Three new species of zoantharians described from coral reefs across the Indo-Pacific

One of them was named after the president of Palau, Tommy Remengesau, in honour of his and the nation’s support to the authors and marine conservation

Three new species of zoantharians were discovered by researchers from the University of the Ryukyus and Kagoshima University, Japan, and the Palau International Coral Reef Center. Despite not being previously known, all three species were found widely across the Indo-Pacific, with at least two species found in the Red Sea, the Maldives, Palau, and southern Japan.

Zoantharians, or colonial anemones, include species popular in the pet trade such as Zoanthus or Palythoa, but the new species are all much more cryptic, living in marine caves, cracks, or at depths below most recreational SCUBA diving (>20 m). The research was published December 29, 2017, in the open-access journal ZooKeys.

The three new species belong to the genus Antipathozoanthus, which contains species that only live on top of black coral colonies. However, surprisingly, one of the new species does not live on black corals, but instead in narrow cracks in coral reefs.

obscurus“We think that the new species, Antipathozoanthus obscurus, has evolved away from needing to be on top of black corals to take advantage of the available space in coral reef cracks”, said lead researcher Hiroki Kise.

“This is yet another example of how much diversity is right underneath our noses, but we still know nothing about it.”

Coral reefs, which are widely threatened by rising temperatures from global warming, are generally believed to harbour very high numbers of species, including yet many undescribed or unknown species.

Amongst the other two new species is Antipathozoanthus remengesaui, named after the current president of Palau, Tommy Remengesau.

“Much of our work was based in Palau”, said senior author Dr. James Reimer, “and we wished to acknowledge the fantastic support we have received from the nation. Palau is considered at the forefront of marine conservation, and much of this is thanks to President Remengesau’s vision.”

While the new discoveries shed more light on our understanding of coral reef biodiversity, this work is far from done. In fact, the researchers themselves estimate they still have up to ten more zoantharian species to describe from the waters of Palau and Okinawa.

“Marine diversity of coral reefs is amazing, with new surprises all the time”, said Kise, “and biodiversity scientists still have a lot more work to do.”

###

Original source:

Kise H, Fujii T, Masucci GD, Biondi P, Reimer JD (2017) Three new species and the molecular phylogeny of Antipathozoanthus from the Indo-Pacific Ocean (Anthozoa, Hexacorallia, Zoantharia). ZooKeys 725: 97-122. https://doi.org/10.3897/zookeys.725.21006

A genus of European paper wasps revised for the first time using integrative taxonomy

The European and Mediterranean species of the paper wasp genus Polistes were recently revised by scientists at the SNSB-Zoologische Staatssammlung München (ZSM).

For the first time for this group scientists applied an integrative taxonomic approach which combines traditional morphological methods with modern DNA barcoding.

As a result, the researchers were able to identify a new species from Morocco. For this well-researched wasp group, this is an actual sensation.

The study is published in the open access journal ZooKeys.

The Munich researchers analysed more than 260 wasp specimens collected from across the study area with the help of DNA barcoding.

They managed to identify all species and determine their distribution. In addition, based on the genetic data, they were able to evaluate morphological characters for each species and created a completely new key for identification.

The wasps of the genus Polistes belong to the family Vespidae. The genus is represented by 17 species in Europe and the Mediterranean, with four species occurring in Germany. Within the genus, 13 species are social, with the queen overwintering and founding a new nest with up to 200 workers. Four species are parasitic and have no workers.

Although Polistes has been well-known in Central Europe for more than 200 years, knowledge of Mediterranean species has so far been scarce. Many species of the genus exhibit only subtle morphological differences and show high levels of colour variation, further complicating their identification.

An important result of this research is the separation of species of the Polistes gallicus species complex into three distinct species. Moreover, the genetic data led to the discovery of a new species, represented by a single specimen from the High Atlas Mountains in Morocco. This was an unexpected result for the researchers. The species was named Polistes maroccanus.

Another very surprising result was the discovery of high levels of genetic variation within Polistes dominula, a species commonly found in Central Europe, indicating the presence of up to three different and hitherto unrecognized species – a case requiring further investigation.

Integrative taxonomy is an approach that combines different scientific methods to reliably differentiate species. In particular, DNA barcoding has proven to be a useful technique for the identification of species and for the discovery of new species. The method allows to identify most species quickly and accurately, even those species that are difficult to identify using traditional methods based on morphological characters.

DNA barcoding uses a short gene fragment that differs in almost all species worldwide. The sequences are stored in an online database and can be used for identification. The method derives its name for being reminiscent of the barcodes similar to those found on products in supermarkets that allow quick and error-free identification at the checkout.

DNA barcoding is part of a global research initiative led by the Canadian scientist Paul Hebert from the University of Guelph. The ZSM is a project partner and involved in assembling DNA barcodes of the German animal species. In addition to ZSM researchers, scientists from Switzerland and the Netherlands contributed to the Polistes project.

###

Original source:

Schmid-Egger C, van Achterberg K, Neumeyer R, Morinière J, Schmidt S (2017) Revision of the West Palaearctic Polistes Latreille, with the descriptions of two species – an integrative approach using morphology and DNA barcodes (Hymenoptera, Vespidae). ZooKeys 713: 53-112. https://doi.org/10.3897/zookeys.713.11335

When lemons give you life: Herpetofauna adaptation to citrus orchards in Belize

Natural habitat areas exhibit similar abundances and diversity of herpetofauna as citrus orchards and reclaimed orchard forests in Stann Creek, Belize, reports a comparative study by researchers Russell Gray and Dr. Colin Strine of Suranaree University of Technology (SUT), Thailand.

The scientists utilized several drift-fence arrays equipped with double-funnel traps to monitor and compare reptile and amphibian communities in a lowland broadleaf forest, a lime orchard and a reclaimed citrus orchard at the Toucan Ridge Ecology and Education Society (TREES) field station. Their study was recently published in the open-access journal ZooKeys.

Often referred to as Central America’s “hidden gem” for its abundance of undisturbed rainforests and natural beauty, Belize has a long-standing record for vigorously protecting and maintaining their forested areas. However, just as in any other developing country, its primary sector is expanding with agricultural land clearings becoming more frequent with newly established properties.

Approximately midway through the study (June – September 2016), the site was hit by Hurricane Earl, a Category 1 hurricane. The hurricane-force winds altered the canopy cover significantly over the forested study sites, due to felled trees and broken branches.

Surprisingly enough, the herpetofauna remained relatively unchanged in the aftermath of Earl. The phenomenon revealed that not only were herpetofaunal communities lacking sensitivity to anthropogenic changes in the area, but also to extreme weather events, even though these had affected most of the standing vegetation.

Some notable observations occurred within three days of Hurricane Earl, according to Russell Gray:

“One of the trapping system was catching arboreal [tree climbing] snake species, like the cat-eyed snake and blunt-headed tree snake. This wasn’t only interesting because arboreal snakes were caught in terrestrial traps, but rather because they were never caught in our traps during the study up to this point.”

“Even more interesting is that they were caught exclusively in the manicured orchard area, which makes me wonder if they somehow predicted falling trees and fled to the only habitat without them. Some animals appear to forecast weather events due to sudden or drastic changes in environmental conditions. I wonder if this is a similar case.”

Amongst other notable scientific discoveries reported during the project were two new accounts of the Petén Centipede Snake (Tantilla hendersoni), one of which was the first documented male of the species. This secretive snake had only been documented once prior to the study and is the only endemic snake species to Belize.

Further noteworthy instances were two range extensions for relatively data deficient species – one for the Doflein’s Salamander (Bolitoglossa dofleini) and another for the Ringneck Coffee Snake (Ninia diademata).

Besides providing important data on herpetofauna assemblages in various disturbed and undisturbed habitats in Belize, the research identifies future conservation methods to be considered.

The study serves as new evidence that as long as agricultural areas remain surrounded with natural habitat buffers, they have little effect on herpetofaunal communities.

Replicates of this study are encouraged by the authors and can be utilized as a feasible and efficient way to monitor reptiles and amphibians in Belize.

Although Belize still preserves a considerable amount of intact forest cover, there are several on-going conservation concerns. Besides agricultural land clearings, there are constant struggles with xate poachers, or “Xateros”, on the Guatemalan border, as well as illegal logging activities and illegal off-season hunting.

Unfortunately, reptiles and amphibians have been understudied in comparison to other vertebrates and government action is rarely enforced on their conservation throughout the Neotropics.

A striking example of this relates to the only critically endangered reptile in Belize – the Hickatee turtle (Dermatemys mawii). Although the species is likely to become extinct, it is still traditionally collected for its culinary value, while its hunting is banned only in May.

In conclusion, the authors note that it is crucial to pay close attention to anthropogenic activity and the potential repercussions it may have on native species. With extensive and active efforts to study Mesoamerican herpetofauna, proper conservation efforts can be implemented and focused.

###

Original Source:

Gray R, Strine CT (2017) Herpetofaunal assemblages of a lowland broadleaf forest, an overgrown orchard forest and a lime orchard in Stann Creek, Belize. ZooKeys 707: 131-165. https://doi.org/10.3897/zookeys.707.14029

DNA study in the Pacific reveals 2000% increase in our knowledge of mollusc biodiversity

Lead author Dr Helena Wiklund examining specimens on the RV Melville in October 2013
Lead author Dr Helena Wiklund examining specimens on the RV Melville in October 2013

Scientists working in the new frontier for deep-sea mining have revealed a remarkable 2000% increase in our knowledge of the biodiversity of seafloor molluscs.

The 21 mollusc species newly described thanks to the latest DNA-taxonomy methodology
The 21 mollusc species newly described thanks to the latest DNA-taxonomy methodology

Tweny-one species, where only one was previously known, are reported as a result of the research which applied the latest DNA-taxonomy methodology to mollusc specimens collected from the central Pacific Clarion Clipperton Zone (CCZ) in 2013. They are all described in the open access journal ZooKeys.

Among the discoveries is a monoplacophoran mollusc species regarded as a ‘living fossil’, since it is one the ancestors of all molluscs. This is the first DNA to be collected from this species and the first record of it from the CCZ mining exploration zone – a vast 5-million-km² region of the central Pacific that is regulated for seabed mining by the International Seabed Authority.

“Despite over 100 survey expeditions to the region over 40 years of mineral prospecting, there has been almost no taxonomy done on the molluscs from this area,” says lead author Dr Helena Wiklund of the The Natural History Museum in London (NHM).

Dr Wiklund undertook a comprehensive DNA-based study of the molluscs to confirm species identities and make data available for future taxonomic study. This was coupled with the expertise of the NHM’s Dr John Taylor, who led the morphological work.

The molluscs were found in samples taken on and in the mud surrounding the potato-sized polymetallic nodules that are present in high abundance across the CCZ. These nodules are the target for potential deep-sea mining being rich in cobalt, copper, nickel, manganese and other valuable minerals.

The data are vital for the future environmental regulation of deep-sea mining, but have also revealed surprising patterns.

“I was amazed to discover that specimens collected during the 19th century by HMS Challenger were probably the same as ours over a range of 7000 km, but that data lodged on genetic databases from closer but shallower depths is likely to be from a different species,” comments Dr Thomas Dahlgren, population geneticist at Uni Research, Norway and University of Gothenburg, Sweden, who studied in detail a species called Nucula profundorum.

“Our efforts are now focussing on studying the DNA from many more samples of this species to examine connectivity and potential resilience to deep-sea mining,” he added.

Dr Thomas Dahlgren sieving sediments to find new clam and snail
Dr Thomas Dahlgren sieving sediments to find new clam and snail species

“It is a simple truth that we cannot move forward on regulatory approval for deep-sea mining without fundamental baseline data on what animals actually live in these regions,” says Principal Investigator of the NHM Deep-sea Systematics and Ecology Research Group, Dr Adrian Glover.

“Our work has highlighted obvious gaps in our knowledge, but also shown that with even relatively modest effort, we can greatly increase our understanding of baseline biodiversity using DNA-taxonomy.”

Creating a library of archived DNA-sequenced samples from known species allows for the future possibility of using the latest environmental DNA (eDNA) methods to ‘search’ for these species using just tiny samples of mud or seawater.

“Its akin to forensic science’, says Dr Glover. “You can’t use eDNA to find the criminals or species unless you have a library of information to compare them too”.

All data and specimens from the study have been lodged at the NHM and online repositories to make them accessible for future study. Of particular importance are the frozen tissue collections, which are housed in the state-of-the-art Molecular Collections Facility at the NHM and available for loan or further DNA work.

 

Original source:

Wiklund H, Taylor JD, Dahlgren TG, Todt C, Ikebe C, Rabone M, Glover AG (2017) Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca. ZooKeys 707: 1–46. https://doi.org/10.3897/zookeys.707.13042

Heat-loving Australian ants believe in diversity, hint 74 species new to science

The ‘furnace ants’ or ‘honeypot ants’ present a very large genus of ants, Melophorus, confined to Australia. Long believed to be megadiverse, some scientists have even suggested that the group may contain ‘well over 1000 species’. However, to this point, only 32 species and subspecies had been described.

Scientists Dr Brian Heterick of Curtin UniversityDr Mark Castalanelli of Ecodiagnostics Pty Ltd and Dr Steve Shattuck of the Australian National University, funded by an internationally competitive Australian Biological Resources (ABRS) grant, set out to find the true facts.

As a result, they discovered as many as 74 new species belonging to Melophorus. In their study, published in the open access journal ZooKeys, they also provide a taxonomic key to the workers of a total of 93 species in the genus.

Among the studied ants, there are quite bizarre ones, including a species (Melophorus hirsutus) whose eyes are strangely protruding out of his head to a varying degree. In the extreme cases, the eyes are so pointy that could be likened to ice-cream cones. Named many years ago, this ant appears to be older than the rest of the examined living species. Furthermore, unlike most of them, it does not seem adapted to heat. It is confined to the wet eastern coast of Australia.

Dr Heterick spent two weeks collecting specimens in the often rugged and forbidding terrain of Western Australia, while the team also asked a number of major museum collections to loan them specimens.

The newly collected ants were placed in alcohol and subjected to genetic tests using one mitochondrial and four nuclear genes. The findings were then compared with those from physical examinations to prepare the taxonomic key – a set of distinctive features per species that can be used to differentiate within the group.

Given the generally complex nature of these ants, the authors expect for the genus to further expand in future. They speculate that even though the numbers may increase to around 100 species, not the ‘well over 1000’ previously predicted, they still illustrate an incredible diversity.

The authors estimate that Melophorus arose around 35 million years ago. The closest relatives of the genus are also confined to the Australasian region with the exception of a single genus living in South America.

Furthermore, the genus is also quite astonishing thanks to another trait shared among the species.

“By the way, this group of ants has a thing or two to tell those of us who get lost easily!” comments lead author Dr Brian Heterick.

“They can find their way home in a featureless landscape by means of an internal compass influenced by information gathered on earlier journeys. We are not the first species to use a computing system!”

###

Original source:

Heterick B, Castalanelli M, Shattuck S (2017) Revision of the ant genus Melophorus (Hymenoptera, Formicidae). ZooKeys 700: 1-420. https://doi.org/10.3897/zookeys.700.11784

Six new sponge species and new symbiotic associations from the Indonesian coral triangle

Comprising more than 17,000 islands, the Indonesian archipelago is one of the world’s most biodiverse places on Earth.

Sponges, aquatic organisms whose bodies consist of numerous pores to allow the ingress of water, are key components of this richness and play a fundamental role in the survival of coral reef habitats. Furthermore, they are also known for their medicinal benefits.

Unfortunately, due to the paucity of taxonomic expertise, the sponges from the Indonesian reefs are often ignored in monitoring surveys and conservation programmes, while their diversity is largely underestimated.

Researchers from the Italian Università Politecnica delle Marche and Università degli Studi di GenovaPharmaMar, Spain, and University of Sam Ratulangi, Indonesia, describe six new species in their paper in the open access journal, ZooKeys.

Inspired by their extraordinary biodiversity, the researchers teamed up with the pharmaceutical company PharmaMar to conduct several expeditions in the waters of North Sulawesi Island.

Psammocinia albaThe authors reported a total of 94 demosponge species belonging to 33 families living in the North Sulawesi Island. Amongst them, there are six species new to science and two previously unknown symbiotic relationships.

Seven of the recorded species were collected for the very first time since their original description.

However, these findings are still scarce, given the abundance of the sponges in similar localities in the Indonesian archipelago.

In conclusion, the authors note that the marine diversity in Indonesia is still far from being well known.

“Thanks to this impressive diversity, these areas are important spots for diving tourism and require the urgent development of sustainable tourism practices,” they say.

###

Original source:

Calcinai B, Bastari A, Bavestrello G, Bertolino M, Horcajadas SB, Pansini M, Makapedua DM, Cerrano C (2017) Demosponge diversity from North Sulawesi, with the description of six new species. ZooKeys 680: 105-150. https://doi.org/10.3897/zookeys.680.12135

Threatened Alabama snail renamed after a case of mistaken identity

Contrary to what scientists have known for over 100 years, the Painted Rocksnail turns out to have never existed outside the Coosa River system

Alabama has some of the highest diversity of freshwater snails in the world, but many snails are at high risk of extinction.

An essential part of determining extinction risk is knowing the range of a given species and determining how much its range has contracted owing to anthropogenic impacts, but mistaken identity or misidentification can complicate conservation efforts.

Image1_PaintedRocksnailsThe Painted Rocksnail, a small snail from the Coosa River system, has been mistakenly identified as other species for over 100 years.

In a study published in the open access journal ZooKeys, scientists Dr. Nathan Whelan, U.S. Fish and Wildlife Service, Dr. Paul Johnson and Jeff Garner, Alabama Department of Conservation and Natural Resources, and Dr. Ellen Strong, Smithsonian Institution National Museum of Natural History, tackled the identity of the Painted Rocksnail, a small federally threatened species native to the Mobile River basin in Alabama.

Freshwater snails are notoriously difficult to identify, as the shells of many species can look very similar. Keeping this in mind, the researchers began to notice that many shells identified as the Painted Rocksnail in museums around the world were misidentified specimens of the Spotted Rocksnail, another snail species found in Alabama.

After examining shells at the Academy of Natural Sciences of PhiladelphiaMuseum of Comparative Zoology at Harvard, National Museum of Natural History, North Carolina Museum of Natural SciencesFlorida Museum of Natural History, and Natural History Museum in London, in addition to hundreds of hours of their own sampling throughout the Mobile River basin, the authors determined that all previous reports of the Painted Rocksnail from outside the Coosa River system were mistakes.

Despite the Painted Rocksnail dwelling in well-studied rivers near large population centers, mistaken identity of the species has persisted almost since the species was described back in 1861 by Isaac Lea.

Only after careful examination of shells collected in the last 150 years and analyses of live animals were the researchers able to confidently determine that the Painted Rocksnail never occurred outside the Coosa River system.

The study has implications for the conservation of the Painted Rocksnail, as the species was historically more restricted than previously thought. Recent surveys by the authors only found the species in small stretches of the Coosa River, Choccolocco Creek, Buxahatchee Creek, and Ohatchee Creek.

In conclusion, the authors note the importance of natural history museums and the importance of studying snails in the southeastern United States.

“Without the shells stored in natural history museums we would have never been able to determine that the supposed historical range of the Painted Rocksnail was incorrect, which could have resulted in less effective conservation efforts for an animal that is very important to the health of rivers in Alabama,” they say.

###

Original Source:

Whelan NV, Johnson PD, Garner JT, Strong EE (2017) On the identity of Leptoxis taeniata – a misapplied name for the threatened Painted Rocksnail (Cerithioidea, Pleuroceridae). ZooKeys697: 21-36. https://doi.org/10.3897/zookeys.697.14060

Rare footage of a new clearwing moth species from Malaysia reveals its behavior

Unique footage of a new species of clearwing moth has been recorded in a primeval rainforest in Peninsular Malaysia revealing the behaviour of this elusive insect.

Clearwing moths, which are day-flying insects belonging to the Sesiidae family, imitate bees and wasps. Apart from the common species considered as agricultural pests, these moths are known mainly from old museum specimens, stored on pins in forgotten drawers. In the wild, they are elusive creatures, rarely spotted and, hence, poorly studied.

Marta Skowron Volponi from the University of Gdansk, Poland, a PhD student specialising in entomology, teamed up with nature filmmaker and photographer Paolo Volponi, associated with the ClearWing Foundation for Biodiversity, to find these intriguing insects. The results of their studies were recently published in ZooKeys.

In their search for clearwing moths, they went deep into the virgin Malaysian jungle, where elephants, tigers, tapirs and other charismatic Southeast Asian animals roam, while dealing with the intense heat, humidity and countless blood-suckers.

In the end, however, their effort was worth it: on a bank of a crystal clear river, during the hottest hours of the day, the researchers discovered a new species of clearwing moth displaying behaviour known as mud-puddling.

“Mud-puddling is the process of sucking-up liquids in order to gain essential nutrients, such as salt or proteins”, explains Marta. “It has only recently been observed in clearwing moths and, similarly as in other Lepidopterans, it seems to be restricted to males”.

The newly discovered species was named Pyrophleps ellawi in honour of Marta and Paolo’s Malaysian friend EL Law who supported the team during their expeditions and who has a deep affinity for nature.

Curiously, rather than resembling a butterfly’s relative, the new moth looks like an insect from a whole different order. It mimics potter wasps.

“It has a slender body, long legs and transparent wings with a blue sheen in sunlight, similarly to some species of potter wasps”, says Marta.

Furthermore, while observing the moth in the wild, the authors noticed that it does not only look like a wasp – it also flies like one.

“There were potter wasps in the same area. In flight, the two insects were impossible to distinguish, they would always confuse us!”

The new species seems to be quite rare. During the authors’ three expeditions to Malaysia, they managed to see only eight individuals with each of them seen on a different day.

“So there we were: on our knees on a sandy beach, in the middle of the jungle, trying to film the 1.5 cm moth”, Marta recalls. “We didn’t have much time: a single clearwing would come around 2:00 PM and stay for several minutes only. We knew that once it flew away, we would not get another shot”.

“Could it be that their rarity is the reason why the behaviour of clearwing moths is practically unknown and why there are still new species waiting to be discovered?” the researchers wonder.

###

Original source:

Skowron Volponi MA, Volponi P (2017) A new species of wasp-mimicking clearwing moth from Peninsular Malaysia with DNA barcode and behavioural notes (Lepidoptera, Sesiidae). ZooKeys692: 129-139. Doi: 10.3897/zookeys.692.13587

 

An overlooked and rare new gall-inducing micromoth from Brazil

A new species and genus (Cecidonius pampeanus) of primitive monotrysian micromoth from the Brazilian Pampa biome has been recently discovered to induce scarcely noticeable galls under the swollen stems of the Uruguayan pepper tree.

Gall-inducing moths lay their eggs in the tree bark, where the larvae form the characteristic roundish swellings as they grow larger. In their turn, these galls attract various parasitoids and inquiline wasps – wasps that have lost the ability to form galls for their own eggs – and so they take advantage of the galls of other species, while under development. The inquilines modify the galls into larger ones which subsequently last longer and attract even more attention. As a result, even though abundant as young, the new moth’s larvae rarely survive and their density in the field later in life is low.

Moreiraetal_PressRelease_Image2While free-living gall moths are generally rare, the studied genus pupates on the ground, resulting in its being overlooked for over a century. Furthermore, the galls fall to the ground where the last instar larvae undergo a period of suspended development for months. They stay motionless within their gall until pupation and emerge as adults in the next growing season.

After all this time, this species has finally been recognised in the open access journal ZooKeys by an international research team, led by Dr. Gilson Moreira, Universidade Federal do Rio Grande do Sul, Brazil. In their paper, the scientists describe the gall, immature stages and adults of the moth. They also provide information on its natural history in conjunction with one of the associated parasitoid and inquiline wasps.

“It took several years to obtain a small number of C. pampeanus pupae and adults to use for the description,” say the authors.

“The existence of these galls has been known for more than a century. However, biologists believed they are induced by the inquiline wasps,” they explain. “Consequently, it turned out that the wasps do not induce galls, but rather modify them early in development into large and colourful, visually appealing galls.”

The study also provides strong evidence that the species is under threat of extinction and the scientists suggest that protective measures need to be taken to conserve it.

In fact, they found strikingly low levels of gene flow amongst populations of C. pampeanus. In their paper, the team also emphasises that, in case of extinction of the primary gall inducer, a whole insect community associated with their galls will follow. This could happen even before science becomes familiar with all of these species.

Open savannahs of southern Brazil, where populations of the new moth’s host plant (the Uruguayan pepper tree) are found, have been suffering from anthropic impact for decades, mostly caused by agriculture and cattle ranching.

Curiously, the present study is the first in Brazil to suggest that a micromoth and its associated fauna should be subjected to conservation measures.

Extant populations of the new species are distant and isolated from each other, being restricted to a small geographic area in the northeast Southern Brazilian “Campos” (= Pampean savannah), a neglected biome from a nature preservation perspective. Most of the moths have retreated to higher elevations, such as hilltops and hill slopes interspersed with small bushes, where they get shelter from the anthropic influence.

###

Original source:

Moreira GRP, Eltz RP, Pase RB, Silva GT, Bordignon SAL, Mey W, Gonçalves GL (2017) Cecidonius pampeanus, gen. et sp. n.: an overlooked and rare, new gall-inducing micromoth associated with Schinus in southern Brazil (Lepidoptera, Cecidosidae). ZooKeys 695: 37-74. https://doi.org/10.3897/zookeys.695.13320

3D avatars for three new rare ant species from Africa including the Obama ant

Three new, rare ant species recently discovered in Africa were named after important figures for the African biodiversity conservation – the former United States president Barack Obama, the Nigerian writer and environmental activist Ken Saro-Wiwa, and the world-renowned biologist Edward O. Wilson.

The scientists from the Okinawa Institute of Science and Technology Graduate University (OIST), who had their discovery published in the open access journal ZooKeys, used a new, revolutionary method to compile scans of the ants and create 3D avatars allowing for a unique and detailed visualisation of the insects’ insides.

https://skfb.ly/6sPvr

Curiously, the Obama ant, Zasphinctus obamai, was collected from the Kakamega Forest National Park, Kenya, located near Barack Obama’s ancestral family village. The 44th President of the United States of America is famous for his numerous initiatives towards the conservation of fragile natural habitats around the globe.

Ken Saro-Wiwa, who also has his name perpetualised in the new ant species Zasphinctus sarowiwai, was a Nigerian writer and environmental activist who, after campaigning against irresponsible oil development, was executed in 1995.

“By naming a species from threatened rainforest habitats after him, we want to acknowledge his environmental legacy and draw attention to the often-problematic conservation situation in most Afrotropical rainforests,” explain the biologists in their paper.

The third new species, Zasphinctus wilsoni, bares the name of the biologist Edward O. Wilson, whose foundation has contributed greatly to the resurrection of the Gorongosa National Park in Mozambique.

The 3D avatars were created with the help of X-ray microtomography, or micro-CT, which is a technology similar to the one used in hospitals for CT scans, but relying on much higher resolution. The three-dimensional reconstructions made it possible for the scientists to look into details as tiny as the ants’ mouthparts and even their legs and hairs. Moreover, this method does not require damaging the rare specimens.

“We saw things that nobody ever looked at,” says Dr. Hita Garcia, first author on the study and a member of the Biodiversity and Biocomplexity Unit at OIST.

While closely related ants had already been known as predators of other ant species, the scientists needed to study the data provided by the scans to confirm that the new species are top predators as well.

“Normally when you describe a new species, you don’t know much about its biology,” further explains Dr. Hita Garcia, “but with the 3D reconstructions researchers can discover details right away.”

To the biologists, these reconstructions hint at a future of virtual taxonomy with the potential to alleviate issues of time, money, and specimen damage.

Furthermore, the 3D models also allow for the data to be easily accessible from anywhere. To show this, the scientists have uploaded the reconstructions to the open access Dryad Digital Repository.

“If someone wants to see the Obama ant, they can download it, look at it, and 3D print it,” Dr. Hita Garcia points out.

“Since these ants are from very threatened habitats in Africa, we wanted to pick names that draw attention to the environment, and not just the ants,” he concludes.  “The rainforests in equatorial Africa, as well as the savannah in Mozambique, needs to be protected before the habitats and animals living within them are destroyed.”

 

###

Find the original public announcement available via the OIST’s website: https://www.oist.jp/news-center/news/2017/8/29/say-hello-3d-obama-ant

###

Reference:

Hita Garcia F, Fischer G, Liu C, Audisio TL, Economo EP (2017) Next-generation morphological character discovery and evaluation: an X-ray micro-CT enhanced revision of the ant genus Zasphinctus Wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics. ZooKeys 693: 33-93. https://doi.org/10.3897/zookeys.693.13012