Spectacular subtropical montane forest scenery in Yushan National Park. Credit: Ms. Wen-Ling Tsai
Montane forests, known as biodiversity hotspots, are among the ecosystems facing threats from climate change. To comprehend potential impacts of climate change on birds in these forests, researchers set up automatic recorders in Yushan National Park, Taiwan, and developed an AI tool for species identification using bird sounds. Their goal is to analyze status and trends in animal activity through acoustic data.
Compared to traditional observation-based methods, passive acoustic monitoring using automatic recorders to capture wildlife sounds provides cost-effective, long-term, and systematic alternative for long-term biodiversity monitoring.
The authors deployed six recorders in Yushan National Park, Taiwan, a subtropical montane forest habitat with elevations ranging from 1,200 to 2,800 meters. From 2020 to 2021, they recorded nearly 30,000 hours of audio files with abundant biological information.
An automatic recorder was installed on a tree to capture the surrounding soundscape. Credit: Ph.D. Candidate Shih-Hung Wu
However, analyzing this vast dataset is challenging and requires more than human effort alone.
To tackle this challenge, the authors utilized deep learning technology to develop an AI tool called SILIC that can identify species by sound.
SILIC can quickly pinpoint the precise timing of each animal call within the audio files. After several optimizations, the tool is now capable of recognizing 169 species of wildlife native to Taiwan, including 137 bird species, as well as frogs, mammals, and reptiles.
In this study, authors used SILIC to extract 6,243,820 vocalizations from seven montane forest bird species with a high precision of 95%, creating the first open-access AI-analyzed species occurrence dataset available on the Global Biodiversity Information Facility. This is the first open-access dataset with species occurrence data extracted from sounds in soundscape recordings by artificial intelligence.
The Gray-chinned Minivet (left) displays a secondary non-breeding season peak (right) which is possibly related to flocking behavior. Credit: Shih-Hung Wu, Ph.D. Candidate
The dataset unveils detailed acoustic activity patterns of wildlife across both short and long temporal scales. For instance, in diel patterns, the authors identify a morning vocalization peak for all species. On an annual basis, most species exhibit a single breeding season peak; however, some, like the Gray-chinned Minivet, display a secondary non-breeding season peak, possibly related to flocking behavior.
As the monitoring projects continue, the acoustic data may help to understand changes and trends in animal behavior and population across years in a cost-effective and automated manner.
The sound of Gray-chinned Minivet. Credit: Ph.D. Candidate Shih-Hung Wu
The authors anticipate that this extensive wildlife vocalization dataset will not be valuable only for the National Park’s headquarters in decision-making.
“We expect our dataset will be able to help fill the data gaps of fine-scale avian temporal activity patterns in montane forests and contribute to studies concerning the impacts of climate change on montane forest ecosystems,”
they say.
Original source:
Wu S-H, Ko JC-J, Lin R-S, Tsai W-L, Chang H-W (2023) An acoustic detection dataset of birds (Aves) in montane forests using a deep learning approach. Biodiversity Data Journal 11: e97811. https://doi.org/10.3897/BDJ.11.e97811
You can also follow Biodiversity Data Journal on Twitter and Facebook.
The Cinereous Vulture (Aegypius monachus) – also known as Black Vulture, Monk Vulture or Eurasian Black Vulture – is the largest bird of prey in Europe.
Globally classified as Near Threatened, its populations in southern Europe, once abundant, have been experiencing a dramatic decline since the late 1800s. So dramatic, in fact, that by the mid-1900s, these birds had already been nowhere to be seen throughout most of their distributional range across the Old Continent. In Bulgaria, the species has been considered locally extinct since 1985.
Thanks to the re-introduction initiative that was started in 2015 by three Bulgarian non-governmental organisations: the leading and oldest environmental protection NGO in Bulgaria: Green Balkans, the Fund for Wild Flora and Fauna and the Birds of Prey Protection Society, the species is now back in the country.
By mid-2022, the team imported a total of 72 individuals from Spain and European zoos, before releasing them in strategically-chosen sites in the Eastern Balkan Mountains and the Vrachanski Balkan Nature Park in Northwestern Bulgaria.
The team brought 63 immatures from Spain, where the birds had been found in distress and rehabilitated in aviaries. The other nine juveniles were captive-bred in zoos, and then released by means of hacking, which involves an artificial nest, from where the fledglings can gradually ‘’take off” to a life in the wild.
The re-introduction campaign to date is presented in a research article, published in the open-access Biodiversity Data Journal. There, the scientists led by Ivelin Ivanov (Green Balkans), report on and discuss the effectiveness and challenges of the different release methods and offer tips on the conservation and re-introduction.
For example, hacking proved to be inefficient for establishing an entirely new core (or nucleus) population of Cinereous Vultures in the Balkan Mountains in Bulgaria. It did not work for supplementing a small settled group of individuals either.
Instead, the team recommend the aviary method and delayed release, where captive-bred birds are introduced to the new locality after a period of acclimatisation, where the birds can gain life experience to the local environment.
“The Cinereous Vulture re-introduction establishment phase in Bulgaria in the two first release sites is running according to the plan, and the first results are satisfactory,”
the scientists comment.
“Two distinct nuclei are now created, and the species started breeding, which might be a reason to up-list it in the Red Data Book of Bulgaria from ’Extinct’ to ‘Critically Endangered.’”
These two newly created breeding nuclei of the Cinereous Vulture in Bulgaria are the second and third of their kind in the Balkan Peninsula.
“Following a dramatic decline throughout the 20th century for decades, the species had remained in only one breeding colony in Dadia-Lefkimi-Soufli Forest National Park in north-eastern Greece. Now, exchange between the three colonies will facilitate the exchange of individuals, ensure long-term stability, and give rise to the regional population,”
the authors of the study say.
However, the team points out that further monitoring and modelling and adaptive management are indispensable for the long-term persistence of the new national population. Now that there is already evidence that the imported vultures have been successfully breeding in Bulgaria, there is one step left before it can be officially confirmed that the Cinereous Vulture species has successfully re-established in the country. This conclusion can only be made after the core breeding populations begin to produce about ten chicks every year and after the locally fledged individuals begin to reproduce on their own. Such results are expected by 2030.
The re-introduction of the Cinereous Vulture is the latest in a series of conservation projects focused on birds of prey in Bulgaria.
First, in a programme that started in 2009, the Griffon Vulture was successfully re-introduced in Bulgaria after about 50 years of “extinction”. In fact, the team took a lot of the know-how and methods used in that project to apply in the present project. The success story was published in a research paper in the Biodiversity Data Journal in 2021.
In fact, the very same day in 2021 saw two publications in the Biodiversity Data Journal that reported on re-introduction successes involving birds of prey in Bulgaria, which had gone missing for decades. The second instance was the discovery of the first nesting Saker Falcons in twenty years
Both scientific publications are part of a dynamic ‘living’ collection, titled “Restoration of species of conservation importance”, whose aim is to collate publicly available research studies reporting on the reintroduction and/or restocking of animal and plant species of conservation importance around the world. The collection was inspired by the “International Scientific Conference on Restoration of Conservation-Reliant Species and Habitats” held in Sofia, Bulgaria, in 2020.
“The restoration of species is one of the most important conservation tools in the context of constantly intensified human-driven global biodiversity loss. The reintroduction/restocking activities are related to significant research and data gathering before and during the work process, which ensures their sustainable success,”
explain the collection editors.
Research article:
Ivanov I, Stoynov E, Stoyanov G, Kmetova–Biro E, Andevski J, Peshev H, Marin S, Terraube J, Bonchev L, Stoev IP, Tavares J, Loercher F, Huyghe M, Nikolova Z, Vangelova N, Stanchev S, Mitrevichin E, Tilova E, Grozdanov A (2023) First results from the releases of Cinereous Vultures (Aegypius monachus) aiming at re-introducing the species in Bulgaria – the start of the establishment phase 2018–2022. Biodiversity Data Journal 11: e100521. https://doi.org/10.3897/BDJ.11.e100521
You can also follow Biodiversity Data Journal on Twitter and Facebook.
Ambitious goals have been set by the European Union, in order to tackle the biodiversity conservation challenges over the coming decade. No less ambitious are the goals of the Horizon Europe project SELINA, which is one of the current major initiatives looking in the same direction.
SELINA (Science for Evidence-based and Sustainable Decisions about Natural Capital) is a transdisciplinary project aimed at promoting the conservation of biodiversity, enhancing ecosystem conditions, and supporting the sustainable use of the environment through evidence-based decision-making.
As an experienced science communicator and open-science publisher, Pensoft will be leading the project’s communication and dissemination activities.
“Ecosystem services is one of the topics that Pensoft has been involved in for more than 10 years, so it was only natural for us to continue our work as a communicator of scientific information in the ambitious SELINA project as well,”
says Prof Pavel Stoev, COO at Pensoft.
“We have already collaborated with many of the partners within the earlier EC Horizon 2020 project ESMERALDA, which concluded with the launch of a pan-European network of scientific institutions engaged with biodiversity conservation and ecosystem services. In addition, Pensoft has been strongly connected to the community through the scholarly journal One Ecosystem, which is supported by Ecosystem Services Partnership, and offers an opportunity for scientists in the field to publish their results in a new and innovative way.”
he adds.
The project
SELINA was launched in July 2022 and will run for 5 years. Having received EUR 13 million in funding, the project is seen as an unprecedented opportunity for smart, cost-effective, and nature-based solutions to historic societal challenges such as climate change, biodiversity loss, and food security.
One of the project’s main objectives is to identify biodiversity, ecosystem condition, and ecosystem service factors that can be successfully integrated into decision-making processes in both the public and private sectors.
To achieve this objective, SELINA will develop, test, and integrate new and existing knowledge, including methodological approaches to improve biodiversity, ecosystem condition, and ecosystem service information uptake by decision-makers.
In addition, the project will utilise EU-wide workshops and multi-disciplinary Communities of Practice involving a wide range of stakeholders, including scientists, policymakers, business leaders, and civil society organisations.
The project will also organise Demonstration Projects on biodiversity, ecosystem condition, and ecosystem service integration in decision-making and co-create a Compendium of Guidance that will allow stakeholders to make full use of the project’s results and fit-for-purpose recommendations with real-world applications in policy-making and business decisions.
International consortium
SELINA project brings together experts from 50 partnering organisations across all European Union member states, Norway, Switzerland, Israel, and the United Kingdom.
The project comprises a Pan-European and transdisciplinary network of professionals from the academic and non-academic sectors with various (inter)disciplinary backgrounds – including ecologists, economists, social scientists – who have agreed to work collaboratively to support transformative change based on evidence-based decision-making related to the management of natural resources.
Find out more about the project on the SELINA website: project-selina.eu/.
Between 2010 and 2019, total imports of frog’s legs into the EU numbered 40.7 million kg, which equals to up to roughly 2 billion frogs. While Belgium is the main importer, France is the main consumer. These insights are part of a new study, published in the journal Nature Conservation, which found “inexplicable volatility” in the trade of frog legs and an extreme dependency of the EU on other countries to meet its demand.
Leading author Dr. Auliya of the Leibniz Institute for the Analysis of Biodiversity Change in Bonn, Germany, outlines the manifold uncertainties underlying this trade: “The international trade in frogs’ legs is a black box, whether it is the lack of species-specific trade data, which would be needed to ensure sustainability, or the large-scale mislabeling in trade and the challenges to identify species when it comes to processed, skinned and frozen frogs’ legs.”
Frogs’ legs from large ranids at a large-scale reptile collector in North Sumatra, Indonesia. Photo by Mark Auliya
Frogs have a central role in the ecosystem as insect predators – and where frogs disappear, the use of toxic pesticides increases. Hence, the frogs’ legs trade has direct consequences not only for the frogs themselves, but for biodiversity and ecosystem health as a whole. The extent to which pesticide residues in frogs’ legs are traded internationally remains unclear.
In the 1970s and 1980s, India and Bangladesh were the top suppliers of frogs’ legs to Europe, but when their wild frog populations collapsed, both countries banned exports. Since then, Indonesia has taken over as the largest supplier. In the Southeast Asian country, as now also in Turkey and Albania, large-legged frog species are dwindling in the wild, one after the other, causing a fatal domino effect for species conservation. This increasingly threatens frog populations in the supplier countries.
“The EU is by far the world’s largest importer of frogs’ legs, and large-legged species such as the crab-eating grass frog (Fejervarya cancrivora), the giant Javan frog (Limnonectes macrodon) and the East Asian bullfrog (Hoplobatrachus rugulosus) are in particular demand among supposed gourmets in Europe”, points out co-author Dr. Sandra Altherr, a biologist and wildlife trade expert of the Germany-based charity Pro Wildlife.
Frozen frogs’ legs on sale in a French supermarket, August 2022. Photo by Sandra Altherr / Pro Wildlife
While commercial frog farms, like those operated in Viet Nam, may at first glance seem to be an alternative that can relieve the pressure from wild frog populations, ongoing restocking of frog farms with native species from the wild and, in the case of non-native species, such as the American bullfrog (Lithobates catesbeianus) the risk of escape, invasion and potential risk of disease spread, are serious risks for the environment.
The harvest of wild frog populations and species produced at commercial frog farms for the purpose of consumption also leaves disease control and hygiene measures by the wayside; additionally, the cross-border trade of species for consumption has led to genetic pollution and hybridization between species.
Limnonectes blythii species complex from a large-scale collector in North Sumatra. Photo by Mark Auliya
„During the course of this study, it became clear just how difficult it is to obtain concrete data on the current international trade in frogs’ legs. Specifically, relevant data are scattered across different unconnected databases,“ the researchers write in their paper.
In the course of their review, they were not able to find any published data out whether pesticide residues and other potentially toxic substances in (processed) frogs or their legs imported into the EU have been monitored. “This in itself is shocking and in view of the situation in exporting countries and the lack of transparency and management in the application of agrochemicals and veterinary medicinal substances within commercial farms, we strongly recommend that this monitoring become an urgent near-future task for importing countries,” they write.
“The complexity of issues underlying the frogs’ legs trade is not a priority policy item for the EU,” the authors conclude. They add that a listing of the most-affected frog species under CITES, the Convention on International Trade in Endangered Species of Wild Fauna and Flora, would help to monitor trade and ensure its sustainability, and the EU as the main destination should take the lead on that.
Research article:
Auliya M, Altherr S, Nithart C, Hughes A, Bickford D (2023) Numerous uncertainties in the multifaceted global trade in frogs’ legs with the EU as the major consumer. Nature Conservation 51: 71-135. https://doi.org/10.3897/natureconservation.51.93868
A number of serious management and compliance issues were revealed on lion farms in the Free State province, South Africa, by a joint team of researchers from MONITOR, Blood Lions, and World Animal Protection. Potentially fraudulent activities relating to the use of microchips, operating without valid permits, and incomplete, inconsistent, and unclear record keeping were some of the irregularities found on commercial facilities that keep and trade captive lions and other predators.
Lions on a commercial lion farm in South Africa. Photo by Blood Lions
African lions are legally farmed in South Africa for commercial uses in interactive tourism activities, such as cub petting, voluntourism, or the “canned” hunting industry (where captive-bred lions are released into a confined space to be killed for sport). Other reasons include trade in live animals, or selling their body parts for the needs of traditional Asian Medicine.
All lions born and kept on commercial farms in South Africa should be registered with the provincial authority and fitted with a unique identification microchip, in order for each animal to be followed from birth to death through the system and to avoid the laundering of wild-caught and/or non-registered captive-bred lions.
Lions on a commercial lion farm in South Africa. Photo by Blood Lions
A multinational team of researchers used permit data legally obtained from provincial authorities to summarise such uses of lions on farms in the Free State and found multiple instances of violation of national and provincial regulations.
It is known that the Free State province is at the heart of the commercial lion industry, with about a third of all lion facilities across the country located on its territory. These farms in the Free State predominantly breed, keep and euthanise lions, as well as trade with other provinces to supply “canned” hunting farms and tourism facilities. They also prepare lion body parts for export, such as taxidermy for trophies, and skeletons for the bone trade with Southeast Asia.
Lion cubs on a commercial lion farm in South Africa. Photo by Blood Lions
Data legally obtained from the Free State Department of Small Business Development, Tourism and Environmental Affairs show hundreds of reused microchip numbers across permits for keeping, euthanising and transporting captive lions, indicating potential non-compliance with national and provincial regulations.
During a four-year period (2017-2020), more than 500 unique microchips (11% of the total microchip numbers) could not be followed through the system. For euthanasia permits, the number of potentially fraudulently used microchip numbers of lions was as many as 15%, and in some cases a microchip number had been reused up to four times.
This raises serious concerns that lion farm owners may deliberately be reusing microchip numbers to launder wild-caught and/or unregistered captive-bred lions.
A lion. Photo by Matthias Appel under a CC0 1.0 license
“Although some of these inconsistencies may have legitimate explanations, the number of times microchip numbers were reused is worrisome and requires further investigation by the authorities”, states Dr Sarah Heinrich of MONITOR, one of the researchers behind the study, which was published in the journal Nature Conservation.
The laundering of lions and/or other predators through the fraudulent use of microchips has implications beyond South Africa’s borders, in particular, in the trade in lion bones for traditional medicine, where bones, claws, skeletons, and skulls are exported to Southeast Asia. “Looking at live lion exports through the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), it is unclear what happens to these animals once they arrive at their international destinations. It is possible that some of these live exports circumvent the zero CITES lion bone export quota and are eventually euthanised at their import destinations to feed the persisting demand for lion bones”, said Dr Jennah Green of World Animal Protection.
CITES is the main regulatory mechanism governing the commercial international trade in certain wildlife species, including lions, their body parts, and derivatives. Under CITES, (African) lions are listed in Appendix II. A screenshot from Speciesplus.net, taken 31 January 2023.
Lions that were euthanised in the Free State in 2019 and 2020, during a CITES zero export quota for lion bones, most likely became part of a growing and largely unregulated stockpile of lion bones that exists in South Africa, which warrants further investigation.
Ensuring regulatory compliance in all areas of the commercial captive lion industry is more important now than ever. In 2021, Minister Barbara Creecy of the Department of Forestry, Fisheries and the Environment (DEFE), stated that the South African government intends to effectively end the commercial captive lion industry through a mandatory phase-out, which eventually was changed to a voluntary scheme.
In its current state, the lion farming industry is governed by a patchwork of contrasting legislation across multiple provincial and national authorities, with disparities and legal loopholes, which create opportunity for harmful and fraudulent activity.
“Our research highlights many areas of grave concern and these issues need the urgent attention of the Minister and the DFFE, as well as the nine provincial nature conservation authorities, to put stricter enforcement of the TOPS Regulations in place”, concludes Dr Louise de Waal, Director of Blood Lions.
Original source:
Heinrich S, Gomez L, Green J, de Waal L, Jakins C, D’Cruze N (2022) The extent and nature of the commercial captive lion industry in the Free State province, South Africa. Nature Conservation 50: 203-225. https://doi.org/10.3897/natureconservation.50.85292
Choloepus hoffmanni capitalis is a poorly known subspecies of two-toed sloth that inhabits coastal southern Colombia and Ecuador(Hayssen 2011). In Ecuador, according to local reports from rehabilitation centers and events recorded by the press, this species is apparently not widely trafficked for pet trade, but it is known to be illegally hunted and consumed, the impact of which is difficult to trace and evaluate. Nevertheless, the conservation status of the two-toed sloths C.h. capitalis Ecuadorian coast keeps leaning towards more threatened categorizations, and nowadays is established as vulnerable (Tirira, 2021).
The sloths Bravo and Linda during rehabilitation.
Its habitat is a hotspot for conservation in all its extent, as it is threatened. In addition, due to multiple origins of impact, it has been recorded as the second most abundant mammal (from the list of animals subjected to wildlife traffic and bushmeat consumption according to Environment Ministry reports) received in the busy rehabilitation center of Guayaquil, Ecuador (Villalba-Briones et al., 2021).
Xenarthrans have been relatively poorly studied, specially sloths (Superina and Loughry 2015), and due to the species’ inconspicuous strategy, it is also difficult to detect and perform population evaluations (Martínez et al. 2020). Taking in account the slow reproduction rate of Choloepus gen., having one offspring every 3 years (Hayssen 2011), it is critical to consider the importance of reintroductions (Paterson et al. 2021, Villalba-Briones et al. 2022), but, to all effects, nothing can substitute the implementation of efficient regulation to cease hunting and bushmeat consumption.
In-situ studies, understanding its ecology, behavior, abundance etc., could provide the necessary tools to estimate its populations, and evaluate its conservation status. Alternatively, non-invasive opportunistic studies in ex-situ programs during rehabilitation procedures could provide improvements in the aspects as diets and health, increasing the survival rate and fitness to release of rehabilitated sloths.
Bravo, the two-toed sloth moving through the trees on the day of release with a biodegradable backpack that supported the Bluetooth detection device (Day 1). Photo by R. Villalba-Briones
We suggest considering follow-up activities to check the animals’ safety during their adaptation to the natural environment. We also propose the inclusion of a follow-up term to redeem the post-release supportive monitoring, develop its scope, and to rely on the presence and readiness of the caregivers or researchers to help the animal during the first weeks after release.
In order to track Bravo after his release, a handmade biodegradable backpack with Bluetooth signal transmission capacity was fitted to his body. The lightweight Tile Bluetooth device did not pose any harm to the sloth, and after some heavy rains cardboard-made attachment just disintegrated, releasing the device.
Motionless defensive behavior of Bravo, the two-toed sloth, under threat from an owl (Night 6). Photo by R. Villalba-Briones
In our work, the presence in the area of a territorial carnivore individual led to the end of the follow-up activity. Consequently, in the case of probable undesired situations, we propose the use of devices to track the animals and monitor their presence daily. Alternatively, accounting for the relationship between movement patterns of the individual and detection probability, we propose 7 pm as the best time for observations of this mainly nocturnal species.
Due to the difficulty monitoring nocturnal animals, economic constraints in conservation, accessibility, and safety of the animals, biodegradable Bluetooth-based backpacks are recommended to ease the location of the animal and support its survival in the wild. The range of detectability of the device used indicates its suitability for tracking low-mobility animals.
Map showing the movements and tree use of the rehabilitated two-toed sloth (Choloepus hoffmanni) in a dry tropical forest in the coastal region of Ecuador.
This first record of the follow-up of a rehabilitated Choloepushoffmanni and the detectability analysis offer valuable information for the future release and follow-up of individuals belonging to the genus Choloepus, and sloths in general.
The knowledge about released animals’ survival could help in clearing rehabilitation uncertainties, and, always, can give the animals the second chance they deserve. Monitoring animal survival after release is essential for recording whether the rehabilitation process has been accomplished, but it is rarely done in practice, given the amount of funds required. It can, however, be substantially cheaper and affordable if the right techniques are used. These activities are more feasible when strategic planning and support exist.
Nowadays, the scarcity of funds to fulfill the needs of conservation projects on sloths (Superina and Loughry 2015, Choperena-Palencia and Mancera-Rodríguez 2018) seems to be an important obstacle. However, with a sensitized population, management effort, and support, it could be possible to understand and preserve the Choloepus hoffmanni capitalis.
References:
Choperena-Palencia MC, Mancera-Rodríguez NJ (2018) EVALUACIÓN DE PROCESOS DE SEGUIMIENTO Y MONITOREO POST-LIBERACIÓN DE FAUNA SILVESTRE REHABILITADA EN COLOMBIA. Luna Azul: 181–209. https://doi.org/10.17151/luaz.2018.46.11
Hayssen V (2011) Choloepus hoffmanni (Pilosa: Megalonychidae). Mammalian Species 43: 37–55. https://doi.org/10.1644/873.1
Martínez M, Velásquez A, Pacheco-Amador S, Cabrera N, Acosta I, Tursios-Casco M (2020) El perezoso de dos dedos (Choloepus hoffmanni) en Honduras: distribución, historia natural y conservación. Notas sobre Mamíferos Sudamericanos 01: 001–009. https://doi.org/10.31687/saremNMS.20.0.25
Paterson JE, Carstairs S, Davy CM (2021) Population-level effects of wildlife rehabilitation and release vary with life-history strategy. Journal for Nature Conservation 61: 125983. https://doi.org/10.1016/j.jnc.2021.125983
Superina M, Loughry WJ (2015) Why do Xenarthrans matter?: Table 1. Journal of Mammalogy 96: 617–621. https://doi.org/10.1093/jmammal/gyv099
Villalba-Briones R, Molineros E, Monros, J. S. (2021). Estudio retrospectivo de rescates y retenciones de especies de fauna silvestre sujetas a tráfico de fauna en guayaquil, Ecuador. Comité científico.
Villalba-Briones R, Jiménez ER, Monros JS (2022) Release and follow-up of a rehabilitated two-toed sloth (Choloepus hoffmanni) in a tropical dry forest in Ecuador. Neotropical Biology and Conservation 17(4): 253-267. https://doi.org/10.3897/neotropical.17.e91332
Tirira, D. G. (ed.). 2021. Lista Roja de los mamíferos del Ecuador, en: Libro Rojo de los mamíferos del Ecuador (3a edición). Asociación Ecuatoriana de Mastozoología, Fundación Mamíferos y Conservación, Pontificia Universidad Católica del Ecuador y Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador. Publicación Especial sobre los mamíferos del Ecuador 13, Quito.
Researchers found that the number of hippopotamus in the Bui National Park declined by about 70% after the construction of a hydroelectric dam in the reserve.
The Bui National Park is one of the few areas where the common hippopotamus resides in Ghana. The combined resources of the Black Volta River and the abundance of grasses make the area very suitable for hippopotamus. However, in an attempt to solve the electricity crisis the country faced in 2007, the government of Ghana constructed a hydroelectric dam in the heart of their home.
Farmers clearing trees along the rivers to begin cultivation at Bui National Park.
Knowing the consequence of dam creation on aquatic species, scientists Godfred Bempah, Martin Kobby Grant, Changhu Lu, and Amaël Borzée from Nanjing Forestry University, China, wanted to understand how the hippopotamus, a mega semi-aquatic species, was impacted by this project. The results have been published in the journal Nature Conservation. Assessing the impact of the dam construction can advise policy and decision making in future projects like this.
The researchers spent 24 days (2 days per month for 12 months) at the Bui National Park to estimate the number of hippopotamus individuals and understand local migratory activities, as well as to assess changes in land cover in the area after the dam was constructed. They then compared this information with historical data to understand the ecological changes within the area.
A hippopotamus in the Zoologico de Vallarta at Mismaloya south of Puerto Vallarta, Mexico. Photo by David Stanley under a CC BY 2.0 license
To complement the field surveys, the researchers spoke to local people familiar with the reserve before and after the dam construction. These included fishermen, canoe operators and park rangers. During the interactive discussion, all of them stated that the numbers of hippopotamus have declined compared to periods before the dam construction. They attributed the decline to poaching and habitat destruction.
The results indicated a decline in hippo numbers of about 70%: from 209 individuals in 2003 to 64 individuals in 2021.
A seized skull of Hippopotamus amphibius at the Bui national Park.
The study revealed noticeable changes in land cover after the dam construction, and, most importantly, a decline in forest cover, as well as destruction of riparian grasses, the habitat preferred by the hippopotamus. The increase in water levels flooded the areas where the animals used to reside, forcing them to disperse to other suitable areas. As they dispersed, the animals became vulnerable to poaching, which combined with habitat loss eventually led to a decline in hippopotamus numbers. It is possible that some of the animals might have successfully moved to other areas outside the reserve.
In conclusion, the authors note that the number of common hippopotamus individuals in the park has declined following the dam construction, in connection with habitat destruction and poaching. Once these threats are removed, the hippopotamus can survive in the medium to long term, when effective management plans are implemented.
Research article:
Bempah G, Kobby Grant M, Lu C, Borzée A (2022) The direct and indirect effects of damming on the Hippopotamus amphibius population abundance and distribution at Bui National Park, Ghana. Nature Conservation 50: 175-201. https://doi.org/10.3897/natureconservation.50.87411
With more than 7000 individuals populating the Carpathian Mountains and neighboring areas, Romania has the highest density of brown bears in Europe. As they often inhabit human-dominated landscapes, conflicts with people are not uncommon.
“The media play an influential role in how the public perceives brown bears, thus, it can promote human-wildlife coexistence or exacerbate future conflicts”, they say.
Brown bear waiting on the roadside for food scraps (National Road 2D, Vrancea, Romania). Photo by Dr Silviu Chiriac (EPA Vrancea)
The study found that news stories related to brown bears became common in Romanian media only after 2016, following the instatement of a provisional one-year ban on culling, and increased abruptly in 2021 following the whistleblowing of an alleged trophy hunting event.
The majority of reports were about human-bear interaction, hunting, and poaching, offering little context and information on how to avoid conflicts. Articles on the ecology and biology of brown bears were rare, which indicates less consideration of the ecological significance and the impact of human activities on their conservation status.
Focusing on alarming messages without offering evidence or advice can increase fear and undermine efforts to protect the species and the welfare of society.
The attitude towards brown bears, perceived from the studied articles was predominantly negative (53%; 380 articles). In these articles, the authors used phrases such as: “At any moment the people can find themselves in front of a hungry bear;” “Beyond the horror they live with every day, they have lost their patience and trust in the authorities;” and “People are afraid of the worst.”
Even when reporting sightings of bears near populated areas and encounters with no casualties, Romanian media promoted a negative image of bears to their readership. “Focusing on alarming messages without offering evidence or advice can increase fear and undermine efforts to protect the species and the welfare of society,” the researchers said.
Importantly, the team found that media did not consult wildlife and conservation biologists when reporting on human-bear interactions or bear hunting and poaching events. “This can be because the experts are reluctant to be part of the debate, or because the media may not be interested in bringing more scientific context to their reports,” they reason.
Rescuing a bear trapped in wire-snare in an orchard (Vrancea, Romania). Photo by Dr Silviu Chiriac (EPA Vrancea)
“In conclusion, increasing the frequency of reporting interaction events with alarming messages can only lower the level of tolerance for wildlife and negatively influence political decisions regarding the management of the brown bear population.”
The researchers call for publishing detailed and evidence-informed news as a means to educate people to avoid conflict and facilitate the implementation of effective wildlife conservation and management strategies.
“Evidence-informed news can help authorities better understand conflicts and create bottom-up pathways toward an optimistic future for brown bears and Romanian society”, they conclude.
Research article:
Neagu AC, Manolache S, Rozylowicz L (2022) The drums of war are beating louder: Media coverage of brown bears in Romania. Nature Conservation 50: 65-84. https://doi.org/10.3897/natureconservation.50.86019
👏Congrats to Giovanni Vimercati (Postdoc, @unifr) who received the Best Talk Award at #NeoBiota2022 for his presentation: "Assessing positive #socioeconomic impacts of alien #taxa within a unified framework"!🎉 Will be looking forward to your complimentary submission!😊 https://t.co/sDsgd747du
Giovanni Vimercati is a postdoctoral researcher at the University of Fribourg, Switzerland, and most recently recipient of the Best Talk award (Early Career Researcher) at the 2022 NEOBIOTA conference held in mid-September in Tartu, Estonia.
As a sponsor of the event and publisher of the NeoBiota journal, Pensoft granted a complimentary publication in it to the awardee.
NeoBiota readers might already be familiar with Vimercati, whose name first appeared on its pages in a 2017 paper that used alien amphibians as a case study to identify the differences and potential difficulties with two impact assessment scoring tools: the Environmental Impact Classification of Alien Taxa (EICAT) and the Generic Impact Scoring System (GISS).
Then, in 2020 and 2021, the researcher had two research articles published in NeoBiota as lead author. The 2020 paper provided a summary of the frameworks assessing beneficial impacts of alien species, while in the 2021 study his team used a spatially-explicit stage-structured model to assess efficacy of past, present and alternative control strategies for invasive guttural toads (Sclerophrys gutturalis) in Cape Town.
Giovanni Vimercati being awarded at NEOBIOTA 2022. Photo by Ana Novoa.
In anticipation of Vimercati claiming the Best Talk award with a forthcoming submission to the journal, we asked him to join us for an interview and share his thoughts on his research.
Going back to the beginning, what sparked your interest in the study of invasive species in particular? What are the unique aspects of your research?
Like the episodic nature of many biological invasions, my first contact with the study of alien species was quite “unexpected”. Having a strong interest in herpetology, I had the luck to pursue my doctoral research at the Center of Excellence for Invasion Biology (CIB) in Stellenbosch, South Africa, where I studied the invasion of an alien amphibian species. My PhD study, and the highly stimulating community of researchers that characterized the CIB, made me realize not only that invasive species provide an invaluable opportunity to address ecological and evolutionary questions, but also how important it is to study their impact on biodiversity and human communities.
One unique aspect of my research since then has been its multidisciplinary character, as I have studied biological invasions from multiple angles simultaneously, by using mathematical models, physiological experiments, field surveys, remote sensing, literature reviews, meta analysis, and questionnaires. It seems a paradox, but the uniqueness of my research on biological invasions is that it has never really been unique!
Are there recent developments in the field that you find particularly interesting to explore?
As many other scientific disciplines, the field of invasion science is highly dynamic, and novel developments emerge every year. However, I find of particular interest the development of new approaches and tools to explore the links between biological invasions and the various socio-economic contexts. The use of online structured and semi-structured interviews, or the development of standardized socio-economic indicators are, for example, particularly promising for future studies.
In addition, the emergence of novel technological tools, for instance, linked to remote sensing, eDNA, stable isotopes and camera trapping, or the rapid increase in the computational power of modern CPUs, are allowing invasion scientists to collect and analyze data that used to be unaffordable, or simply unavailable. It is certainly an exciting moment to be an invasion scientist.
What do you find to be the biggest challenges as a researcher in your field?
I find that the proliferation of hypotheses and frameworks that characterize the field of invasion biology are particularly intriguing and challenging. Many of them work extremely well in certain conditions or across specific taxonomic groups, but they often lack generality or are marred by context dependence, which may limit their predictive power.
Addressing such a context dependence and finding ways to integrate various hypotheses and frameworks in invasion biology will be highly beneficial for understanding and forecasting biological invasions in the next decades.
Another challenge is to communicate the implications of our research to non-experts. I often wonder how stakeholders and policymakers from different cultural backgrounds or geographic regions perceive alien species and their impacts.
The theme of this year’s NEOBIOTA conference was “Biological Invasions in a Changing World”. To what extent can changes be anticipated and forecasted in order to make the work of assessing their impacts and mitigating damage easier?
I think that a key point would be to focus on specific indicators or proxies to measure these changes, so that different impacts and species can be quantified, both transparently and consistently.
In recent years, the field has produced a huge body of literature regarding impacts caused by alien species, but the results of these studies have not always been comparable. I feel that the development of the EICAT framework and its recent adoption by the IUCN as a global standard for measuring the magnitude of environmental impacts of alien species were two very important steps in this direction.
Your talk at the NEOBIOTA conference focused on the positive socio-economic impacts of invasive species. Why is this important for different stakeholders, including policy makers, but also local communities and individuals?
In my opinion, invasive species, and more generally alien species, can have various positive socio-economic impacts that should be identified and assessed rigorously. These impacts are often anecdotally reported or vaguely stated in the literature, a tendency that hampers our capacity to identify (and forecast) conflicts of interest among different stakeholders or understand their perceptions toward alien species.
In my talk, I presented the preliminary version of a framework that assesses positive socio-economic impacts. The framework is based on the capability approach, and aims to quantify the degree to which the well-being of certain human communities increases after the introduction of alien species. Of course, the scheme won’t be used in isolation, but rather in combination with other frameworks that assess the negative socio-economic and environmental impacts of alien species, so that their effects can be understood in their full complexity.
Soil and its macrofauna are an integral part of many ecosystems, playing an important role in decomposition and nutrient recycling. However, soil biodiversity remains understudied globally.
To help fill this gap and reveal the diversity of soil fauna in Hong Kong, a team of scientists from The Chinese University of Hong Kong initiated a citizen science project involving universities, non-governmental organisations and secondary school students and teachers.
“Involving citizens as part of the new knowledge generation process is important in promoting the understanding of biodiversity. Training younger-generation citizens to learn about biodiversity is of utmost importance and crucial to conservation engagement”
– say the researchers in their study, which was published in the open-access Biodiversity Data Journal.
The soil sampling methodology that the students employed in this study. Video by Sheung Yee Lai, Ka Wai Ting, Tze Kiu Chong and Wai Lok So.
Working side by side with university academics, taxonomists and non-governmental organisation members, students from 21 schools/institutes were recruited to collect soil animals near their campusesfor a year and record their observations.
Between October 2019 and October 2020, they monitored and sampled species across 21 sites of urban and semi-natural habitats in Hong Kong, collecting a total of 3,588 individual samples. Their efforts yielded 150 soil macrofaunal species, identified as arthropods (including insects, spiders, centipedes and millipedes), worms, and snails.
Most often, the students found millipedes (23 out of 150 species). They even helped identify two millipede species that are new to Hong Kong’s fauna: Monographis queenslandica and Alloproctoides remyi. The former is usually found in Australia – the researchers suggest it might have been introduced to the area many decades ago from Queensland or vice versa – and the latter has been observed in Reunion and Mauritius.
Two polyxenid millipede species, collected in this study, turned out to had never before been recorded from Hong Kong. Left: Monographis queenslandica and Alloproctoides remyi (right). Image by Sheung Yee Lai, Ka Wai Ting and Wai Lok So.
Millipedes like these two species can accelerate litter decomposition and regulate the soil carbon and phosphorus cycling, while earthworms can modify the soil structure and regulate water and organic matter cycling.
“Before the beginning of this project, the understanding of soil biodiversity in Hong Kong, including the understanding of its contained millipede species, was inadequate”
the researchers write in their paper.
Now, they believe that the identified macrofauna species and their 646 DNA barcodes have established a solid foundation for further research in soil biodiversity in the area.
Their project also serves an additional purpose. Unlike most conventional scientific studies, which are usually carried out by the government, non-governmental organisations or academics in universities alone, this study utilised a citizen science approach through creating a big community engaged with biodiversity. In doing so, it helped educate the public and raise awareness on the use of basic science techniques in understanding local biodiversity.
So, it may have inspired a new generation of future scientists: some students started millipede cultures in their own schools, and one school used the millipede breeding model to participate in a science and technology competition.
This study is a proof that local institutes and high schools can unite together with research teams at universities and perform scientific work, the study’s authors believe.
It “has raised public awareness and potentially opens up opportunities for the general public to engage in scientific research in the future.”
The team hopes that their approach could inspire future biodiversity sampling and monitoring studies to engage more citizen scientists.
***
Research article:
So WL, Ting KW, Lai SY, Huang EYY, Ma Y, Chong TK, Yip HY, Lee HT, Cheung BCT, Chan MK, Consortium HKSB, Nong W, Law MMS, Lai DYF, Hui JHL (2022) Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach. Biodiversity Data Journal 10: e82518. https://doi.org/10.3897/BDJ.10.e82518