“…the most realistic and tangible way out of the looming biodiversity crisis is to put a price tag on species and thereby a cost to actions that compromise them.”
So far, science has described more than 2 million species, and millions more await discovery. While species have value in themselves, many also deliver important ecosystem services to humanity, such as insects that pollinate our crops.
Meanwhile, as we lack a standardized system to quantify the value of different species, it is too easy to jump to the conclusion that they are practically worthless. As a result, humanity has been quick to justify actions that diminish populations and even imperil biodiversity at large.
In a study, published in the scholarly open-science journal Research Ideas and Outcomes, a team of Estonian and Swedish scientists propose to formalize the value of all species through a conceptual species ‘stock market’ (SSM). Much like the regular stock market, the SSM is to act as a unified basis for instantaneous valuation of all items in its holdings.
However, other aspects of the SSM would be starkly different from the regular stock market. Ownership, transactions, and trading will take new forms. Indeed, species have no owners, and ‘trade’ would not be about transfer of ownership rights among shareholders. Instead, the concept of ‘selling’ would comprise processes that erase species from some specific area – such as war, deforestation, or pollution.
Conversely, taking some action that benefits biodiversity – as estimated through individuals of species – would be akin to buying on the species stock market. Buying, too, has a price tag on it, but this price should probably be thought of in goodwill terms. Here, ‘money’ represents an investment towards increased biodiversity.
Interestingly, the SSM revolves around the notion of digital species. These are representations of described and undescribed species concluded to exist based on DNA sequences and elaborated by including all we know about their habitat, ecology, distribution, interactions with other species, and functional traits.
For the SSM to function as described, those DNA sequences and metadata need to be sourced from global scientific and societal resources, including natural history collections, sequence databases, and life science data portals. Digital species might be managed further by incorporating data records of non-sequenced individuals, notably observations, older material in collections, and data from publications.
The study proposes that the SSM is orchestrated by the international associations of taxonomists and economists.
“Non-trivial complications are foreseen when implementing the SSM in practice, but we argue that the most realistic and tangible way out of the looming biodiversity crisis is to put a price tag on species and thereby a cost to actions that compromise them,”
says Kõljalg.
Original source
Kõljalg U, Nilsson RH, Jansson AT, Zirk A, Abarenkov K (2022) A price tag on species. Research Ideas and Outcomes 8: e86741. https://doi.org/10.3897/rio.8.e86741
The purpose of this call is to solicit, select and implement four to six biodiversity data-related scientific projects that will make use of the added value services developed by the leading Research Infrastructures that make the BiCIKL project.
The BiCIKL project invites submissions of Expression of Interest (EoI) to the First BiCIKL Open Call for projects. The purpose of this call is to solicit, select and implement four to six biodiversity data-related scientific projects that will make use of the added value services developed by the leading Research Infrastructures that make the BiCIKL project.
By opening this call, BiCIKL aims to better understand how it could support scientific questions that arise from across the biodiversity world in the future, while addressing specific scientific or technical biodiversity data challenges presented by the applicants.
The BiCIKL project – a Horizon 2020-funded project involving 14 European institutions, representing major global players in biodiversity research and natural history, and coordinated by Pensoft – establishes a European starting community of key research infrastructures, researchers, citizen scientists and other biodiversity and life sciences stakeholders based on open science practices through access to data, tools and services.
Deep in the forests of Odisha and Andhra Pradesh in India lives a colourful gecko species that only now revealed its true identity. Meet Eublepharis pictus, also known as the Painted Leopard Gecko.
In 2017, researchers Zeeshan A. Mirza of theNational Centre for Biological Sciences in Bangalore and C. Gnaneswar of theMadras Crocodile Bank Trust in Chennai found a gecko in a water tank near a temple in Vishakhapatnam, Andhra Pradesh, during a field survey. Back then, they identified it as belonging to the East Indian Leopard Gecko species (Eublepharis hardwickii).
“The species appears to be common in the hill forests, but its distinctness was only confirmed by other researchers,” Zeeshan Mirza explains.
In a phylogenetic study, where they looked for the evolutionary history and relationships within and between the leopard gecko species in the genus Eublepharis, the researchers found that what had until then been considered a southern population of East Indian Leopard Geckomight be distinct enough to represent a new species.
Once they had molecular data they could work with, the team made morphological comparisons between the species, looking at specimens across natural history museums.
“These lizards have conserved morphologies and most species are quite similar in general appearance,” Zeeshan Mirza elaborates. “With a few characters based on the number of specimens examined, we described the species and named it the Painted Leopard Gecko – in Latin, Eublepharis pictus, for its colouration.” Theypublished their discovery in the open-access scientific journalEvolutionary Systematics.
With this new addition, the gecko genus Eublepharis now contains 7 species. Two of them – E. pictus and E. satpuraensis – were described by Zeeshan Mirza.
The Painted Leopard Gecko measures 11.7 cm in length, which is somewhat large for a leopard gecko. The Brahmani River, which runs through the Eastern Ghats, separates it geographically from the East Indian Leopard Gecko, with which it shares a lot of similar traits.
The new species lives in dry evergreen forests mixed with scrub and meadows. It is strictly nocturnal, actively foraging along trails in the forest after dusk. While looking for food, it has been observed licking surfaces as it moves, which suggests it might use its tongue as a sensory organ.
Even though the Painted Leopard Gecko seems to be widespread across the state of Odisha and northern Andhra Pradesh, the researchers worry about its conservation. “The species is collected for the pet trade and even now may be smuggled illegally,” they write in their paper, which is why they refrain from giving out the exact locations where it may be found.
The authors believe the species would stand more of a chance against humans if more people knew it was actually harmless. To protect it, they suggest listing it as Near Threatened based on IUCN conservation prioritisation criteria, until more is known about the size of its populations.
Further research may also encourage better protection of biodiversity in the area. “The Eastern Ghats are severely under-surveyed, and dedicated efforts will help recognize it as a biodiversity hotspot,” the authors conclude.
Research article:
Mirza ZA, Gnaneswar C (2022) Description of a new species of leopard geckos, Eublepharis Gray, 1827 from Eastern Ghats, India with notes on Eublepharis hardwickii Gray, 1827. Evolutionary Systematics 6(1): 77-88.https://doi.org/10.3897/evolsyst.6.83290
Against the odds, a study by Brazilian researchers describes a new to science species of evidently cave-bound – or troglobitic – clam from northern Brazil.
Exclusively subterranean bivalves – the group of molluscs comprising clams, oysters, mussels, scallops – are considered a rarity. Prior to the present study, there had only been three such species confirmed in the world: all belonging to a small-sized mussel genus known from southeastern Europe. Furthermore, bivalves are not your typical ‘underworld’ dweller, since they are almost immobile and do not tolerate environments low in oxygen.
Named Eupera troglobia, the mollusk demonstrates features characteristic for organisms not meant to see the daylight, including lack of pigmentation, reduced size, delicate shell and fewer, yet larger eggs.
Curiously, it was back in 2006 when a report presenting a faunal survey of a cave in northern Brazil featured photographs of what was to be described as Eupera troglobia. However, the evidence was quickly dismissed: the clam must have been carried into the cave by water.
In 2010, Dr Rodrigo Lopes Ferreira accessed the report and noticed the depigmentation of the clams. Wondering whether it was indeed possible that he was looking at a troglobite, he searched amongst the collected specimens from that study, but could not find any of the discoloured bivalve.
Ten years later, his team visited the cave to specifically search for depigmented shells. Although the cave was partially flooded, the researchers were able to spot the specimens they needed attached to the walls of the cave.
In conclusion, the scientists highlight that their discovery is the latest reminder about how important the conservation of the fragile subterranean habitats is, given the treasure troves in their holdings.
Meanwhile, recently amended laws in Brazil put caves at considerably higher risk.
***
Research paper:
Simone LRL, Ferreira RL (2022) Eupera troglobia sp. nov.: the first troglobitic bivalve from the Americas (Mollusca, Bivalvia, Sphaeriidae). Subterranean Biology 42: 165-184. https://doi.org/10.3897/subtbiol.42.78074
***
Follow the Subterranean Biology journal on Twitter and Facebook.
From 17th to 21st October 2022, the Biodiversity Information Standards (TDWG) conference – to be held in Sofia – will run under the theme “Stronger Together: Standards for linking biodiversity data”.
Between 17th and 21st October 2022, the Biodiversity Information Standards (TDWG) conference – to be held in Sofia, Bulgaria – will run under the theme “Stronger Together: Standards for linking biodiversity data”.
In addition to opening and closing plenaries, the conference will feature 14 symposia and a mix of other formats that include lightning talks, a workshop, and panel discussion, and contributed oral presentations and virtual posters.
For a seventh year in a row, all abstracts submitted to the annual conference are made publicly available in the dedicated TDWG journal: Biodiversity Information Science and Standards (BISS Journal).
Thus, the abstracts – published ahead of the event itself – are not only permanently and freely available in a ‘mini-paper’ format, but will also provide conference participants with a sneak peek into what’s coming at the much anticipated conference.
The new special issue of BioRisk compiles materials presented at the International Seminar of Ecology – 2021. The multidisciplinary nature of modern ecology was demonstrated by the main topics of the Seminar: biodiversity and conservation biology, biotic and abiotic impact on the living nature, ecological risk and bioremediation, ecosystem research and services, landscape ecology, and ecological agriculture.
Research teams from various universities, institutes, organizations, and departments, both from Bulgaria and abroad, took part in the Seminar. Foreign participants included: Environmental Toxicology Research Unit (Egypt), Pesticide Chemistry Department, National Research Centre (Giza, Egypt); National Institute for Agrarian and Veterinary Research (Oeiras, Portugal), Centre for Ecology, Evolution and Environmental Changes (Lisbon, Portugal); Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences (Moscow, Russia).
Some of the reports presented joint research of Bulgarian scientists and scientists from Germany, the Czech Republic, Lithuania, Romania, Slovenia, Spain, and the USA. After assessment by independent reviewers, the articles published in the journal cover the topics presented and discussed at the Seminar.
A set of reports were focused on the anthropogenic and environmental impacts on the biota. Soil properties were shown as a factor that can modulate the effect of heavy metals, present in chronically contaminated soils. Different approaches to overcome environmental pollution were presented and discussed: zeolites as detoxifying tools, microalgae for the treatment of contaminated water bodies, and a newly developed bio-fertilizer, based on activated sludge combined with a bacterial strain with detoxifying and plant growth-promoting properties. The clear need for the enlargement of existing monitoring program by including more bioindicators and markers was pointed out.
It was shown that, by using various markers for the evaluation of environmentally induced stress response at different levels (microbiological, molecular, biochemical), it is possible to gain insights of the organisms’ protection and the mechanisms involved in resistance formation. The contribution of increased DNA repair capacity and AOS to the development of environmental tolerance or adaptation was also shown.
Important results for understanding the processes of photoprotection in either cyanobacteria or algae, and higher plants were obtained by in vitro reconstitution of complexes of stress HliA protein with pigments. The crucial role of the cellular physiological state, as a critical factor in determining the resistance to environmental stress with Q cells was demonstrated.
Several papers were focused on the action of bioactive substances of plants origin. The bioactivity was shown to depend strongly on chemical composition. Origanum vulgarehirtum essential oil was promoted as a promising candidate for the purposes of “green” technologies. Analyzing secondary metabolites of plants, it was shown that their productivity in vitro is a dynamic process closely related to the plant growth and development, and is in close relation with the interactions of the plant with the environment.
The influence of the agricultural system type on essential oil production and antioxidant activity of industrially-cultivated Rosa damascena in the Rose valley (Bulgaria) was reported, comparing organic vs conventional farming. The rose extracts from organic farming were shown to accumulate more phenolic compounds, corresponding to the higher antioxidant potential of organic roses.
A comparative study, based on official data from the statistics office of the EU and the Member countries, concerning viral infection levels in intensive and organic poultry farming, demonstrated that free-range production had a higher incidence of viral diseases with a high zoonotical potential.
Pollinators of Lavandula angustifolia, as an important factor for optimal production of lavender essential oil, were analyzed. It was concluded that, although lavender growers tend to place beehives in the fields for optimal essential oil production, it was crucial to preserve wild pollinators, as well.
New data reported that essential oils and alkaloid-rich plant extracts had the strongest acetylcholinesterase inhibitory activity and could be proposed for further testing for insect control.
It was reported that the vegetation diversity of Bulgaria had still not been fully investigated. Grasslands, broad-leaved forests, and wetlands are the best investigated habitats, while data concerning ruderal, shrubland, fringe, and chasmophytic vegetation in Bulgaria are scarce.
Other important topics were reported and discussed in this session: the possibility of pest control using pteromalids as natural enemies of pests in various crops; the main reasons responsible for the population decrease of bumblebees – habitat destruction, loss of floral resources, emerging diseases, and increased use of pesticides (particularly neonicotinoids); the strong impact of temperature and wind on the distribution of zooplankton complexes in Mandra Reservoir, in Southeastern Bulgaria; an alternative approach for the ex-situ conservation of Stachys thracica based on in vitro shoot culture and its subsequent adaptation under ex vitro conditions.
New information was presented concerning pre-monitoring geochemical research of river sediments in the area of Ada Tepe gold mining site (Eastern Rhodopes). The obtained results illustrate that the explored landscapes have been influenced by natural geochemical anomalies, as well as, impacted by human activity. The forests habitat diversity of Breznik Municipality was revealed, following the EUNIS Classification and initial data from the Ministry of Environment and Water and the Forestry Management Plans. It was shown that, in addition to the dominant species Quercus dalechampii, Quercus frainetto, Fagus sylvatica, Carpinus betulus, some artificial plantations with Pinus nigra and Pinus sylvestris were also present, as well as non-native species, such as Robinia pseudoacacia and Quercus rubra.
Models for Predicting Solution Properties and Solid-Liquid Equilibrium in Cesium Binary and Mixed Systems were created. The results are of great importance for the development of strategies and programs for nuclear waste geochemical storage. In conclusion, many results in different areas of ecology were presented in the Seminar, followed by interesting discussions. A lot of questions were answered, however many others remained open. A good platform for further discussion will be the next International Seminar of Ecology – 2022, entitled Actual Problems of Ecology.
“Is it the road that crosses the habitat, or does the habitat cross the road?” ask scientists before agreeing that the wrong road at the wrong place is bound to cause various perils for the local wildlife, habitats and ecosystems.
“Is it the road that crosses the habitat, or does the habitat cross the road?” ask scientists at Gauhati University (Assam, India) before agreeing that the wrong road at the wrong place is bound to cause various perils for the local wildlife, habitats and ecosystems. Furthermore, some of those effects may take longer than others to identify and confirm.
This is how the research team of doctoral research fellow Somoyita Sur, Dr Prasanta Kumar Saikia and Dr Malabika Kakati Saikia decided to study roadkill along a 64-kilometre-long stretch of one of the major highways in India: the National Highway 715.
What makes the location a particularly intriguing choice is that it is where the highway passess between the Kaziranga National Park, a UNESCO World Heritage site in Assam and the North Karbi Anglong Wildlife Sanctuary, thus tempting animals to move to and from the floodplains of Kaziranga and the hilly terrain of the Sanctuary to escape the annual floods or – on a daily basis – in search for food and mating partners.
In the beginning, they looked into various groups, including mammals, birds, reptiles, and amphibians, before realising that the death toll amongst frogs, toads, snakes and lizards was indeed tremendous, yet overlooked. Their findings were recently published in the peer-reviewed scholarly journal Nature Conservation.
In conclusion, the scientists agree that roads and highways cannot be abandoned or prevented from construction and expansion, as they are crucial in connecting people and transporting goods and necessities.
***
Research article:
Sur S, Saikia PK, Saikia MK (2022) Speed thrills but kills: A case study on seasonal variation in roadkill mortality on National highway 715 (new) in Kaziranga-Karbi Anglong Landscape, Assam, India. In: Santos S, Grilo C, Shilling F, Bhardwaj M, Papp CR (Eds) Linear Infrastructure Networks with Ecological Solutions. Nature Conservation 47: 87-104. https://doi.org/10.3897/natureconservation.47.73036
Scientific names get chosen for lots of reasons: they can honor an important person, or hint at what an organism looks like or where it’s from. For a tropical wildflower first described by scientists in 2000, the scientific name “extinctus” was a warning. The orange wildflower had been found 15 years earlier in an Ecuadorian forest that had since been largely destroyed; the scientists who named it suspected that by the time they named it, it had already become extinct. But in a new paper in PhytoKeys, researchers report the first confirmed sightings of Gasteranthus extinctus in 40 years.
“Extinctus was given its striking name in light of the extensive deforestation in western Ecuador,” says Dawson White, a postdoctoral researcher at Chicago’s Field Museum and co-lead author of the paper. “But if you claim something’s gone, then no one is really going to go out and look for it anymore. There are still a lot of important species that are still out there, even though overall, we’re in this age of extinction.”
The rediscovered plant is a small forest floor-dweller with flamboyant neon-orange flowers.
“The genus name, Gasteranthus, is Greek for ‘belly flower.’ Their flowers have a big pouch on the underside with a little opening top where pollinators can enter and exit,” says White.
G. extinctus is found in the foothills of the Andes mountains, where the land flattens to a plane that was once covered in cloud forest. The region, called the Centinela Ridge, is notorious among biologists for being home to a unique set of plants that vanished when its forests were almost completely destroyed in the 1980s. The late biologist E. O. Wilson even named the phenomenon of organisms instantly going extinct when their small habitat is destroyed “Centinelan extinction.”
The story of Centinela was also an alarm to draw attention to the fact that over 97% of the forests in the western half of Ecuador have been felled and converted to farmland. What remains is a fine mosaic of tiny islands of forest within a sea of bananas and a handful of other crops.
“Centinela is a mythical place for tropical botanists,” says Pitman. “But because it was described by the top people in the field, no one really double-checked the science. No one went back to confirm that the forest was gone and those things were extinct.”
But around the time that Gasteranthus extinctus was first described in 2000, scientists were already showing that some victims of Centinelan extinction weren’t really extinct. Since 2009, a few scientists have mounted expeditions looking for G. extinctus was still around, but they weren’t successful. When White and Pitman received funding from the Field Museum’s Women’s Board to visit the Centinela Ridge, the team had a chance to check for themselves.
Starting in the summer of 2021, they began combing through satellite images trying to identify primary rainforest that was still intact (which was difficult, White recalls, because most of the images of the region were obscured by clouds). They found a few contenders and assembled a team of ten botanists from six different institutions in Ecuador, the US, and France, including Juan Guevara, Thomas Couvreur, Nicolás Zapata, Xavier Cornejo, and Gonzalo Rivas. In November of 2021, they arrived at Centinela.
“It was my first time planning an expedition where we weren’t sure we’d even enter a forest,” says Pitman. “But as soon as we got on the ground we found remnants of intact cloud forest, and we spotted G. extinctus on the first day, within the first couple hours of searching. We didn’t have a photo to compare it to, we only had images of dried herbarium specimens, a line drawing, and a written description, but we were pretty sure that we’d found it based on its poky little hairs and showy “pot-bellied” flowers.”
Pitman recalls mixed emotions upon the team finding the flower. “We were really excited, but really tentative in our excitement — we thought, ‘Was it really that easy?’” he says. “We knew we needed to check with a specialist.”
The researchers took photos and collected some fallen flowers, not wanting to harm the plants if they were the only ones remaining on Earth. They sent the photos to taxonomic expert John Clark, who confirmed that, yes, the flowers were the not-so-extinct G. extinctus. Thankfully, the team found many more individuals as they visited other forest fragments, and they collected museum specimens to voucher the discovery and leaves for DNA analysis. The team was also able to validate some unidentified photos posted on the community science app iNaturalist as G. extinctus.
The plant will keep its name, says Pitman, because biology’s code of nomenclature has very specific rules around renaming an organism, and G. extinctus’s resurrection doesn’t make the cut.
While the flower remains highly endangered, the expedition found plenty of reasons for hope, the researchers say.
“We walked into Centinela thinking it was going to break our heart, and instead we ended up falling in love,” says Pitman. “Finding G. extinctus was great, but what we’re even more excited about is finding some spectacular forest in a place where scientists had feared everything was gone.”
The team is now working with Ecuadorian conservationists to protect some of the remaining fragments where G. extinctus and the rest of the spectacular Centinelan flora lives on.
“Rediscovering this flower shows that it’s not too late to turn around even the worst-case biodiversity scenarios, and it shows that there’s value in conserving even the smallest, most degraded areas,” says White.
“It’s an important piece of evidence that it’s not too late to be exploring and inventorying plants and animals in the heavily degraded forests of western Ecuador. New species are still being found, and we can still save many things that are on the brink of extinction.”
Research article:
Pitman NCA, White DM, Guevara Andino JE, Couvreur TLP, Fortier RP, Zapata JN, Cornejo X, Clark JL, Feeley KJ, Johnston MK, Lozinguez A, Rivas-Torres G (2022) Rediscovery of Gasteranthus extinctus L.E.Skog & L.P.Kvist (Gesneriaceae) at multiple sites in western Ecuador. PhytoKeys 194: 33–46. https://doi.org/10.3897/phytokeys.194.79638
In a first for science, researchers set out to analyze over 10 years of roadkill records in Flanders, Belgium, using data provided by citizen scientists.
The road is a dangerous place for animals: they can easily get run over, which can seriously affect wildlife diversity and populations in the long term. There is also a human economic cost and possible injury or even death in these accidents, while crashing into heavier animals or trying to avoid them on the road.
Making roads safer for both animals and people starts with a simple first step: understanding when, where, and how many animals get run over. This knowledge can help protect specific species, for example by using warning signs, preventing access to the roads for animals, creating overpasses and underpasses, or closing roads. Wildlife roadkill data can also help monitor other trends, such as population dynamics, species distribution, and animal behavior.
Thanks to citizen science platforms, obtaining this kind of data is no longer a task reserved for scientists. There are now dozens of free, easy-to-use online systems, where anyone can record wildlife collision accidents or roadkill, contributing to a fuller picture that might later be used to inform policy measures.
One such project is the Flemish Animals under wheels, where users can register the roadkill they saw, adding date, time and geolocation online or by using the apps. The data is stored in the online biodiversity database Waarnemingen.be, the Flemish version of the international platform Observation.org.
Between 2008 and 2020, the project collected almost 90,000 roadkill records from Flanders, Belgium, registered by over 4,000 citizen scientists. Roadkill recording is just a small part of their nature recording activities – the multi-purpose platform which also allows the registration of living organisms. This is probably why the volunteers have remained engaged with the project for over 6 years now.
In a first for science, researchers from Natuurpunt Studie, the scientific institute linked to the largest Nature NGO in Flanders, with support from the Department of Environmental and Spatial Development, set out to analyze over 10 years of roadkill records in the region, using data provided by citizen scientists. In their study, published in the peer-reviewed journal Nature Conservation, they focused on 17 key species of mammals and their fate on the roads of Flanders.
The researchers analyzed data on 145,000 km of transects monitored, which resulted in records of 1,726 mammal and 2,041 bird victims. However, the majority of the data – over 60,000 bird and mammal roadkill records – were collected opportunistically, where opportunistic data sampling favors larger or more “enigmatic” species. Hedgehogs, red foxes and red squirrels were the most frequently registered mammal roadkill victims.
In the last decade, roadkill incidents in Flanders have diminished, the study found, even though search effort increased. This might be the result of effective road collision mitigation, such as fencing, crossing structures, or animal detection systems. On the other hand, it could be a sign of declining populations among those animals that are most prone to being killed by vehicles. More research is needed to understand the exact reason. Over the last 11 years, roadkill records of the European polecat showed a significant relative decrease, while seven species, including the roe deer and wild boar, show a relative increase in recorded incidents.
There seems to be a clear influence of the COVID-19 pandemic on roadkill patterns for some species. Restrictions in movement that followed likely led simultaneously to fewer casualties and a decrease in the search effort.
The number of new observations submitted to Waarnemingen.be continues to increase year after year, with data for 2021 pointing to about 9 million. Even so, the scientists warn that those recorded observations “are only the tip of the iceberg.”
***
Research paper:
Swinnen KRR, Jacobs A, Claus K, Ruyts S, Vercayie D, Lambrechts J, Herremans M (2022) ‘Animals under wheels’: Wildlife roadkill data collection by citizen scientists as a part of their nature recording activities. In: Santos S, Grilo C, Shilling F, Bhardwaj M, Papp CR (Eds) Linear Infrastructure Networks with Ecological Solutions. Nature Conservation 47: 121-153. https://doi.org/10.3897/natureconservation.47.72970
Three expeditions led an international research team to the nearly inaccessible Cordillera de Kutukú in southeastern Ecuador to find just a single specimen of the previously unknown species
New rat species of the little known and rare genus Mindomys described: Three expeditions led an international research team with participation from the Leibniz Institute for the Analysis of Biodiversity Change (LIB) to the Cordillera de Kutukú, an isolated mountain range in Ecuador, to find just one specimen of the previously unknown species. The find in the Amazonian side of the Andes underlines the valuable biological role of this mountainous region.
“In total, the expeditions to the Kutukú region in southeastern Ecuador involved 1,200 trap nights, but only one specimen of the new species Mindomys kutuku was found,” says Dr. Claudia Koch, curator of herpetology at the LIB, Museum Koenig Bonn, explaining the effort that went into locating the rare animal. From the collected specimen, the dry skin, skeleton and tissue were preserved for the collections. Preservation will allow future research to detect environmental changes, learn more about the ecology of the animals and plants – and securely document the new species description, which was published in late February in the prestigious journal Evolutionary Systematics.
The rice rat genus Mindomys was previously considered monotypic and included only the type species Mindomys hammondi. This species is known from only a few specimens, all of which were collected in the foothill forests of the Andes in northwestern Ecuador.
Using computed tomography images obtained for the new species at LIB and for the holotype (specimen from which a species was described) of M. hammondi at the Natural History Museum in London, the researchers Jorge Brito of the Instituto Nacional de la Biodiversidad (INABIO), Claudia Koch, Nicolás Tinoco from the Pontificia Universidad Católica del Ecuador (PUCE) and Ulyses Pardiñas from the Instituto de Diversidad y Evolución del Sur (IDEAus-CONICET) were able to compare the skulls of the two species in great detail in a 3D model and distinguish between the two species.
According to Jorge Brito, INABIO’s mammal curator, the new species is easily distinguished from Mindomys hammondi by a number of anatomical features: “These include larger jugals, “wings” of the parietal bone extending to the zygomatic roots, larger otic capsules, narrow zygomatic plates almost without upper free borders, a posteriorly oriented foramen magnum (large occipital hole), larger molars and an accessory root of the first upper molar.”
The adult male of M. kutuku measures just under 35 cm from snout to tip of tail, of which the tail makes up about 20 cm. It has a dark reddish-brown dorsal coloration and a pale yellow ventral fur.
Since the only specimen found was captured with the help of a ground trap set, it could not be observed in its habitat. Thus, as with its sister species M. hammondi, which was described in 1913, virtually nothing is known about the natural history of the new species. The scientists suspect that both of them could be arboreal species. A tail that is significantly longer than the body length and also covered with long hairs could be two features that indicate an arboreal lifestyle. However, aboreality is the least studied way of life within the New World mice and a reliable study of the anatomical aspects typical of this way of life is still lacking.
Previously, Mindomys records were restricted to the western Andean foothills of Ecuador. The Kutukú material now shows that the genus also occurs on the Amazonian side of the Andes and underscores the valuable biological importance of the isolated mountain ranges in eastern Ecuador.
Research article:
Brito J, Koch C, Tinoco N, Pardiñas UFJ (2022) A new species of Mindomys (Rodentia, Cricetidae) with remarks on external traits as indicators of arboreality in sigmodontine rodents. Evolutionary Systematics 6(1): 35-55. https://doi.org/10.3897/evolsyst.6.76879