Convinced that this scenario is highly unlikely, scientists Dr Varpu Vahtera (University of Turku, Finland), Prof Pavel Stoev (National Museum of Natural History, Bulgaria) and Dr Nesrine Akkari (Museum of Natural History Vienna, Austria) decided to examine a curious centipede, collected by speleologists Serban Sarbu and Alexandra Maria Hillebrand, during their recent expedition to Movile.

“Our results confirmed our doubts and revealed that the Movile centipede is morphologically and genetically different, suggesting that it has been evolving from its closest surface-dwelling relative over the course of millions of years into an entirely new taxon that is better adapted to life in the never-ending darkness,” explain the researchers.

“The centipede we described is a venomous predator, by far the largest of the previously described animals from this cave. Thinking of its top rank in this subterranean system, we decided to name the species Cryptops speleorex, which can be translated to the “King of the cave”, they add.

The scientists exploring the Movile cave (Romania)
Photo by Mihai Baciu

###

Original Source:

Vahtera V, Stoev P, Akkari N (2020) Five million years in the darkness: A new troglomorphic species of Cryptops Leach, 1814 (Chilopoda, Scolopendromorpha) from Movile Cave, Romania. ZooKeys 1004: 1-26. https://doi.org/10.3897/zookeys.1004.58537

🎉Celebration time: here’s to 1,000 issues of ZooKeys!

With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!

With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!

In fact, the cause for celebration is two-fold: this year, it’s also the 10th anniversary of ZooKeys’ very special 50th issue, which marked a new era for biodiversity data publishing by introducing several innovative workflows and tools. This is when ZooKeys became an example to follow globally: a title the journal still takes pride to be holding to this day.

Articles published in ZooKeys since the journal’s launch in 2008 (data from 3/12/2020).

Today, we shall reminisce about everything along the way: from that sunny Californian morning at the Entomological Society of America meeting in 2007, where the idea about a new-age taxonomic journal in zoology sprang up in a breakfast chat between renowned entomologists and future founders of ZooKeys: Prof Lyubomir Penev and Dr Terry Erwin, to this very moment, where we’re counting over 5,500 published articles, authored by more than 8,000 researchers from 144 countries and comprising ~150,000 pages. Thus, we saw the description of one supertribe, seven tribes, five subtribes, 27 families, over 800 genera and more than 12,000 species previously unknown to science. In this journey, ZooKeys climbed up the ladder of academic rigour and trustability to become today’s most prolific open-access journal of zoology.

Even though today is the time to feel exalted and look back on our achievements and conquered milestones with ear-to-ear smiles, it is with heavy hearts that we’ll be raising our glasses tonight, as we won’t be joined by our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, whom we lost on 11th May 2020. While his place in our hearts and ZooKeys’ Editorial board will never be filled, we accept our duty to help for his legacy to persist for the future generations of scientists by taking a vow to never lower our standards or cease to improve our services and care for our readers, authors, reviewers and editors alike. 

In honour of Terry, who will be remembered for his splendid personality and zealous enthusiasm for carabid beetles and the world’s immense biodiversity, we’ve opened up a special memorial volume to be published on 11th May 2021.

In fact, we have thousands of people to thank for the place ZooKeys is at right now: these are our authors, who have trusted us with their research work time and time again; our reviewers and editors, who have taken their invaluable time to promptly process submitted manuscripts; and, of course, our readers, who are using ZooKeys content to expand the world’s knowledge, either by learning and building on the findings in their own research, or by spreading the knowledge to those who will.

With a thought for our authors & readers

We’ve been striving to implement the latest and most convenient scholarly publishing technologies and innovations, and also develop some of our own to make sure that ZooKeys users enjoy their experience with our flagship journal. 

In hindsight, ZooKeys was the first journal to pioneer a lot of scholarly publishing technologies, which back in the time were quite revolutionary. Notable examples from 2008-2016 include: 

Yet, this was only the beginning. Fast forward to December 2020, we’re working even harder to build up on our achievements and evolve, so that we stay on top of our game and the scholarly publishing scene. Here are the key innovations we recently implemented in ZooKeys:

With a thought for our editors

Besides revolutionising research publishing, at Pensoft, we’re also deeply devoted to facilitating our editors in their day-to-day editorial work, as well as their long-term engagement with the journal and its progress. 

Recently, we expanded journal performance reporting services, in order to keep our editors on track with the most recent trends in their journal’s performance. Meanwhile, we’ve also taken care after the continuous improvement in those stats by implementing several features meant to facilitate and expedite the handling of manuscripts.

Follow ARPHA’s blog to keep up with the new features available to users of Pensoft’s journals and all journals hosted on ARPHA Platform.  

With a thought for the community

Naturally, research outputs are only as valuable to publish as they are valuable to the community: within and beyond academia. Ultimately, their merit is best measured by citations and readership. This is why, we shall now have a look back at the most impactful papers published in ZooKeys to date.

Author’s delight

Thanks to the indexation of ZooKeys in the research citation database of Dimensions, following the collaboration between ARPHA and Digital Science, which started in 2018, we’re now able to explore the all-time most cited publications in our flagship journal. Detailed information and links to the papers where each of those studies has been cited is available on the webpage of the article.

  1. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool (DOI: 10.3897/zookeys.150.2109)
  2. Family-group names in Coleoptera (Insecta) (DOI: 10.3897/zookeys.88.807)
  3. Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication (DOI: 10.3897/zookeys.219.3944)  
  4. Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation (DOI: 10.3897/zookeys.100.1523
  5. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions (DOI: 10.3897/zookeys.100.1533

Reader’s delight

Thanks to ARPHA Platform’s all-roundedness and transparency, we get to explore the most read papers ever published in ZooKeys straight from the Articles section on the journal’s website.

  1. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito (DOI: 10.3897/zookeys.324.5827)

In 2013, ZooKeys had the honour to announce the first carnivore found in the Western Hemisphere in over three decades. Further, that wasn’t ANY carnivore, but the olinguito, which National Geographic rightfully called a “fuzzy fog-dweller with a face like a teddy bear”.

  1. An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae) (DOI: 10.3897/zookeys.215.3547)

A year prior to the description of the olinguito, a brand new family of “cave robbing” spiders emerged from the pages of ZooKeys, after US scientists found a previously unknown to science spider with “unique, toothed claws at the end of each leg” in Oregon.

  1. Family-Group Names In Coleoptera (Insecta) (DOI: 10.3897/zookeys.88.807)

A huge, first-of-its-kind catalogue containing data on all family-group names for all known extant and fossil beetles (order Coleoptera) was published in ZooKeys in an exemplary research collaboration, spanning three continents in 2011.

  1. Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)

In a truly world-wide sensation, a new species of tiny moth inhabiting a narrow stretch of extremely fragile habitat running between the USA and Mexico, was named after then President-elect Donald Trump in a desperate call to protect this and other similarly vulnerable ecosystems in North America. The species currently goes by the name Neopalpa donaldtrumpi.

  1. Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)

In 2016, US scientists described a total of 14 new to science tarantula species from what many would think to be one the best-researched countries: the United States of America. Curiously enough, one of those tarantula species, found in California near Folsom Prison – a place best known from Cash’s song “Folsom Prison Blues”, was aptly named Aphonopelma johnnycashi.  

Public’s delight

As visionaries, we’ve long realised that scientific impact goes beyond citations and journal subscribers. Communicating science to the community beyond academia is, in fact, one of the strongest components in research dissemination, as it lets the laypeople make sense of the wider world and where exactly they stand in the bigger picture. This is why we’ve been putting that special extra effort to promote research published in our journals–including ZooKeys–using press releases, blog posts and social media content (follow ZooKeys on Twitter and Facebook).

Data source: Altmetric.

Thanks to our partnership with Altmetric, we’re able to identify the top five most popular papers from ZooKeys for all times. These are the ones that have sparkled the most online discussions via social media, big news headlines, blog posts, Wikipedia and more.

  1. Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)

Not only was the previously undescribed species of moth subject to a serious threat of extinction, having been exclusively known from a fragmented area along the Mexico–United States border, but the insect’s “hairstyle” was pointed out to bear a striking resemblance to the golden locks of the 45th U.S. President Donald Trump.

Credit: CNN (read the full news story here)
  1. Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco (DOI: 10.3897/zookeys.928.47517)

Published in ZooKeys earlier this year, this extensive geology and paleontology monograph presents an unprecedented in its volume and scientific value account of a large portion of the most important prehistoric vertebrate fossils ever unearthed from the famous Kem Kem beds in Morocco. “A monograph larger than Paralititan,” as a Reddit user justly pointed out.

  1. Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)

On top of taking pride in becoming the discoverer of as many as 14 tarantula species living “right under our noses” in the US, Dr Chris Hamilton enjoyed the spotlight of Live television in his appearance on Sky News. So did a lucky specimen of the newly described species: Aphonopelma johnnycashi! Suffice it to say, the tarantula was named after the legendary American singer-songwriter for all the right reasons.

Credit: Sky News (read the full news story here)
  1. Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group (DOI: 10.3897/zookeys.751.22661)

Apparently, ants that rip their bodies apart in a self-sacrificial attempt to save their colonies from enemies, weren’t something new by the time PhD student Alice Laciny and her team described the new to science species Colobopsis explodens from Brunei. However, the study published in ZooKeys in 2018 was the first to conduct and film experiments on the peculiar exploding behaviour. Although not the very first for science, C. explodens was the first “T-ant-T” species to be described since 1935.

  1. Mapping the expansion of coyotes (Canis latrans) across North and Central America (DOI: 10.3897/zookeys.759.15149)

Today, coyotes live all around North America: from Alaska to Panama, California to Maine. Once upon a time, or rather, between the Holocene and the early 1900s, their range used to be restricted to the arid west of North America. So, how did the coyotes turn up at the doorstep of South America? North Carolina scientists reached to natural history collections to map the historic colonisation of the coyotes all the way to our days.

***

In our final remarks on this special occasion, it’s the time to say a special Thank you! to our most prolific authors:

  1. Dr Shuqiang Li, expert on spider taxonomy and systematics at the Chinese Academy of Sciences, who’s also a reviewer and a subject editor at ZooKeys (64 publications).
  2. Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, who is also amongst the top five most active reviewers and the three most active subject editors in ZooKeys (59 publications).
  3. Dr Li-Zhen Li, coleopterist at Shanghai Normal University (57 publications).
  4. Dr Reginald Webster, coleopterist at Natural Resources Canada and a reviewer at ZooKeys (57 publications).
  5. Dr Sergei Golovatch, myriapodologist at the Russian Academy of Sciences, and a reviewer and a subject editor at ZooKeys (53 publications).

As well as to our most active reviewers:

  1. Dr Yuri Marusik, arachnologist at the Russian Academy of Sciences and the University of Free State, Magadan, South Africa. He is also a subject editor at ZooKeys.
  2. Dr Donald Lafontaine, entomologist at the Canadian National Collection of Insects, Arachnids, and Nematodes and Agriculture and Agri-Food Canada. He is also a subject editor at ZooKeys
  3. Dr Ivan H. Tuf, ecologist at Palacký University (Czech Republic) and a subject editor at ZooKeys.
  4. Dr Viatcheslav Ivanenko, taxonomist at the Lomonosov Moscow State University.
  5. Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active subject editors at ZooKeys.

And ZooKeysmost active editors:

  1. Prof Pavel Stoev, taxonomist, ecologist, and director at the National Natural History Museum (Bulgaria), and managing editor at ZooKeys.
  2. Prof Lyubomir Penev, entomologist, ecologist at the Bulgarian Academy of Sciences and founder of ZooKeys.
  3. Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active reviewers at ZooKeys.
  4. Dr Nina Bogutskaya, hydrobiologist and ichthyologist at the Museum of Natural History Vienna, and also a reviewer at ZooKeys.
  5. Dr Jeremy Miller, taxonomist and arachnologist at the Naturalis Biodiversity Center (Netherlands), and also a reviewer at ZooKeys.

Looking forward to sharing with you our next milestones and celebrations!

Meanwhile, make sure to follow ZooKeys on Twitter and Facebook to stay in touch!

Over a century later, the mystery of the Alfred Wallace’s butterfly is solved

An over a century-long mystery has been surrounding the Taiwanese butterfly fauna ever since the “father of zoogeography” Alfred Russel Wallace described a new species of butterfly: Lycaena nisa, whose identity was only re-examined in a recent project looking into the butterflies of Taiwan. Based on the original specimens, in addition to newly collected ones, Dr Yu-Feng Hsu of the National Taiwan Normal University resurrected the species name and added two new synonyms to it.

Described by the “father of zoogeography” and co-author of the theories of evolution and natural selection, the species hasn’t been reexamined since 1866

An over a century-long mystery has been surrounding the Taiwanese butterfly fauna ever since the “father of zoogeography” Alfred Russel Wallace, in collaboration with Frederic Moore, authored a landmark paper in 1866: the first to study the lepidopterans of the island. 

Back then, in their study, Moore dealt with the moths portion and Wallace investigated the butterflies. Together, they reported 139 species, comprising 93 nocturnal 46 diurnal species, respectively. Of the latter, five species were described as new to science. Even though the correct placements of four out of those five butterflies in question have been verified a number of times since 1886, one of those butterflies: Lycaena nisa, would never be re-examined until very recently. 

In a modern-day research project on Taiwanese butterflies, scientists retrieved the original type specimen from the Wallace collection at The History Museum of London, UK. Having also examined historical specimens housed at the Taiwan Agricultural Research Institute, in addition to newly collected butterflies from Australia and Hong Kong, Dr Yu-Feng Hsu of the National Taiwan Normal University finally resolved the identity of the mysterious Alfred Wallace’s butterfly: it is now going by the name Famegana nisa (comb. nov.), while two other species names (Lycaena alsulus and Zizeeria alsulus eggletoni) were proven to have been coined for the same butterfly after the original description by Wallace. Thereby, the latter two are both synonymised with Famegana nisa.


Type specimen of Famegana nisa, collected by Wallace in 1866 (upper side).
Credit: Dr Yu-Feng Hsu (courtesy of NHM)
License: CC-BY 4.0

Despite having made entomologists scratch their heads for over a century, in the wild, the Wallace’s butterfly is good at standing out. As long as one knows what else lives in the open grassy habitats around, of course. Commonly known as ‘Grass Blue’, ‘Small Grass Blue’ or ‘Black-spotted Grass Blue’, the butterfly can be easily distinguished amongst the other local species by its uniformly grayish white undersides of the wings, combined with obscure submarginal bands and a single prominent black spot on the hindwing. 

However, the species demonstrates high seasonal variability, meaning that individuals reared in the dry season have a reduced black spot, darker ground colour on wing undersides and more distinct submarginal bands in comparison to specimens from the wet season. This is why Dr Yu-Feng Hsu notes that it’s perhaps unnecessary to split the species into subspecies even though there have been up to four already recognised.

Type specimen of Famegana nisa, collected by Wallace in 1866 (bottom side).
Credit: Dr Yu-Feng Hsu (courtesy of NHM)
License: CC-BY 4.0

***

Alfred Russel Wallace, a British naturalist, explorer, geographer, anthropologist, biologist and illustrator, was a contemporary of Charles Darwin, and also worked on the debates within evolutionary theory, including natural selection. He also authored the famed book Darwinism in 1889, which explained and defended natural selection. 

While Darwin and Wallace did exchange ideas, often challenging each other’s conclusions, they worked out the idea of natural selection each on their own. In his part, Wallace insisted that there was indeed a strong reason why a certain species would evolve. Unlike Darwin, Wallace argued that rather than a random natural process, evolution was occurring to maintain a species’ fitness to the specificity of its environment. Wallace was also one of the first prominent scientists to voice concerns about the environmental impact of human activity.

***

Original source: 

Hsu Y-F (2020) The identity of Alfred Wallace’s mysterious butterfly taxon Lycaena nisa solved: Famegana nisa comb. nov., a senior synonym of F. alsulus (Lepidoptera, Lycaenidae, Polyommatinae). ZooKeys 966: 153-162. https://doi.org/10.3897/zookeys.966.51921

Contact: 

Dr Yu-Feng Hsu, National Taiwan Normal University
Email: t43018@ntnu.edu.tw 

Scientists unravel the evolution and relationships for all European butterflies in a first

For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent. A German-Swedish team of scientists provide a diagrammatic hypothesis of the relationships and evolutionary history for all 496 European species of butterflies currently in existence. Their study provides an important tool for evolutionary and ecological research, meant for the use of insect and ecosystem conservation.

For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent. 

The figure shows the relationships of the 496 extant European butterfly species in the course of their evolution during the last 100 million years.
Image by Dr Martin Wiemers

In a recent research paper in the open-access, peer-reviewed academic journal ZooKeys, a German-Swedish team of scientists provide a diagrammatic hypothesis of the relationships and evolutionary history for all 496 European species of butterflies currently in existence. Their study provides an important tool for evolutionary and ecological research, meant for the use of insect and ecosystem conservation.

In order to analyse the ancestral relationships and history of evolutionary divergence of all European butterflies currently inhabiting the Old continent, the team led by Martin Wiemers – affiliated with both the Senckenberg German Entomological Institute and the Helmholtz Centre for Environmental Research – UFZ, mainly used molecular data from already published sources available from NCBI GenBank, but also contributed many new sequences, some from very local endemics for which no molecular data had previously been available.

The phylogenetic tree also includes butterfly species that have only recently been discovered using molecular methods. An example is this Blue (Polyommatus celina), which looks similar to the Common Blue. It used to be mistaken for the Common Blue in the Canary Islands and the southwestern part of the Mediterranean Region.
Photo by Dr Martin Wiemers

Butterflies, the spectacular members of the superfamily Papilionoidea, are seen as an important proponent for nature conservation, as they present an excellent indicator group of species, meaning they are capable of inferring the environmental conditions of a particular habitat. All in all, if the local populations of butterflies are thriving, so is their habitat.

Furthermore, butterflies are pollinating insects, which are of particular importance for the survival of humans. There is no doubt they have every right to be recognised as a flagship invertebrate group for conservation.

While many European butterflies are seriously threatened, this one: Madeiran Large White (Pieris wollastoni) is already extinct. The study includes the first sequence of this Madeiran endemic which was recorded in 1986 for the last time. The tree demonstrates that it was closely related to the Canary Island Large White (Pieris cheiranthi), another threatened endemic butterfly, which survives only on Tenerife and La Palma, but is already extinct on La Gomera.
Photo by Dr Martin Wiemers

In recent times, there has been a steady increase in the molecular data available for research, however, those would have been only used for studies restricted either to a selected subset of species, or to small geographic areas. Even though a complete phylogeny of European butterflies was published in 2019, also co-authored by Wiemers, it was not based on a global backbone phylogeny and, therefore, was also not time-calibrated.

In their paper, Wiemers and his team point out that phylogenies are increasingly used across diverse areas of macroecological research, such as studies on large-scale diversity patterns, disentangling historical and contemporary processes, latitudinal diversity gradients or improving species-area relationships. Therefore, this new phylogeny is supposed to help advance further similar ecological research.

The study includes molecular data from 18 localised endemics with no public DNA sequences previously available, such as the Canary Grayling (Hipparchia wyssii), which is only found on the island of Tenerife (Spain).
Photo by Dr Martin Wiemers

Original source: 

Wiemers M, Chazot N, Wheat CW, Schweiger O, Wahlberg N (2020) A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938: 97-124. https://doi.org/10.3897/zookeys.938.50878

Special ZooKeys memorial volume open to submissions to commemorate our admirable founding Editor-in-Chief Terry Erwin

In recognition of the love and devotion that Terry expressed for the study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, covering all subjects falling within the area of systematic zoology. Titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”.

In tribute to our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, who passed away on 11th May 2020, we are planning a special memorial volume to be published on 11 May 2021, the date Terry left us. Terry will be remembered by all who knew him for his radiant spirit, charming enthusiasm for carabid beetles and never-ceasing exploration of the world of biodiversity! 

In recognition of the love and devotion that Terry expressed for study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”, to all subjects falling within the area of systematic zoology. Of special interest are papers recognising Terry’s dedication to collection based research, massive biodiversity  surveys and origin of biodiversity hot spot areas. The Special will be edited by John Spence, Achille Casale, Thorsten Assmann, James Liebherr and Lyubomir Penev.

Article processing charges (APCs) will be waived for: (1) Contributions to systematic biology and diversity of carabid beetles, (2) Contributions from Terry’s students and (3) Contributions from his colleagues from the Smithsonian Institution. The APC for articles which do not fall in the above categories will be discounted at 30%.

The submission deadline is 31st December 2020.

Contributors are also invited to send memories and photos which shall be published in a special addendum to the volume.

The memorial volume will also include a joint project of Plazi, Pensoft and the Biodiversity Literature Repository aimed at extracting of taxonomic data from Terry Erwin’s publications and making it easily accessible to the scientific community.

A new Critically Endangered frog named after “the man from the floodplain full of frogs”

A new species of a Critically Endangered miniaturised stump-toed frog of the genus Stumpffia found in Madagascar is named Stumpffia froschaueri after “the man from the floodplain full of frogs”, Christoph Froschauer. The namesake of the new frog is famous for being the first, and European-wide renowned, printer from Zürich, famous for printing “Historia animalium” and the “Zürich Bible”. The finding is published in the peer-reviewed open-access journal Zookeys.

A new species proposed to be classified as Critically Endangered of miniaturised stump-toed frog of the genus Stumpffia, found in Madagascar, is named Stumpffia froschaueri after “the man from the floodplain full of frogs”, Christoph Froschauer. The namesake of the new frog is famous for being the first, and European wide renowned, printer from Zürich, famous for printing Historia animalium and the “Zürich Bible”

Christoph Froschauer’s (ca. 1490 – April 1564) family name means “the man from the floodplain full of frogs”, and the printer used to sign his books with a woodcut, showing frogs under a tree in a landscape. Amongst his publications are works by Zwingli, Bullinger, Gessner, Erasmus von Rotterdam and Luther, and as a gift for his art, the printer was given citizenship in Zürich in 1519. Now, scientists have also honoured Froschauer’s great contributions by naming a new frog species after him.

The discovery, made by an international team of scientists from CIBIO (Research Centre in Biodiversity and Genetic Resources) of the University of Porto, Zoological Society of London, University of Lisbon, University of Brighton, University of Bristol, University of Antananarivo and Museo Regionale di Scienze Naturali, is published in the open-access peer-reviewed journal Zookeys.

The new species is reliably known only from a few specimens collected in three forest patches of the Sahamalaza region, an area severely threatened by fire, drought and high levels of forest clearance.

“In Anketsakely and Ankarafa this species has been found only in areas with relatively undisturbed forest, and active individuals were found during the day within the leaf-litter on the forest floor, where discreet calling males were also detected”,

shares lead author Dr. Angelica Crottini from CIBIO.

Even though two out of the three forest patches where Stumpffia froschaueri occurs are now part of a UNESCO Biosphere Reserve, there is a lack in forest border patrols and the area remains under strong pressure from slash-and-burn activities and timber harvesting. Habitat loss and fragmentation are likely to represent a huge threat to the species’ survival and cause population declines, unless remedial actions to enforce the protection of these habitats are taken. The scientists suggest to classify Stumpffia froschaueri as a Critically Endangered species according to criteria of the IUCN Red List.

Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of paratype ZSM 167/2019 (ACZCV 0968) from Ankarafa Forest
Credit: Gonçalo M. Rosa
License: CC-BY 4.0

“We here reiterate the need to continue with field survey activities, giving particular attention to small and marginal areas, where several microendemic candidate species are likely waiting to be discovered and formally described. This description confirms the Sahamalaza Peninsula as an important hotspot of amphibian diversity, with several threatened species relying almost entirely on the persistence of these residual forest fragments”,

concludes Dr. Crottini.
Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of paratype ZSM 166/2019 (ACZCV 0939) from Ankarafa Forest
Credit: Gonçalo M. Rosa
License: CC-BY 4.0

Contact:
Dr. Angelica Crottini 
Email: tiliquait@yahoo.it 

Original source:
Crottini A, Rosa GM, Penny SG, Cocca W, Holderied MW, Rakotozafy LMS, Andreone F (2020) A new stump-toed frog from the transitional forests of NW Madagascar (Anura, Microhylidae, Cophylinae, Stumpffia). ZooKeys 933: 139-164. https://doi.org/10.3897/zookeys.933.47619