Nature Conservation opens “Restoration of Wetlands” collection

The permanent topical article collection aims to bring together key insights into restoration of wetlands and coastal marine systems, thereby facilitating exchange among different disciplines.

The “Restoration of Wetlands” permanent topical article collection in the open-access, peer-reviewed scholarly journal Nature Conservation is now open for submissions, with the aim to bring together a wide spectrum of knowledge necessary to inform scientists, policy-makers and practitioners about key insights into restoration of wetlands and coastal marine systems, thereby facilitating exchange among different disciplines.

Being a permanent collection means that it is to welcome contributions indefinitely, whereas papers will progress to publication as soon as they are accepted by the editors. While they will be accessible from a central point: the collection, which is also assigned with its own DOI, the articles themselves will feature in different journal volumes, depending on their publication date.

Find more about the specificity of Special issues and Topical collections on the journal’s website.

The issue is managed by an international team of scientists:

“Worldwide, the loss of biodiversity in wetlands, like rivers and their floodplains and peatland but also in deltas and estuaries is dramatic,”

the guest editors explain.
Photo by Mathias Scholz.

Due to intensive land-use, including farming, urbanisation, drainage, construction of levees or bank stabilisation or straightening of river courses and coastlines, wetlands are losing their typical functions, such as carbon storage and habitat provision. As a result, the ecosystem services they provide are declining and so is the coastal biodiversity as a whole.

However, various restoration measures have been carried out to revitalise wetlands over the last decades, on a global scale. Some of those have already proved successful, while others are still on their way to improve wetland biodiversity and related ecosystem functions and services. For all these efforts, the end goal is to implement international biodiversity actions and policies for adaptation and mitigation of climate change.

Among others, the “Restoration of Wetlands” article collection in the Nature Conservation journal seeks to attract contributions addressing issues, such as the roles of society and planning, as well as biology in restoration; indicators to monitor and measure restoration success; the synergies between wetland restoration and climate change adaptation; and hands-on expertise in restoration.

***

Find more about the “Restoration of Wetlands” collection on the Nature Conservation’s journal website. 

Follow Nature Conservation on Twitter and Facebook.

Rare, protected orchid thrives in a military base in Corsica

Counting over 155,000 individuals, the population is a world precedent. Globally, this orchid can only be found in the south of France, Italy, and along the east coast of the Adriatic.

In Corsica, away from the eyes of locals and tourists, hides a population of unprecedented proportions of a rare and protected orchid: the neglected Serapias (Serapiasneglecta). In a closed military base in the east of the island, researchers discovered 155,000 individuals of the plant.

Globally, this orchid can only be found in the south of France (including Corsica), Italy, and along the east coast of the Adriatic, but none of its known populations has been as abundant as the one documented in Solenzara.

High density of Serapias neglecta on the air base. Photo by Margaux Julien (Ecotonia)

Margaux Julien, Dr Bertrand Schatz, Simon Contant, and Gérard Filippi, researchers from the Center of Functional Ecology and Evolution (CEFE) and Ecotonia consultancy,came across this population while studying plant diversity in the Solenzara air base. Their research, published in Biodiversity Data Journal, documented impressive plant richness, including 12 other orchid species.

The maintenance of the closed military area turned out to be really favourable to the development of orchids. The flower was abundant around the edges of runways and on lawns near military buildings.

Serapias neglecta. Photo by Margaux Julien (Ecotonia)

“Мilitary bases are important areas for biodiversity because they are closed to the public, are not heavily impacted and these areas have soils that are often poorly fertilised and untreated due to old installations, so they often have high biodiversity,” the researchers say in their study.

The meadows around the airport are regularly mowed for security reasons, which allows orchids to thrive in a low vegetation environment with little competition. In addition, the history of the land with its position on the old Travo river bed favours low vegetation, providing rocky ground just a few centimetres beneath the soil.

“The case of S. neglecta is particularly remarkable, because this species benefits from a national protection status and it is a sub-endemic species with a very localised distribution worldwide,” the research team writes. Moreover, the species is classified as near threatened in the World and European Red Lists of the International Union for Conservation of Nature.

The Ecotonia consultancy also did several inventories on the air base, finding biodiversity of rare richness: 552 species of plants, including 19 with protected status in France. Within only 550 ha, they found 23% of the plant species distributed in Corsica. Among these are some very rare plants, as well as endangered species such as the gratiole (Gratiola officinalis) and Anthemis arvensis subsp. incrassate, a subspecies of the corn chamomile.

Serapias neglecta. Photo by Bertrand Schatz

The Solenzara military base hides rich floristic diversity thanks to its history, management, and the lack of public access. While the Corsican coastline is suffering from urbanisation, this sector is a testament to the local flora, featuring several species with conservation status.

The protection of this richness is crucial. “If logistical developments are carried out on this base, they will have to favour the conservation of this exceptional floristic biodiversity, and, in particular of this particularly abundant orchid. Military bases are a great opportunity for the conservation of species and would benefit from enhancing their natural heritage,” the researchers conclude.

Research article:

Julien M, Schatz B, Contant S, Filippi G (2022) Flora richness of a military area: discovery of a remarkable station of Serapias neglecta in Corsica. Biodiversity Data Journal 10: e76375. https://doi.org/10.3897/BDJ.10.e76375

Simplified method to survey amphibians will aid conservation

Researchers developed a method to determine which amphibians inhabit a specific area. The new technique will resolve some of the issues with conventional methods, such as capture and observational surveys.

Ryukyu Sword Tailed Newt, or Firebellied Newt. Photo by Neil Dalphin via Creative Commons CC0.

An international collaborative research group of members from seven institutions has developed a method to determine which amphibians (frogs, newts and salamanders) inhabit a specific area. Their work was published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics (MBMG).

To do so, the scientists amplified and analysed extra-organismal DNA (also known as environmental DNA or eDNA) found in the water. This DNA ends up in the water after being expelled from the amphibian’s body along with mucus and excrement. 

The research group included Postdoctoral Researcher Sakata K. Masayuki and Professor Minamoto Toshifumi (Kobe University), Associate Professor Kurabayashi Atsushi (Nagahama Institute of Bio-Science and Technology), Nakamura Masatoshi (IDEA Consultants, Inc.) and Associate Professor Nishikawa Kanto (Kyoto University). 

The newly developed technique will resolve some of the issues with conventional methods, such as capture and observational surveys, which require a specialist surveyor who can visually identify species. Conventional surveys are also prone to discrepancies due to environmental factors, such as climate and season.

The researchers hope that the new method will revolutionise species monitoring, as it will enable anyone to easily monitor the amphibians that inhabit an area by collecting water samples.  

While monitoring in general is crucial to conserve the natural ecosystems, the importance of surveying amphibians is even more pressing, given the pace of their populations’ decline.

Amongst major obstacles to amphibian monitoring, however, are the facts that they are nocturnal; their young (e.g. tadpoles) and adults live in different habitats; and that specialist knowledge is required to capture individuals and identify their species. These issues make it particularly difficult to accurately survey amphibians in a standardised way, and results of individual efforts often contradict each other.

On the other hand, eDNA analysis techniques have already been established in programmes targeted at monitoring fish species, where they are already commonplace. So, the researchers behind the present study joined forces to contribute towards the development of a similar standardised analysis method for amphibians.

First of all, the researchers designed multiple methods for analysing the eDNA of amphibians and evaluated their performance to identify the most effective method. Next, they conducted parallel monitoring of 122 sites in 10 farmlands across Japan using the developed eDNA analysis along with the conventional methods (i.e. capture surveys using a net and observation surveys). 

As a result, the newly developed method was able to detect all three orders of amphibians: Caudata (the newts and salamanders), Anura (the frogs), and Gymnophiona (the caecilians). 

Furthermore, this novel eDNA analysis method was able to detect more species across all field study sites than the conventional method-based surveys, indicating its effectiveness.

Research Background

Amphibian biodiversity is continuing to decline worldwide and collecting basic information about their habitats and other aspects via monitoring is vital for conservation efforts. Traditional methods of monitoring amphibians include visual and auditory observations, and capture surveys.

However, amphibians tend to be small in size and many are nocturnal. The success of surveys varies greatly depending on the climate and season, and specialist knowledge is required to identify species. Consequently, it is difficult to monitor a wide area and assess habitats. The last decade has seen the significant development of environmental DNA analysis techniques, which can be used to investigate the distribution of a species by analysing external DNA (environmental DNA) that is released into the environment along with an organism’s excrement, mucus and other bodily fluids. 

The fundamentals of this technique involve collecting water from the survey site and analysing the eDNA contained in it to find out which species inhabit the area. In recent years, the technique has gained attention as a supplement for conventional monitoring methods. Standardised methods of analysis have already been established for other species, especially fishes, and diversity monitoring using eDNA is becoming commonplace. 

However, eDNA monitoring of amphibians is still at the development stage. One reason for this is that the proposed eDNA analysis method must be suitable for the target species or taxonomic group, and there are still issues with developing and implementing a comprehensive method for detecting amphibians. If such a method could be developed, this would make it possible for monitoring to be conducted even by people who do not have the specialised knowledge to identify species nor surveying experience.

Hopefully, this would be established as a unified standard for large-scale monitoring surveys, such as those on a national scale. This research group’s efforts to develop and evaluate analysis methods will hopefully lay the foundations for eDNA analysis to become a common tool for monitoring amphibians, as well as fish. 

***

Follow Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook.

***

Research article: 

Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T (2022) Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6: e76534. https://doi.org/10.3897/mbmg.6.76534

In the Atlantic Forest, the lowland tapir is at risk of extinction

Lowland tapir populations in the Atlantic Forest in South America are at risk of almost complete disappearance, scientists have estimated. The main long-term threat to their well-being is population isolation, as hunting and highways keep populations away from each other. Urgent measures need to be taken to connect isolated populations and ensure the long-term conservation of tapirs, warn the authors of a new study published in the open-access journal Neotropical Biology and Conservation.

Lowland tapir populations in the Atlantic Forest in South America are at risk of almost complete disappearance, scientists have estimated. Weighing up to 250 kg, the animal can adapt to most habitats in South America—but its populations continue to decline across its range.

Today, its survival is seriously threatened: it can be found in just 1.78% of its original distributional range in the Atlantic Forest biome, which covers parts of Brazil, Argentina and Paraguay. The main long-term threat to its well-being is population isolation, as hunting and highways keep populations away from each other.

Lowland tapir. Photo by Patricia Medici

Urgent measures need to be taken to connect isolated populations and ensure the long-term conservation of tapirs, warn the authors of a new study on the distribution and conservation status of lowland tapirsin the South American Atlantic Forest, published in the open-access journal Neotropical Biology and Conservation

The research was done by Kevin Flesher, PhD, researcher at the Biodiversity Study Center, Michelin Ecological Reserve, Bahia, and Patrícia Medici, PhD, coordinator of the Lowland Tapir Conservation Initiative, a project developed by the Institute for Ecological Research in Brazil, and chair of the Tapir Specialist Group at the Species Survival Commission in the International Union for Conservation of Nature.

 “Of the 48 tapir populations identified during the study, between 31.3% and 68.8% are demographically unviable (low number of individuals), and between 70.8% and 93.8% of the populations are genetically unviable (low gene flow). Only 3-14 populations are still viable in the long run when both criteria are considered. The evidence suggests that with the appropriate conservation actions, the lowland tapir could be broadly distributed throughout the Atlantic Forest,” says Kevin Flesher. 

Lowland tapir. Photo by Alexander Blanco

“Tapirs have low reproductive potential, including a long reproductive cycle with the birth of just one young after a gestation period of 13-14 months and intervals of up to three years between births. Our populational simulations clearly show how, in the case of small populations, even the loss of a single individual per year can result in rapid extinction of an entire local population,” adds Medici. 

Lowland tapir. Photo by Bill Konstant

Kevin Flesher dedicated 15 years to visiting 93 reserves in the Atlantic Forest, talking to people and analyzing 217 datasets, before he compiled the necessary data to design conservation actions that can ensure the survival of tapirs in the area. 

The states of São Paulo and Paraná in Brazil have the largest number of remaining populations: 14 and 10, respectively. The two largest populations are in Misiones, Argentina, and in the neighboring Iguaçu and Turvo reserves, in Paraná and Rio Grande do Sul, Brazil.

“As far as our knowledge goes, there is no evidence of movement of tapirs between these populations,” points out Medici.

The distance between population fragments, however, is not what is stopping them.

“The central problem is the multiple threats they face while crossing the habitat,” explains Flesher. Highways are one major obstacle that limits the access of tapirs to forests with adequate habitat. “For example, the heavy traffic on highway BR-101 (which cuts the Brazilian Atlantic Forest from North to South) is a death trap to wildlife. Tapirs often die when attempting to cross it,” explains Medici. 

The construction of highways and expansion of traffic in and around natural areas is a serious threat to large tapir populations that might otherwise have the chance to thrive, like those in Misiones, Argentina, and Serra do Mar, Brazil. 

“Roadkill is a significant cause of death in six of the eight reservations in which highways cross tapir populations, and the expansion of the roadway grid in the country threatens to cause population fragmentation in at least four populations,” points out Flesher. This is why finding ways to allow tapirs to cross highways safely is an urgent conservation priority.

Lowland tapir. Photo by Patricia Medici

The results of the study, however, give cause for “cautious optimism” for the future of tapirs in the area: after decades of dedicated conservation efforts, the situation is starting to improve. 

“Despite these continuing challenges for tapir conservation, most populations appear to be stable or increasing and the conservation outlook for the species is better than several decades ago, when the first efforts to protect the species began,” Kevin Flesher concludes.

Research article:

Flesher KM, Medici EP (2022) The distribution and conservation status of Tapirus terrestris in the South American Atlantic Forest. Neotropical Biology and Conservation 17(1): 1-19. https://doi.org/10.3897/neotropical.17.e71867

Scientists discover White-handed gibbons that have been evolving in the south of Malaysia

Genetic assessment of captive gibbons to identify their species and subspecies is an important step before any conservation actions. A group of wildlife researchers recently discovered a previously unknown population of white-handed gibbons (subspecies lar) from Peninsular Malaysia. Their findings are now published in the open-access journal ZooKeys. Betsy and Lola are among the captive white-handed gibbons undergoing a strict rehabilitation process before being released back to the wild.

Many captive gibbons kept in zoos and rescue centres have been seized from illegal pet trade, private collectors, and plantations where their natural habitats are getting destroyed. 

In 2013, the National Wildlife Rescue Centre (NWRC) of the Department of Wildlife and National Parks (PERHILITAN) was established in Peninsular Malaysia to help with the rehabilitation of wildlife species – including gibbons – before they are reintroduced or translocated back to the wild. Under the Primate Rehabilitation Programme initiated by PERHILITAN, captive gibbons have to go through a number of procedures and assessments, where their taxonomy and genetics might be examined, before they can go back to living in the wild.

Members of the research team at National Wildlife Forensic Laboratory of DWNP. Photo by PERHILITAN

Following the Guidelines for Reintroductions and Other Conservation Translocations provided by the IUCN Species Survival Commission, researchers Dr Jeffrine J. Rovie-Ryan from Universiti Malaysia Sarawak and Millawati Gani and colleagues from the National Wildlife Forensic Laboratory of PERHILITAN conducted a genetic assessment on 12 captive white-handed gibbons in NWRC. Determining the subspecies and origin of the animals is an important step that informs further decisions on their translocation and reintroduction.

In a research paper published in the open-access journal ZooKeys, the team describes a previously unknown southern population of the white-handed gibbon subspecies lar living in Peninsular Malaysia. In what started as a straightforward species and subspecies identification process using DNA technology, the researchers discovered unusual mutations in the DNA of the studied gibbons. This is how the researchers found themselves before a distinct population, which they concluded must have been evolving in isolation.

Lola (left) and Betsy (right), two of the White-handed gibbons of the Hylobates lar lar subspecies undergoing rehabilitation process at Pulau Ungka, NWRC. Photo by Hani Nabilia and PERHILITAN

“Given the prolonged isolation, it is likely that the southern population has undergone some local speciation, but this finding should be regarded as preliminary and requires further investigation,” explained Dr Jeffrine. Furthermore, the researchers suggest there might be a northern population inhabiting Southern Thailand.

Still going through rehabilitation, the gibbons from the study have been pre-released into a semi-wild enclosure known as Pulau Ungka (Gibbon Island), where their recovery is closely monitored by primate experts of PERHILITAN.

Research article:

Gani M, Rovie-Ryan JJ, Sitam FT, Mohd Kulaimi, NA, Zheng, CC, Atiqah AN, Abd Rahim, NM, Mohammed AA (2021) Taxonomic and genetic assessment of captive White-Handed Gibbons (Hylobates lar) in Peninsular Malaysia with implications towards conservation translocation and reintroduction programme. ZooKeys 1076: 25–41 (2021), doi: 10.3897/zookeys.1076.73262

First moth species on Alpenrose discovered

Discovery of the first moth species to mine the leaves of the highly poisonous Alpine rose

 Rust-red alpine rose, one of the most popular alpine plants. Photo by Ingrid Huemer

An Austrian-Swiss research team was able to find a previously unknown glacial relic in the Alps, the Alpine rose leaf-miner moth. It is the first known species to have its caterpillars specializing on the rust-red alpine rose, a very poisonous, widely distributed plant that most animals, including moths and butterflies, strictly avoid. The extraordinary record was just published in the peer-reviewed scientific journal Alpine Entomology.

Poisonous host plant

The rust-red alpine rose (Rhododendron ferrugineum) is among the best-known and most attractive plants due to its flowering splendor – at least for humans. It is, in fact, a highly poisonous plant, strictly avoided by grazing animals. For insects, the alpine rose is attractive at most as a nectar plant; insect larvae, on the other hand, develop on it only in exceptional cases. This also applies to Alpine butterflies and moths, which leave Alpine roses largely untouched despite their wide distribution. Therefore, the discovery of a highly specialized species in the Alps came as a complete surprise.

Chance find

Since alpine roses are unattractive to caterpillars and no insect the entire Alpine region was previously known to specialize on them, butterfly and moth experts had considered them rather uninteresting and ignored them in their research. The discovery of the alpine rose leaf-miner wasn’t the result of a targeted search: it was a pure stroke of luck.

During a cloudy spell in July this year, researchers surveying the butterflies in Ardez in the Engadine valley, Switzerland, happened to take a break exactly at an infested alpine rose bush. 

“The accidental sighting of the first caterpillar in an alpine rose leaf was an absolute adrenaline rush, it was immediately clear that this must be an extraordinary species,”

Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums

Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums, and Swiss butterfly and moth expert Jürg Schmid came back in late July and early August to look for caterpillars and pupae and find out more about this curious insect. The extended search yielded evidence of a stable population of a species that was initially a complete enigma. 

Life in the leaf

The alpine rose leaf-miner moth drills through the upper leaf skin and into the leaf interior immediately after the caterpillar hatches. The caterpillar then spends its entire life until pupation between the intact leaf skins, eating the leaf from the inside. Thanks to this behavior, the caterpillar is just as well protected from bad weather as from many predators such as birds, spiders, or some carnivore insects. The feeding trail, called a leaf mine, begins with a long corridor and ends in a large square-like mine section. The feces are deposited inside this mine. When the time comes for pupation, the caterpillar leaves the infested leaf and makes a typical web on the underside or a nearby leaf. With the help of several fine silk threads, it produces an elaborate “hammock”, in which the pupation finally takes place. In the laboratory, after about 10 days, the successful breeding to a moth succeeded, with a striking result.

Enigmatic glacial relic

Final instar larva of the alpine rose leaf-miner moth on Rhododendron ferrugineum in Ardez, Graubünden, Switzerland. Photo by Jürg Schmid

Huemer and Schmid were surprised to find out that the moths belonged to a species that was widespread in northern Europe, northern Asia and North America – the swamp porst leaf-miner butterfly Lyonetia ledi. By looking at its morphological features, such as wing color and pattern, and comparing its DNA barcodes to those of northern European specimens, they were able to confirm its identity.

Habitat of the alpine rose leaf-miner moth in Engadine/Switzerland with Rhododendron ferrugineum. Photo by Jürg Schmid

The Engadine population, however, is located more than 400 km away from the nearest other known populations, which are on the border of Austria and the Czech Republic. Furthermore, the species lives in northern Europe exclusively on swamp porst and Gagel bush – two shrubs that are typical for raised bogs and absent from the Alps. However, the researchers suggest that in earlier cold phases – some 22,000 years ago – the swamp porst and the alpine rose did share a habitat in perialpine lowland habitats north of the Alps. It is very likely that after the last cold period and the melting of the glaciers, some populations of the species shifted their host preference from the swamp porst to the alpine rose. The separation of the distribution areas of the two plants caused by subsequent warm phases inevitably led to the separation of the moth populations. 

Extinction risk

The Alpine Rose Leaf-miner Moth is so far only known from the Lower Engadine. It lives in a steep, north-exposed, spruce-larch-pine forest at about 1,800 m above sea level. The high snow coverage in winter and the largely shady conditions in summer mean that alpine roses don’t get to bloom there. The scientists suspect that the moth species can still be discovered in places with similar conditions in the northern Alps, such as in neighboring Tyrol and Vorarlberg. Since the moth is likely nocturnal and flies late in the year, probably hibernating in the adult stage, the search for the caterpillars and pupae is more promising. However, the special microclimate of the Swiss location does not suggest that this species, which has so far been overlooked despite 250 years of research, is widespread. On the contrary, there are legitimate concerns that it could be one of the first victims of climate change.

Research article:

Huemer P, Schmid J (2021) Relict populations of Lyonetia ledi Wocke, 1859 (Lepidoptera, Lyonetiidae) from the Alps indicate postglacial host-plant shift to the famous Alpenrose (Rhododendron ferrugineum L.). Alpine Entomology 5: 101-106. https://doi.org/10.3897/alpento.5.76930

Pakistan’s amphibians need more research efforts and better protection

In Pakistan, amphibians have long been neglected in wildlife conservation, management decisions and research agendas. To counter this, scientists have now published the first comprehensive study on all known amphibian species in the country in the open-access scholarly journal ZooKeys. The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.

Amphibians are bioindicators of an ecosystem’s health and may also serve as biological control of crop and forest pests. The First Herpetological Congress, organized in 1989, presented alarming findings about the decline in amphibian populations. Currently, amphibians include the highest percentage of threatened species (>40%), as well as the highest number of data deficient species (>1500 species). The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.

Asian Common Toad. Photo by Herpetology Lab, Arid Agriculture University Rawalpindi

Researchers just published the first comprehensive study on all known amphibian species of Pakistan in the open-access journal ZooKeys. In it, they report 21 species from the country, providing their identification key and photographic guide. However, as many of Pakistan’s potential amphibian habitats are difficult to access and study, especially the high-altitude northern and arid western mountains, it is highly likely that a lot of species are yet to be discovered.

Burrowing Frog (in amplexus). Photo by Herpetology Lab, Arid Agriculture University Rawalpindi

In particular, the authors point out that habitats facing destruction, urbanization, pollution, unsustainable utilization and other human-caused threats need to be put on high priority, so that suitable conservation strategies can be devised. This way, amphibian populations would be better controlled with less financial, administrative, and human resources.

So far, amphibians have been excluded from all current legislative and policy decisions in the country. Likewise, they are not protected under any law. Hence, the legislation pertaining to rare and endemic species needs to be updated. Schedule III, which includes protected species, provincial and federal wildlife laws, and CITES appendices are in particular need of revision.

Common Skittering Frog. Photo by Herpetology Lab, Arid Agriculture University Rawalpindi

Currently, wildlife conservation projects in Pakistan mainly focus on carnivores, ungulates and birds. Therefore, the authors of the study propose adopting an inclusive wildlife conservation approach in Pakistan. This approach would advocate the integration of poorly documented taxa, such as amphibians, in wildlife conservation and management projects. It is by highlighting the significance of their existence and the intrinsic values of all wildlife species that local ecosystems can remain healthy in the long run.

“There is also a dire need to change social attitudes towards the appreciation and significance of amphibians in our society. This could be achieved by initiating community awareness, outreach and school classrooms, and through citizen science programs,” add the researchers.

Research article:
Rais M, Ahmed W, Sajjad A, Akram A, Saeed M, Hamid HN, Abid A (2021) Amphibian fauna of Pakistan with notes on future prospects of research and conservation. ZooKeys 1062: 157-175. https://doi.org/10.3897/zookeys.1062.66913

Man’s best friend could be a jaguar’s next meal: A case study from the Mexican Caribbean

Events of jaguars predating on and attacking dogs are poorly documented throughout the Americas. Researchers from Mexico and Germany report in detail jaguar attacks on 20 dogs at a tourist site in the Mexican Caribbean. In addition, they describe an initiative proposed by locals as well as national and international NGOs to prevent human-jaguar conflicts due to pet predation. The study was published in the open-access journal Neotropical Biology and Conservation.

Mahahual is a small fishing village in the Mexican Caribbean that receives a large number of tourists every year. Over the past 15 years, its population has increased rapidly, and, as a result, people have started to settle in areas away from the main center of the village, sometimes encroaching on jaguar habitats. As most of those people keep guard dogs on their properties, jaguars have taken advantage of this situation by wandering near people’s houses at night, and sometimes those dogs end up as a night-time snack for the big cats.

A jaguar is photographed wandering around houses looking for dogs. Photo by Víctor Rosales

Unlike jaguar attacks on livestock, attacks and predation on other domestic species such as dogs have only been documented anecdotally (through interviews or from remains found in faeces). Such attacks can indeed lead to pet predation conflict, which can ultimately have a negative impact on the jaguar populations. Attachment to pets may lead humans to start killing the big cats, which is of particular concern for an endangered species like the jaguar. Furthermore, it is possible that a wide range of pathogens may be transmitted from dogs to jaguars, further threatening the health of jaguar populations in Mahahual.

A dog injured as a result of a jaguar attack in Mahahual, Quintana Roo, Mexico. Photo by Víctor Rosales

This is why a multidisciplinary team made up of veterinarians, conservationists, locals, NGOs (Aak Mahahual A.C. and International Fund for Animal Welfare (IFAW)) and researchers (El Colegio de la Frontera Sur and Universidad Tecnológica de Calakmul), led by Dr Jonathan Pérez Flores, began investigating the occurrence of jaguar predation and attacks on dogs at the Mexican Caribbean tourist site from almost 10 years ago. Their research was just published in the open-access journal Neotropical Biology and Conservation.

According to their report, the behaviour of Mahahual’s jaguars resembles that of Indian leopards, which have already turned dogs into an important component of their diet, preferring them over livestock. Jaguars and leopards usually attack from a blindside, biting the dogs on the neck or head to avoid counterattacks. Similarly to leopards, jaguars attack at night and kill more dogs during the dry season. This is likely due to the fact that it’s easier for jaguars to hunt dogs than their natural prey: armadillo, lowland paca, brocket deer, white-tailed deer. Furthermore, the latter are less available during the dry season.

One of the night houses built by the people of Mahahual, Aak Mahahual A.C. and International Fund for Animal Welfare (IFAW). Photo by Francisco Rubén Castañeda

In 2017, the people of Mahahual partnered with Aak Mahahual A.C. and IFAW to build protective night houses made of wood and wire mesh meant to keep dogs safe at night. So far, they’ve built 38 such houses to prevent jaguar attacks. Sterilisation and vaccination campaigns have also been intensified since late 2020 to prevent the transmission of diseases between the two species.

Thanks to this study, we now have a better understanding of the adaptability and persistence of jaguars in human-dominated landscapes and the impact of dog predation by jaguars. However, the authors call for more research in the area to help paint the full picture.

Research article:
Carral-García M, Buenrostro I, Weissenberger H, Rosales V, Pérez-Flores J (2021) Dog predation by jaguars in a tourist town on the Mexican Caribbean. Neotropical Biology and Conservation 16(4): 461-474. https://doi.org/10.3897/neotropical.16.e68973

Are zoos inadvertently complicit in wildlife trade? The case of a rare Borneo lizard

Should zoos display legally protected species that have been smuggled out of their range countries? A new study suggests that a pause and rethink may be needed, as it reports that accredited zoos have acquired a rare and legally protected reptile, the earless monitor lizard endemic to Borneo, without any evidence that the animals were legally exported.

The earless monitor lizard occurs only on the island of Borneo and has been described as a “miniature Godzilla” and “the Holy Grail of Herpetology.” Discovered by western scientists almost 150 years ago, for most of this period the species was known largely from pickled specimens in natural history collections, and wasn’t recorded from the wild for decades. In the 1970s, the three countries that make up Borneo – Indonesia, Malaysia and Brunei – added it to their protected species lists. This means that the species can neither be legally traded within these countries, nor legally exported out of them.

Earless monitor lizard. Photo by Chien C. Lee, Wild Borneo.

Despite legal protection and lack of export permissions, reptile enthusiasts and unscrupulous traders have long been smuggling small numbers of earless monitor lizards out of Indonesia and Malaysia, eventually bringing them to Europe. This greatly accelerated in 2012, when the species’ rediscovery was announced in a scientific journal. In 2016, all 183 countries that are signatory to the Convention on international trade in endangered species agreed to regulate global trade in earless monitor lizards in order to limit the negative effects of smuggling on wild populations. Agreed export numbers were set at zero.

Enforcing the laws has proven to be challenging, however, and to date only two smuggling attempts have been thwarted. In both cases, German smugglers were apprehended at Indonesian airports while attempting to move respectively eight and seventeen earless monitor lizards out of the country.

The first zoo that proudly announced it had obtained earless monitor lizards was Japan’s iZoo in 2013. This zoo is not accredited, and the ways in which the animals were obtained remain questionable. In Europe, the first zoos to openly display earless monitor lizards were located in Hungary, Austria and the Czech Republic. The animals were obtained from what zoos referred to as “private individuals” or “dedicated hobby breeders”, and, in one instance, from iZoo. Just like in Japan, how these animals ended up in Europe is questionable, but perhaps not illegal – and it is evident that no export permits were ever issued.

In recent years, more and more zoos in Europe, and since the beginning of this year also in the United States, have started displaying earless monitor lizards. Some cases were part of zoo exchanges, others were obtained from private individuals, and a handful were placed in zoos by authorities after they were seized, but it is clear that many were at one point illegally exported out of Indonesia, Malaysia or Brunei, or were illegally imported into non-range countries.

The acquisition of these protected lizards by zoos is neither in line with the intentions of national laws of their countries of origin, nor with international wildlife trade regulations. Moreover, it is diametrically opposed to the commitments the international zoo community has made to address illegal wildlife trade.

“To me, the current situation concerning the purchasing and proudly displaying of earless monitor lizards by accredited zoos can be compared with a road safety organisation posting online videos of its CEO doing wheelies on a motorbike and then adding that it was done on a private road where neither wearing a helmet nor having a driver’s licence is required,” said Vincent Nijman of the Oxford Wildlife Trade Research Group, author of the study that was published in the open-access journal Nature Conservation. “Both may be legal in a technical sense, but the optics are not good.”

“Modern, scientifically managed zoos are increasingly organising themselves with set ethical values and binding standards which go beyond national legislation on conservation and sustainability, but, unfortunately, this still only counts for a small proportion of zoos worldwide,” said Dr Chris R. Shepherd, Executive Director of Monitor Research Conservation Society. “Zoos that continue to obtain animals that have been illegally acquired, directly or indirectly, are often fuelling the illegal wildlife trade, supporting organised crime networks and possibly contributing to the decline in some species.”

Seven years ago, the price for a single earless monitor lizard was in the order of EUR 8,000 to 10,000 , so any zoo or hobbyist wanting to have one or more pairs had to make a serious financial commitment. These high prices put a restriction on the number of people that wanted to acquire them and could afford them. It probably also gave potential buyers a tacit reminder that the trade was illicit. In recent years, however, prices have come down, to less than EUR 1,000. Now that earless monitor lizards are more affordable, and with accredited zoos giving a sense of legitimacy, Nijman is concerned that it might become more and more acceptable to keep these rare animals as pets.

“When I grew up in the 1970s, it was still perfectly acceptable for what we now see as accredited zoos to regularly buy rare and globally threatened birds, mammals and reptiles from commercial animal traders. Few questions were asked about the legitimacy of this animal trade. This has dramatically changed for the better, and now many of the animals we see in zoos today have been bred in captivity, either in the zoo itself, or in partner zoos”, Nijman said. He added that in many ways zoos are a force for good in the global challenge to preserve species and conserve habitats. “It is imperative that these efforts are genuinely adopted by all in the zoo community, and, when there is doubt about the legitimacy of animals in trade, that a cautionary approach is adopted.”

Original source:

Nijman V (2021) Zoos consenting to the illegal wildlife trade – the earless monitor lizard as a case study. Nature Conservation 44: 69-79. https://doi.org/10.3897/natureconservation.44.65124

When conservation work pays off: After 20 years, the Saker Falcon breeds again in Bulgaria

The Saker Falcon (Falco cherrug) is a bird of prey living in plains and forest-steppes in the West and semi-desert montane plateaus and cliffs in the East. The majority of its Central and Eastern European population is migratory and spends winters in the Mediterranean, the Near East and East Africa. With its global population estimated at 6,100-14,900 breeding pairs, the species is considered endangered according to the IUCN Red List.

Saker falcon, Bulgaria

In Bulgaria, the Saker Falcon, considered extinct as a breeding species since the early 2000s, was recovered in 2018 with the discovery of the first active nest from its new history in Bulgaria. The nest is built by two birds that were reintroduced back in 2015 as part of the first ever Saker Falcon reintroduction programme. The results of the 5-year programme are described in detail in the open-access, peer-reviewed Biodiversity Data Journal.

Saker falcon, Bulgaria

Many factors contributed to the decline of the Saker Falcon in Bulgaria and globally, and most of them are human-caused. Populations lost big parts of their habitat due to changes in land use – the transition from grazing to arable crops led to the diminishing of key food sources. Other reasons include the use of poisonous baits and the accumulation of pesticides in the food chain, illegal trade of nest-poached chicks and eggs, power line electrocution, and lack of suitable nesting places.

Even after European legislation for the protection of wildlife was implemented, and regulations were issued on the use of pesticides in Bulgaria, the Saker Falcon population did not stabilise. Its endangered status further prompted joint conservation efforts between NGOs and national authorities.

As a result, a re-introduction programme for the Saker Falcon in Bulgaria was initiated in 2015, aiming to release a number of birds over a certain period of time using adaptation aviaries, or hacks. The Green Balkans Wildlife Rehabilitation and Breeding Centre (WRBC) in Stara Zagora facilitated the captive breeding of a group of Saker Falcons imported from Austria, Hungary, Germany, Slovakia and Poland by constructing ten breeding aviaries and two stock cages for juvenile falcons and equipping them with internal surveillance cameras.

Saker falcon fledges, Bulgaria

Between 2015 and 2020, a total of 80 Saker Falcons – 27 females and 53 males, were released via the hacking method from four aviaries near the town of Stara Zagora. Out of them, 64 had been bred and hatched at the WRBC.

Observation records from 2018 confirmed that at least one pair of the falcons released in 2015 was currently breeding in the wild in Bulgaria. This observation proves that with the help of hacking, Sakers can survive in the wild until maturity, return to the region of their release and breed successfully. In 2020, the female bird in the breeding pair was changed with a Saker Falcon released in 2016, and the new pair bred successfully.

In 2020, the programme was restarted for another 5 years, with the aim to release 100 Saker Falcons and have six pairs breeding in the wild. This will help restore the Saker Falcon population in the southern Balkans and facilitate gene flow amongst fragmented populations from Central Europe to Kazakhstan.

Helping this iconic species successfully establish a self-sustaining population in Bulgaria has profound implications for conservation in the country – not only in terms of public awareness of species conservation, but also as an indicator of wider environmental issues.

Original source:

Lazarova I, Petrov R, Andonova Y, Klisurov I, Dixon A (2021) Re-introduction of the Saker Falcon (Falco cherrug) in Bulgaria – preliminary results from the ongoing establishment phase by 2020. Biodiversity Data Journal 9: e63729. https://doi.org/10.3897/BDJ.9.e63729