Researchers have discovered a new distinctive and secretive snake species in the Hejaz region of Saudi Arabia.
Rhynchocalamus hejazicus is a small snake bearing a black collar and reddish colouration. A completely black variation of of the species known as a ‘melanistic morphotype’ was also discovered.
The snake’s genus Rhynchocalamus previously had a large distribution gap, stretching between the Levant and coastal regions of Yemen and Oman. However, the new species is widely distributed between these areas, prompting the research team to dub it “the missing piece of the puzzle.”
Rhynchocalamus hejazicus inhabits sandy and stony soils with varying vegetation cover and is found in habitats disturbed by humans, suggesting the species should not be categorised as threatened according to IUCN criteria.
The species’ natural history and behaviour remain unclear, and further monitoring and conservation efforts are necessary to better understand its ecological dynamics. However, it appears that Rhynchocalamus hejazicus is predominantly nocturnal as all encountered individuals were active at night.
“The discovery of a new species of snake widespread in the central-western regions of Saudi Arabia is surprising and gives rise to the hope that more undiscovered species might be present in the Kingdom,” the authors say.
Most observations of the new species are the result of intense sampling efforts in a vast area around the ancient Arabic oasis city of AlUla, fostered by the Royal Commission for AlUla, Saudi Arabia, which is pushing forward scientific activities and explorations to promote conservation in the region. Recent research in Saudi Arabia has led to fruitful collaborations and findings like this study, to which many experts from multiple teams contributed significantly.
The discovery of such a distinctive snake highlights the existing gap in knowledge of rare and secretive species, and the need to enhance sampling efforts and monitoring strategies to fully capture species diversity in unexplored areas.
Original source
Licata F, Pola L, Šmíd J, Ibrahim AA, Liz AV, Santos B, Patkó L, Abdulkareem A, Gonçalves DV, AlShammari AM, Busais S, Egan DM, Ramalho RMO, Smithson J, Brito JC (2024) The missing piece of the puzzle: A new and widespread species of the genus Rhynchocalamus Günther, 1864 (Squamata, Colubridae) from the Arabian Peninsula. Zoosystematics and Evolution 100(2): 691-704. https://doi.org/10.3897/zse.100.123441
–
Follow Zoosystematics and Evolution on X and Facebook for more!
Within theBiodiversity Community Integrated Knowledge Library (BiCIKL) project, 14 European institutions from ten countries, spent the last three years elaborating on services and high-tech digital tools, in order to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of various types of data about the world’s biodiversity. These types of data include peer-reviewed scientific literature, occurrence records, natural history collections, DNA data and more.
By ensuring all those data are readily available and efficiently interlinked to each other, the project consortium’s intention is to provide better tools to the scientific community, so that it can more rapidly and effectively study, assess, monitor and preserve Earth’s biological diversity in line with the objectives of the likes of the EU Biodiversity Strategy for 2030 and the European Green Deal. Their targets require openly available, precise and harmonised data to underpin the design of effective measures for restoration and conservation, reminds the BiCIKL consortium.
Since 2021, the project partners at BiCIKL have been working together to elaborate existing workflows and links, as well as create brand new ones, so that their data resources, platforms and tools can seamlessly communicate with each other, thereby taking the burden off the shoulders of scientists and letting them focus on their actual mission: paving the way to healthy and sustainable ecosystems across Europe and beyond.
Now that the three-year project is officially over, the wider scientific community is yet to reap the fruits of the consortium’s efforts. In fact, the end of the BiCIKL project marks the actual beginning of a European- and global-wide revolution in the way biodiversity scientists access, use and produce data. It is time for the research community, as well as all actors involved in the study of biodiversity and the implementation of regulations necessary to protect and preserve it, to embrace the lessons learned, adopt the good practices identified and build on the knowledge in existence.
This is why amongst the BiCIKL’s major final research outputs, there are two Policy Briefs meant to summarise and highlight important recommendations addressed to key policy makers, research institutions and funders of research. After all, it is the regulatory bodies that are best equipped to share and implement best practices and guidelines.
Most recently, the BiCIKL consortium published two particularly important policy briefs, both addressed to the likes of the European Commission’s Directorate-General for Environment; the European Environment Agency; the Joint Research Centre; as well as science and policy interface platforms, such as the EU Biodiversity Platform; and also organisations and programmes, e.g. Biodiversa+ and EuropaBON, which are engaged in biodiversity monitoring, protection and restoration. The policy briefs are also to be of particular use to national research funds in the European Union.
One of the newly published policy briefs, titled “Uniting FAIR data through interlinked, machine-actionable infrastructures”, highlights the potential benefits derived from enhanced connectivity and interoperability among various types of biodiversity data. The publication includes a list of recommendations addressed to policy-makers, as well as nine key action points. Understandably, amongst the main themes are those of wider international cooperation; inclusivity and collaboration at scale; standardisation and bringing science and policy closer to industry. Another major outcome of the BiCIKL project: the Biodiversity Knowledge Hub portal is noted as central to many of these objectives and tasks in its role of a knowledge broker that will continue to be maintained and updated with additional FAIR data-compliant services as a living legacy of the collaborative efforts at BiCIKL.
The second policy brief, titled “Liberate the power of biodiversity literature as FAIR digital objects”, shares key actions that can liberate data published in non-machine actionable formats and non-interoperable platforms, so that those data can also be efficiently accessed and used; as well as ways to publish future data according to the best FAIR and linked data practices. The recommendations highlighted in the policy brief intend to support decision-making in Europe; expedite research by making biodiversity data immediately and globally accessible; provide curated data ready to use by AI applications; and bridge gaps in the life cycle of research data through digital-born data. Several new and innovative workflows, linkages and integrative mechanisms and services developed within BiCIKL are mentioned as key advancements created to access and disseminate data available from scientific literature.
While all policy briefs and factsheets – both primarily targeted at non-expert decision-makers who play a central role in biodiversity research and conservation efforts – are openly and freely available on the project’s website, the most important contributions were published as permanent scientific records in a BiCIKL-branded dedicated collection in the peer-reviewed open-science journal Research Ideas and Outcomes (RIO). There, the policy briefs are provided as both a ready-to-print document (available as supplementary material) and an extensive academic publication.
Currently, the collection: “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” in the RIO journal contains 60 publications, including policy briefs, project reports, methods papers, conference abstracts, demonstrating and highlighting key milestones and project outcomes from along the BiCIKL’s journey in the last three years. The collection also features over 15 scientific publications authored by people not necessarily involved in BiCIKL, but whose research uses linked open data and tools created in BiCIKL. Their publications were published in a dedicated article collection in the Biodiversity Data Journal.
***
Visit the Biodiversity Community Integrated Knowledge Library (BiCIKL) project’s website at: https://bicikl-project.eu/.
As climate change continues its relentless march, the world faces not only rising temperatures and extreme weather, but also an insidious threat to our homes: invasive termites. And the bill could be steep – invasive termites currently cost over 40 billion USD annually.
In a new study published in the open-access journal Neobiota, PhD student Edouard Duquesne and Professor Denis Fournier from the Evolutionary Biology & Ecology lab (Université libre de Bruxelles) unveil the unsettling reality of invasive termites’ potential expansion into new territories.
Their research reveals that as temperatures rise and climate patterns shift, cities worldwide, from tropical hotspots like Miami, Sao Paulo, Lagos, Jakarta or Darwin to temperate metropolises like Paris, Brussels, London, New York or Tokyo, could soon find themselves under siege by these tiny yet destructive pests.
But how do termites, typically associated with tropical climates, find their way into cities far beyond their natural habitat? The answer lies in the interconnectedness of our modern world. Urbanisation, with its dense populations and bustling trade networks, provides the perfect breeding ground for termite invasions.
Moreover, the global movement of goods, including wooden furniture transported by private vessels, offers unsuspecting pathways for these silent invaders to hitch a ride into our homes.
“A solitary termite colony, nestled within a small piece of wood, could clandestinely voyage from the West Indies to your Cannes apartment. It might lurk within furniture aboard a yacht moored at the Cannes Film Festival marina.”
“Mating is coming. Termite queens and kings, attracted by lights, may initiate reproduction, laying the groundwork for new colonies to conquer dry land.”
Researchers Edouard Duquesne and Denis Fournier.
Duquesne and Fournier’s research emphasises the need for a paradigm shift in how we approach invasive species modelling. By integrating connectivity variables like trade, transport, and population density, their study highlights the importance of understanding the intricate interactions that facilitate termite spread.
In light of these findings, the researchers urge swift action from policymakers and citizens alike. Major cities, regardless of their climate zone, must implement strict termite control measures to protect homes and infrastructure.
“Citizens can play a crucial role by leveraging technology, such as AI-assisted apps like iNaturalist, to detect and report potential termite sightings, turning ordinary residents into vigilant guardians of their environment,” say the researchers.
“As we confront the challenges of a rapidly changing climate, awareness and proactive measures are our best defence against the creeping menace of invasive termites,” they conclude.
Original source
Duquesne E, Fournier D (2024) Connectivity and climate change drive the global distribution of highly invasive termites. NeoBiota 92: 281-314. https://doi.org/10.3897/neobiota.92.115411
Research from Wageningen University and Research, the Netherlands, reveals invasive lionfish are rapidly expanding their territory in the Mediterranean sea, causing severe ecological damage.
Published in the open-access journal NeoBiota, the study shows the lionfish species Pterois miles – known as the devil firefish – has established presence in the eastern Mediterranean, with observations now extending to colder waters previously thought to be unsuitable for the species.
Originating from the Indo-Pacific region, the lionfish species Pterois miles and Pterois volitans are regarded as the most successful and lethal invasive fishes in marine ecosystems, with the capacity to drastically affect local fish communities and biodiversity in invaded areas.
The invasion of Pterois miles in the Mediterranean Sea began around ten years ago. Genetic studies reveal the invasive fish originated from the Red Sea and likely entered through the Suez Canal.
Lionfish are generalist predators and impact ecosystems by preying extensively on local fishes, including endemics of high conservation value. As they are unaccustomed to lionfish, native prey species usually do not flee from this new predator.
“After years studying these predators, I find it amazing how they can easily adjust to so many different environments and be successful in areas so different from where they evolve.”
“It is always impressive to see how such a flamboyant and–to us–conspicuous predator can approach its prey without being noticed”
The study’s lead author, Davide Bottacini.
The fin spines of Pterois miles are highly venomous. A sting can cause extreme pain, sickness, convulsions, minor paralysis, and breathing difficulties in humans. Immediate emergency medical attention is recommended for anyone stung by the species.
By reviewing existing scientific data, researchers identified gaps in current understanding of the lionfish’s interactions with Mediterranean ecosystems.
They suggest that, while they consider the eradication of invasive lionfish impossible, tackling questions such as the community-level impact of them in the Mediterranean, and the evolutionary and learned responses in prey, will add to the body of knowledge on the best documented invasion in marine ecosystems.
Such information provides insights vital for biodiversity conservation, with practical implications for policy makers aiming to devise efficient mitigation plans.
Citizen science initiatives for tracking and reporting lionfish sightings are encouraged to provide valuable data that supports ongoing research efforts. Such community involvement is essential for enhancing understanding of the invasion dynamics and devising effective control measures.
Original source
Bottacini D, Pollux BJA, Nijland R, Jansen PA, Naguib M, Kotrschal A (2024) Lionfish (Pterois miles) in the Mediterranean Sea: a review of the available knowledge with an update on the invasion front. NeoBiota 92: 233–257. https://doi.org/10.3897/neobiota.92.110442
Myxomycetes, or slime molds, despite their unassuming name, are fascinating organisms that play a crucial role in forest ecosystems. They live as single-cell amoebae in soil or all sorts of plant debris, where they feed on microscopic bacteria, algae, and fungi. However, when it is time to reproduce and disseminate, these tiny amoebae fuse with each other and form slimy, mobile structures – plasmodia. Plasmodia slowly but actively crawl on the substrate, and eventually transform into fungi-like fruiting bodies filled with spores. Both plasmodia and fruiting bodies are visible with the naked eye and can be easily found e.g. on decaying wood or on the forest floor.
Myxomycetes are unusual in their life cycle and very eye-catching – if only one knows where to look for them. No wonder that they have attracted the attention of naturalists for centuries. On the territory of Ukraine, observations of myxomycetes first appeared in the first half of 19th century and have been occurring sporadically in the mycological literature ever since.
‘Wasp nest’ slime mold – a common and widespread species of myxomycetes in Ukraine.
However, much valuable information about the myxomycetes of Ukraine before our study was in a “grey zone”. This includes undigitized historical books and articles published in languages such as Polish, French, or German. Furthermore, there is a significant body of proceedings of local conferences, articles in local journals, and reports produced by the employees of protected areas. Yet, many of these publications existed only in print and were written in the Cyrillic alphabet, so they remained difficult to discover, to access, or to work with.
An example of an “invisible” literature source, a page from Maria Zelle “Materials for the myxomycete flora of Ukraine”, 1925.
Within this study, published in Biodiversity Data Journal, we aimed to summarize all published research on myxomycetes of Ukraine, which spans over 150 years, and make the data, as well as the literature behind the data, open and easy to use. For this, we collected and mined 91 publications on this topic, spanning the years 1842 to 2023. As the result, we extracted over 5000 occurrences of myxomycetes that belong to 331 species. The produced datasets we published on GBIF, and the major part of the literature sources on the platform Zenodo.org in open access.
Datasets produced by this study available on GBIF.
Leaders of the BioData project with future Ukrainian mentors.
With this initiative, we aimed to open to the wider audience and digitally preserve some part of the biodiversity data heritage of Ukraine that is currently under threat of destruction.
This study was substantially driven by the BioDATA project, which helped a lot in developing biodiversity data management skills in our team.
Research article:
Yatsiuk I, Leshchenko Y, Viunnyk V, Leontyev DV (2024) The comprehensive checklist of myxomycetes of Ukraine, based on extended occurrence and reference datasets. Biodiversity Data Journal 12: e120891. https://doi.org/10.3897/BDJ.12.e120891
Emmelichthys papillatus. Photograph by the Kagoshima University Museum
The papillated redbait is a member of the family Emmelichthyidae. There are only 18 known species in this family, which are commonly called redbaits, rovers, or rubyfishes. These deepwater species can be found in warm, tropical waters and are usually bright shades of red, orange, and pink.
How did Bemis and her team make this remarkable discovery? To find out, we’ll have to first travel to a fish market in the Philippines.
A molecular mystery
As part of an interagency campaign to create a reference library of fish DNA “barcodes,” Bemis and her colleagues regularly travel abroad to collect fish specimens. Some come from seafood markets overseas where they are being sold for food. In the field, these new specimens are assigned a preliminary species identification. Then, they’re transported to the Smithsonian Institution and National Systematics Laboratory for genetic sequencing, data collection, and a secondary species confirmation.
Dr. Katherine Bemis holds the holotype–the specimen upon which a new species’ description is based–of the papillated redbait. Credit: Haley Randall/NOAA Fisheries
Since getting involved with this project in 2021, Bemis and teammate Dr. Matthew Girard of the Smithsonian National Museum of Natural History have analyzed thousands of samples. None have made a bigger splash, though, than two small pink fish collected from a Philippine fish market on the island of Cebu.
While collecting data from these specimens, Girard made an exciting observation. Their genetic sequences did not match their initial species identification as golden redbaits—or any other species in the genetic library, for that matter. So which species did Girard and Bemis have on their hands?
Dr. Matthew Girard examines the holotype of the papillated redbait under a microscope. Credit: Dr. Katherine Bemis. Source NOAA Fisheries
In search of answers, Bemis and Girard examined other aspects of the specimens’ biology, including their anatomy. They discovered that these fish differed from the golden redbait in several ways, including:
A different number of gill rakers, structures inside the mouth that help fish to feed
A different number of pectoral fin rays
Two fleshy structures called papillae on the pectoral girdle
These differences, combined with the genetic data, provided evidence that the two specimens were not golden redbaits, but a previously undiscovered species. With only two confirmed specimens, Bemis and Girard wondered if other individuals could be identified in global natural history collections.
Underneath the gill cover, you can observe the two characteristic papillae (singular: papilla) of the papillated redbait labeled with arrows (left). The closely-related golden redbait lacks papillae in the same area (right). Photos courtesy of Dr. Matthew Girard. Source NOAA Fisheries
After some detective work, Bemis and Girard spotted a third specimen they hypothesized might also be the undescribed species. A fish with similar color also identified as a golden redbait had been collected from a fish market in the Philippines by the Kagoshima University Museum in Japan. Bemis and Girard studied the specimen and confirmed their hypothesis with genetic and anatomical data. This specimen became the third record of papillated redbait and, ultimately, the holotype for the species—the specimen upon which a new species description is based.
More to discover
Even after describing new species, there’s always more to learn. Bemis and Girard are energized that there is still much to discover about the papillated redbait and the redbait family, which is relatively poorly known. Any opportunity to add to this small body of knowledge and study redbait species in greater detail is valuable. “I’ve had researchers that work on fish taxonomy say to me, ‘I didn’t even know this family existed.’ That’s how little we know about this group,” Girard emphasizes.
Bemis also notes that because data on the papillated redbait comes from only three specimens purchased in fish markets, she still has lots of questions. For example, Bemis says that they don’t yet know if the new species occurs outside Philippine waters, or the exact habitat in which they occur. “We also don’t know anything about their reproduction or what they eat—really basic aspects of their biology remain to be studied. Now that we recognize that it is different, we only have more to study as new specimens of papillated redbait are collected,” Bemis says.
“It is always a happy and productive moment working with U.S. scientists,” says Dr. Mudjekeewis “Mudjie” Santos of the Philippine National Fisheries Research and Development Institute. Santos was instrumental in the collection of specimens, providing fisheries data on the papillated redbait, and coining a name for the new species in Tagalog, the national language of the Philippines. Here, he examines fish in a Philippine market. Photo courtesy of Dr. Mudjekeewis Santos. Source NOAA Fisheries
One thing is for certain, though. There are more species just waiting to be discovered, and they might be right under our noses. “I think the craziest thing is that the papillated redbait is a new species that came from a market,” Girard says. “The fact that there are undescribed species being sold without us even realizing it underscores how much we still have to learn about marine biodiversity.”
Research article:
Girard MG, Santos MD, Bemis KE (2024) New species of redbait from the Philippines (Teleostei, Emmelichthyidae, Emmelichthys). ZooKeys 1196: 95-109. https://doi.org/10.3897/zookeys.1196.111161
This story was originally published by NOAAFisheries. It is republished here with their permission.
Leiden – also known as the ‘City of Keys’ and the ‘City of Discoveries’ – was aptly chosen to host the third Empowering Biodiversity Research (EBR III) conference. The two-day conference – this time focusing on the utilisation of biodiversity data as a vehicle for biodiversity research to reach to Policy – was held in a no less fitting locality: the Naturalis Biodiversity Center.
On 25th and 26th March 2024, the delegates got the chance to learn more about the latest discoveries, trends and innovations from scientists, as well as various stakeholders, including representatives of policy-making bodies, research institutions and infrastructures. The conference also ran a poster session and a Biodiversity Informatics market, where scientists, research teams, project consortia, and providers of biodiversity research-related services and tools could showcase their work and meet like-minded professionals.
BiCIKL stops at the Naturalis Biodiversity Center
The main outcome of the BiCIKL project: the Biodiversity Knowledge Hub, a one-stop knowledge portal to interlinked and machine-readable FAIR data.
The famous for its bicycle friendliness country also made a suitable stop for BiCIKL (an acronym for the Biodiversity Community Integrated Knowledge Library): a project funded under the European Commission’s Horizon 2020 programme that aimed at triggering a culture change in the way users access, (re)use, publish and share biodiversity data. To do this, the BiCIKL consortium set off on a 3-year journey to build on the existing biodiversity data infrastructures, workflows, standards and the linkages between them.
Many of the people who have been involved in the project over the last three years could be seen all around the beautiful venue. Above all, Naturalis is itself one of the partnering institutions at BiCIKL. Then, on Tuesday, on behalf of the BiCIKL consortium and the project’s coordinator: the scientific publisher and technology innovator: Pensoft, Iva Boyadzhieva presented the work done within the project one month ahead of its official conclusion at the end of April.
As she talked about the way the BiCIKL consortium took to traverse obstacles to wider use and adoption of FAIR and linked biodiversity data, she focused on BiCIKL’s main outcome: the Biodiversity Knowledge Hub (BKH).
Key results from the BiCIKL project three years into its existence presented by Pensoft’s Iva Boyadzhieva at the EBR III conference.
Intended to act as a knowledge broker for users who wish to navigate and access sources of open and FAIR biodiversity data, guidelines, tools and services, in practicality, the BKH is a one-stop portal for understanding the complex but increasingly interconnected landscape of biodiversity research infrastructures in Europe and beyond. It collates information, guidelines, recommendations and best practices in usage of FAIR and linked biodiversity data, as well as a continuously expanded catalogue of compliant relevant services and tools.
At the core of the BKH is the FAIR Data Place (FDP), where users can familiarise themselves with each of the participating biodiversity infrastructures and network organisations, and also learn about the specific services they provide. There, anyone can explore various biodiversity data tools and services by browsing by their main data type, e.g. specimens, sequences, taxon names, literature.
While the project might be coming to an end, she pointed out, the BKH is here to stay as a navigation system in a universe of interconnected biodiversity research infrastructures.
To do this, not only will the partners continue to maintain it, but it will also remain open to any research infrastructure that wishes to feature its own tools and services compliant with the linked and FAIR data requirements set by the BiCIKL consortium.
Indisputably, the ‘hot’ topics at the EBR III were the novel technologies for remote and non-invasive, yet efficient biomonitoring; the utilisation of data and other input sourced by citizen scientists; as well as leveraging different types and sources of biodiversity data, in order to better inform decision-makers, but also future-proof the scientific knowledge we have collected and generated to date.
Project’s coordinator Dr Quentin Groom presents the B-Cubed’s approach towards standardised access to biodiversity data for the use of policy-making at the EBR III conference.
Amongst the other Horizon Europe projects presented at the EBR III conference was B-Cubed (Biodiversity Building Blocks for policy). On Monday, the project’s coordinator Dr Quentin Groom (Meise Botanic Garden) familiarised the conference participants with the project, which aims to standardise access to biodiversity data, in order to empower policymakers to proactively address the impacts of biodiversity change.
You can find more about B-Cubed and Pensoft’s role in it in this blog post.
Dr France Gerard (UK Centre for Ecology & Hydrology) talks about the challenges in using raw data – including those provided by drones – to derive habitat condition metrics.
MAMBO: another Horizon Europe project where Pensoft has been contributing with expertise in science communication, dissemination and exploitation, was also an active participant at the event. An acronym for Modern Approaches to the Monitoring of BiOdiversity, MAMBO had its own session on Tuesday morning, where Dr Vincent Kalkman (Naturalis Biodiversity Center), Dr France Gerard (UK Centre for Ecology & Hydrology) and Prof. Toke Høye (Aarhus University) each took to the stage to demonstrate how modern technology developed within the project is to improve biodiversity and habitat monitoring. Learn more about MAMBO and Pensoft’s involvement in this blog post.
MAMBO’s project coordinator Prof. Toke T. Høye talked about smarter technologies for biodiversity monitoring, including camera traps able to count insects at a particular site.
On the event’s website you can access the MAMBO’s slides presentations by Kalkman, GerardandHøye, as presented at the EBR III conference.
***
The EBR III conference also saw a presentation – albeit remote – from Prof. Dr. Florian Leese (Dean at the University of Duisburg-Essen, Germany, and Editor-in-Chief at the Metabarcoding and Metagenomics journal), where he talked about the promise, but also the challenges for DNA-based methods to empower biodiversity monitoring.
Amongst the key tasks here, he pointed out, are the alignment of DNA-based methods with the Global Biodiversity Framework; central push and funding for standards and guidance; publication of data in portals that adhere to the best data practices and rules; and the mobilisation of existing resources such as the meteorological ones.
He also made a reference to the Forum Paper “Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms” by R. Henrik Nilsson et al., where the international team provided a brief rationale and an overview of guidelines targeting the principles and approaches of exposing DNA-derived occurrence data in the context of broader biodiversity data. In the study, published in the Metabarcoding and Metagenomics journal in 2022, they also introduced a living version of these guidelines, which continues to encourage feedback and interaction as new techniques and best practices emerge.
***
You can find the programme on the conference website and see highlights on the conference hashtag: #EBR2024.
A study from the Technical University Berlin suggests ‘sufficiency’ should be a more prominent strategy for protecting biodiversity.
Published in the open-access journal Nature Conservation, the paper analyses the intersection between biodiversity conservation and sufficiency strategies aimed at reducing consumption and resource use.
Study author Marianne Hachtmann notes that despite the established connection between excessive resource use by humans and biodiversity loss, there is limited explicit focus on how sufficiency strategies can support biodiversity preservation.
Reviewing literature from 2017 to 2021 and publications by nature conservation associations, the research identifies a notable gap in discussions linking sufficiency directly with biodiversity outcomes. Possible reasons for this may be the term’s political implications, lack of descriptiveness, and the use of other terms.
Research methodology
Furthermore, the lack of connection between sufficiency and biodiversity could be because they belong to different ‘scientific spheres’. Linking the two terms thus requires a reflective, interdisciplinary perspective.
The study proposes a detailed sufficiency typology to foster a systematic approach towards integrating the term in biodiversity conservation efforts.
“The sufficiency typology developed here allows for a systematic integration of sufficiency into biodiversity conservation and thus a joint consideration of social and nature conservation concerns.”
Marianne Hachtmann, Technical University Berlin
Policymakers, conservationists, and researchers are urged to prioritise sufficiency for the broader strategy for biodiversity conservation and sustainable living. The paper calls for further investigation into how sufficiency strategies can be crucial in conserving biodiversity and promoting sustainability.
Original source:
Hachtmann M (2024) Linking sufficiency and the protection of biodiversity: An issue of political implications, framing, descriptiveness and interdisciplinarity? Nature Conservation 55: 83-102. https://doi.org/10.3897/natureconservation.55.118243
Invasive species spread through human activities are one of the main causes of the ongoing biodiversity crisis.
Even on South Georgia, a remote island located in the very south of the Atlantic Ocean, exotic species are present. Many of which were inadvertently introduced by whalers and sealers in the 19th and early 20th century.
The invasive carabid ground beetle, Merizodus soledadinus, is present on sites that have been recently exposed by melting glaciers.
In a new study published in the open-access journal Neobiota and funded by Darwin Plus, researchers explored how living organisms colonise new ground provided by melting glaciers.
Like other cold regions of the world, South Georgia is losing its glaciers because of climate change, leaving behind large areas of newly uncovered bare ground.
Invasive annual meadow grass colonising ground only a few years after the glacier disappeared.
Researchers surveyed the foreland biodiversity of six glaciers, creating an inventory of the flora and fauna that colonise forelands at different stages of glacial retreat.
A survey site near a former whaling station (Grytviken).
They found that, just a few years after bare ground is exposed by a glacier melting, pioneer plants arrive, progressively covering more ground with time, followed by an increasing number of species.
Rocky terrain by Glacier Col.
Native and exotic plants, as well as invertebrates, take advantage of this opportunity. Surprisingly, two temperate plant species from the Northern Hemisphere, annual meadow grass and mouse-ear chickweed, colonise sites faster than any other species.
The team suggests their results indicate invasive species will likely spread on South Georgia as fast as glaciers are retreating. Whether this has or will have negative consequences on local species needs to be investigated to help protect this unique ecosystem.
Original Source
Tichit P, Brickle P, Newton RJ, Convey P, Dawson W (2024) Introduced species infiltrate recent stages of succession after glacial retreat on sub-Antarctic South Georgia. NeoBiota 92: 85-110. https://doi.org/10.3897/neobiota.92.117226
A study spearheaded by researchers at the Helmholtz Centre for Environmental Research and Macquarie University has highlighted the important ecological role of traditional orchard meadows, calling for political and public support and incentives for farmers to protect these landscapes.
The paper, published in the open-access journal Nature Conservation, reviews the effects of management, habitat and landscape characteristics on the biodiversity of these areas in Central Europe.
Schematic figure illustrating the effects of management intensification on species richness. The graph illustrates the potential effect of management intensity (from high over intermediate to abandonment/rewilding) on species richness in orchard meadows.
Orchard meadows, characterised by the combination of cultivated grasslands and scattered fruit trees, exhibit high flora and fauna biodiversity. Despite their ecological value, these habitats have been in decline since the mid-19th century due their decreasing economic worth. They now face threats from land abandonment and intensification of agriculture.
The study emphasises the importance of moderate management intensity, connectivity to neighbouring habitats, and the preservation of structural diversity to maintain and enhance the conservation value of orchard meadows. The findings also advocate for a nuanced understanding of management impacts across taxonomic groups and points out the limitation of available studies on these habitats in Central Europe.
Currently loose in definition, the research team advocated for a clear definition of orchard meadows to create a common term in Europe, which would make their assessment and protection more straightforward. They suggest orchard meadows should be listed in the Habitats Directive of the Council of the European Union and farmers should get incentives for their maintenance. Finally, the research team calls for political and public support to prevent the loss and abandonment of these biodiverse landscapes.
“One way the public support the protection of these habitats is through consumer behaviour, specifically by purchasing local products from orchard meadows. However, it is crucial to subsidise these local products and prioritize them at local markets.
“As long as fruits from orchard meadows are treated as ‘by-products’ in the market, it will be challenging to convince people to buy local products. This change is necessary to close the economic gap between intensified fruit production and extensive orchard meadows.”
Cornelia Sattler, lead author.
Research paper
Sattler C, Schrader J, Hüttner M-L, Henle K (2024) Effects of management, habitat and landscape characteristics on biodiversity of orchard meadows in Central Europe: A brief review. Nature Conservation 55: 103-134. https://doi.org/10.3897/natureconservation.55.108688