More assassins on the radar: As many as 24 new species of assassin bugs described

As many as 24 assassin bugs new to science were discovered and described by Dr. Guanyang Zhang and his colleagues. In their article, published in the open access Biodiversity Data Journal, they describe the new insects along with treating another 47 assassin bugs in the same genus. To do this, the scientists examined more than 10,000 specimens, coming from both museum collections and newly undertaken field trips.

Assassin bugs are insects that prey upon other small creatures, an intriguing behavior that gives the common name of their group. There are some 7000 described species of assassin bugs, but new species are still being discovered and described every year.

The new species described by scientists Drs Guanyang Zhang, University of California, Riverside, and Arizona State University, Elwood R. Hart, Iowa State University, and Christiane Weirauch, University of California, Riverside, belong to the assassin bug genus Zelus.

Linnaeus, the Swedish scientist, who established the universally used Linnean classification system, described the first species (Zelus longipes) of Zelus in 1767. Back then, he placed it in the genus Cimex, from where it was subsequently moved to Zelus. All of Zhang & Hart’s new species are from the Americas. Mexico, Panama, Peru, Colombia and Brazil are some of the top countries harboring new species.

To conduct the research, Zhang examined more than 10,000 specimens and nearly all of them have been databased. These specimen records are now freely and permanently available to everybody. Zhang’s work demonstrates the value of natural history collections. The specimens used in his work come from 26 museums in nine countries. The discovery of the new species would not have been possible without these museums actively collecting and maintaining their insect collections.

It took more than a century for some of the new species to be formally recognized and described. The first specimens of the species Zelus panamensis and Zelus xouthos, for example, had been collected in 1911 and 1915 from Panama and Guatemala. However, since then they had been waiting quietly in the collection of the Smithsonian National Museum of Natural History, USA. Now, over 100 years later, they are finally discovered and given scientific names.

Meanwhile, more recently collected specimens also turned out to be new species. Specimens of Zelus lewisi and Zelus rosulentus were collected in 1995 and 1996 from Costa Rica and Ecuador, about two decades ago, a timeframe considered relatively short for taxonomic research. These interesting patterns of time lapse between specimen collecting and scientific description suggest that it is equally important to examine both long deposited in museums specimens and those newly collected from the field.

The kind of research performed by Zhang and his colleagues is called revisionary taxonomy. In revisionary taxonomy a researcher examines a large number of specimens of a group of organisms of his or her interest. This can be either a monophyletic lineage or organisms from a particular region. The scientist’s goal is to discover and describe new species, but also examine and revise previously published species.

Besides describing new species, the present taxonomic monograph treats another 47 previously described species. Nearly all species now have images of both males and females and illustrations of male genitalia. Some of these insects are strikingly brightly colored and some mimic wasps.

###

 

Original source:

Zhang G, Hart E, Weirauch C (2016) A taxonomic monograph of the assassin bug genusZelusFabricius (Hemiptera: Reduviidae): 71 species based on 10,000 specimens. Biodiversity Data Journal 4: e8150.doi: 10.3897/BDJ.4.e8150

New Chinese leaf-roller weevil does not know how to roll leaves

A long-term project on insect-seed interactions, currently being carried out by researchers of the Institute of Zoology (Chinese Academy of Sciences) in a subtropical forest near Dujiangyan City, Sichuan, China, revealed the presence of larvae of an unknown weevil species eating the seeds in the pods of a shrubby legume.

Scientists from the Institute of Zoology, China, Xiangyang Lv, Zhishu Xiao, Zhiliang Wang, Runzhi Zhang, and Miguel A. Alonso-Zarazaga, also affiliated with the Museo Nacional de Ciencias Naturales (CSIC), Spain, published the description of the new genus and species, named Evemphyron sinense, and added data on its biology in the open access journal ZooKeys.

Because of its peculiar features, it was difficult to locate the closest relatives of this new species. However, a few characteristic traits of the body and genitalia, strongly pointed to its placement within the tribe Deporaini.

The closest, although seemingly rather far-related to the new species, beetles are considered to be a genus with scattered distribution, stretching from the Russian Far East to the Indian Himalaya.

However, they are smaller weevils whose females cut shoots to lay their eggs. On the other hand, the males in both genera share a peculiar patch of hairs, probably related to pheromone dispersal. Likewise, each species is associated with legumes.

The curious feature of this weevil group (Deporaini) is that the vast majority of its species are leaf-rollers. The females cut a hardwood leaf in a peculiar and mathematical way and roll it, laying one egg inside each one. This behaviour, which is known in other far-related weevils of the same family, seems to have appeared independently in different evolutionary branches. In the case of Deporaini, this behavioural trait evolved after the new genus became a distinct one.Figure 5 large

As a result, the new genus is considered to be one of the two most primitive within the tribe. In fact, it might be the most primitive one, taking into account a number of morphological traits as well.

It could be that the new beetle never knew how to roll a leaf to make nests and shelter its offspring.

###

Original source:

Lv X, Alonso-Zarazaga MA, Xiao Z, Wang Z, Zhang R (2016) Evemphyron sinense, a new genus and species infesting legume seedpods in China (Coleoptera, Attelabidae, Rhynchitinae).ZooKeys 600: 89-101. doi: 10.3897/zookeys.600.6709

New blind and rare planthopper species and genus dwells exclusively in a Brazilian cave

This cave planthopper species new to science is only the second dwelling exclusively in the subterranean depths of Brazil from its family. Surviving without seeing the light of the day at any point of its life, this species has neither the eyes, nor the vivid colouration, nor the functional wings typical for its relatives.

Yet, these are only part of the reasons why the new planthopper needed to have a separate new genus established for itself. The new species is described by a research team from the Center of Studies on Subterranean Biology, Brazil, in the open access journal Deutsche Entomologische Zeitschrift.

The planthopper is called Iuiuia caeca, with the genus name (Iuiuia) referring to the locality, where it was found, and its species name (caeca) translating to ‘blind’ in Latin. It is predominantly yellowish insect that measures only 3 mm, which is small even by planthopper standards.

At first glance, the new cave planthopper appears as if it has been hiding from human eyes all along. So far, it has been located in a single cave in the Iuiú municipality, Bahia state, Brazil, where the team of Prof. Rodrigo Ferreira, Federal University of Lavras (UFLA), Brazil, spotted the insect. He then contacted cave planthopper specialist at the Museum für Naturkunde, Berlin, Prof. Hannelore Hoch, and collaboratively they decided to document and describe the new species. The limestone cave is yet to be fully explored since it floods during the rainy periods.Image 2

In the meantime, the cave’s only entrance is a small opening, which, on the other hand, clearly imposes a huge stability to the atmosphere. Moreover, although the researchers visited the cave on five occasions, they managed to find the species on two of them only. The planthopper was nowhere to be find in the neighbouring subterranean habitats either, which strongly suggests that it is a rare short-range endemic.

Being such a rarity, the blind new planthopper ought to be on the conservation radar. Although the scientists did not notice any signs of the cave having ever been visited by humans before; and its immediate surroundings have not been impacted by mining activities, yet, such threat is not to be excluded. In fact, the area is being currently evaluated for its potential for limestone extraction.

“It is to be hoped that legal measures for the conservation of the subterranean fauna of Brazil – which constitutes one of the country’s unique biological resources – will be developed and consequently reinforced,” conclude the authors.

###

Original source:

Hoch H, Ferreira RL (2016) Iuiuia caeca gen. n., sp. n., a new troglobitic planthopper in the family Kinnaridae (Hemiptera, Fulgoromorpha) from Brazil. Deutsche Entomologische Zeitschrift63(2): 171-181. doi: 10.3897/dez.63.8432

End of an era: New sixth volume Research on Chrysomelidae the last with its original editors

The new and sixth volume of Research on Chrysomelidae consists of five research articles devoted to the latest findings about the amazing family of over 37,000 leaf beetle species from more than 2,500 genera. Among the studies, conducted by authors from all around the world, there is a new species of potentially dangerous legume-feeding pest, as well as new information regarding the life cycle,ecological interactions, species richness factors and taxonomy of some leaf beetles.

The latest volume devoted to one of the most intriguing beetle families also marks a turning point for the entomologists sharing special fondness for the leaf beetles. While the “spiritus rector” of the Chrysomelidae research community, Prof Pierre Jolivet resigned from his position last year, now Dr Jorge Santiago-Blay is also stepping down from the editorial board.

The third of the original trio, Prof Michael Schmitt, Ernst-Moritz-Arndt-Universität, takes the opportunity to look back to the beginning of the community and pay tribute to his long-year colleagues in his Editorial. He also confirms that the series, by now traditionally published in the open access journal ZooKeys, is far from over.

“I thank Jorge Santiago-Blay from the bottom of my heart for his tireless engagement in fostering leaf beetle research and his friendship, and wish him All the Best for whatever he may entertain in the future,” read his words.

In his short publication accompanying the five-piece issue, Prof Michael Schmitt recalls the very beginning of his team’s existence, started in 2001. He does not omit to note the numerous obstacles surrounding the first issues. At a point, having completed the enormous book “The green book – New Developments in the Biology of the Chrysomelidae”, comprising 62 chapters by 111 authors, as well as the first two volumes of Research on Chrysomelidae, they were made to drop the series due to unsatisfying selling numbers.

However, everything changed after the conversation Prof Pierre Jolivet and Prof Lyubomir Penev, Pensoft Publishers, had at the 9th European Congress of Entomology, held in Hungary in 2010. There they agreed to publish the next Research on Chrysomelidae volume as a special issue in ZooKeys, one of Pensoft’s journals.

Shortly after, the collaboration turned out so successful that it is now resulting in a fourth consecutive special issue. In the meantime, last December, the 30th anniversary of Symposia on Chysomelidae was celebrated in another leaf beetle-themed ZooKeys issue. Moreover, the next issue is already planned. It will cover the proceedings of the 9th International Symposium on Chrysomelidae and will be edited by Prof Michael Schmitt and Dr Caroline Chaboo, University of Nebraska State Museum, USA.

“The present volume is the fourth, but certainly not the last, published by Pensoft. Although the pullout of Pierre Jolivet and Jorge Santiago-Blay marks a crucial cut in the history of Research on Chrysomelidae, I understand the reasons of their decision to step down,” concludes Prof Michael Schmitt. “I hope and wish that the series will prosper and remain accepted as a forum of leaf beetle research by the community of Chrysomelidae enthusiasts all over the world.”

###

Research on Chrysomelidae 6 Special Issue is available to read and order from here.

Original source:

Schmitt M (2016) Editorial. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 1-2. doi: 10.3897/zookeys.597.8618

One of 8 new endemic polyester bees from Chile bears the name of a draconic Pokemon

Among the eight new bee species that Spencer K. Monckton has discovered as part of his Biology Master’s degree at York University, there is one named after a popular draconic creature from the Japanese franchise Pokémon. Called the stem-nesting Charizard, the new insect belongs to a subgenus, whose 17 species are apparently endemic to Chile, yet occupy a huge variety of habitats.

The young scientist, who is currently a PhD student at the University of Guelph, studying sawfly systematics and phylogeography, has his work published in the open access journal ZooKeys.

Known as polyester bees, the family to which the new species belong is characterized by the curious secretions these bees produce. Once applied to the walls of their nest cells, the secretion dries into a smooth, cellophane-like lining.

The new bee species are endemic to Chile, yet they occupy a huge variety of habitats ranging from the hyper-arid Atacama Desert in the north, to moist forests of monkey puzzle trees in the south, spanning elevations from the Pacific coast to more than 3200 metres above sea level. All of them are also solitary and nest in hollow plant stems.

Although the new bee species might lack the fiery breath of the dragon-like Pokémon, much like its namesake, it is normally found around mountains. Also, like the fictional species, the new bee has a distinctively long, snout-like face and broad hind legs, with antennae in place of horns.male charizard 2 head

However, the stem-nesting Charizard bee, as well as the other new species, are tiny creatures that measure between 4 and 7 mm in length. Unlike the predominantly orange colouration of the Pokémon, both males and females are mostly dark brown to black, patterned with variable yellow markings.

Yet, sometimes these yellow markings can turn orange when specimens are preserved, as was the case for the first specimen that Spencer Monckton observed of this species, which, he says, “cemented the comparison”.

In his research paper Spencer Monckton not only describes eight new endemic polyester bees, but he also provides thoroughly illustrated keys for identification of both the males and females of each of the species.

###

Original source:

Monckton SK (2016) A revision of Chilicola (Heteroediscelis), a subgenus of xeromelissine bees (Hymenoptera, Colletidae) endemic to Chile: taxonomy, phylogeny, and biogeography, with descriptions of eight new species. ZooKeys 591: 1-144. doi: 10.3897/zookeys.591.7731

The first long-horned beetle giving birth to live young discovered in Borneo

A remarkably high diversity of the wingless long-horned beetles in the mountains of northern Borneo is reported by three Czech researchers from the Palacký University, Olomouc, Czech Republic. Apart from the genera and species new to science, the entomologists report the first case of reproduction by live birth in this rarely collected group of beetles. The study was published in the open access journal ZooKeys.

Generally, insects are oviparous, which means that their females lay eggs and the embryonic development occurs outside the female’s body. On the other hand, ovoviviparous species retain their eggs in their genital tracts until the larvae are ready to hatch. Such mode of reproduction is a relatively rare phenomenon in insects and even rarer within beetles, where it has been reported for a few unrelated families only.

The long-horned beetles are a family, called Cerambycidae, comprising about 35,000 known species and forming one of the largest beetle groups.

“We studied the diversity of the rarely collected wingless long-horned beetles from Borneo, which is one of the major biodiversity hotspots in the world,” says main author and PhD student Radim Gabriš. “The mountains of northern Borneo, in particular, host a large number of endemic organisms.”

The scientists focused on the group which nobody had studied in detail for more than 60 years. They found surprisingly high morphological diversity in this lineage, which resulted in the descriptions of three genera and four species new to science.

“During a dissection of female genitalia in specimens belonging to the one of the newly described genera, named Borneostyrax, we found out that two females contained large larvae inside their bodies,” recalls Radim Gabriš. “This phenomenon have been known in a few lineages of the related leaf beetles, but this is the first case for the long-horned beetles.”

However, according to the authors, the modes of reproduction remain unknown for many beetle lineages besides Cerambycidae, so the ovoviviparity might be, in fact, much more common. Further detailed studies are needed for better understanding of the reproductive strategy in this group.

###

Original source:

Gabriš R, Kundrata R, Trnka F (2016) Review of Dolichostyrax Aurivillius (Cerambycidae,Lamiinae) in Borneo, with descriptions of three new genera and the first case of (ovo)viviparity in the long-horned beetles. ZooKeys 587: 49-75. doi: 10.3897/zookeys.587.7961

Hollywood star Brad Pitt shares a name with a new wasp species from South Africa

Not only did an international research team discover two new endoparasitic wasp species in South Africa and India, and significantly expanded their genera’s distributional range, but they also gave a celebrity name to a special one of them.

While thinking of a name for the new wasp, Dr Buntika A. Butcher, Chulalongkorn University, Thailand, recalled her long hours of studying in her laboratory right under the poster of her favourite film actor. This is how a parasitic wasp from South Africa was named after Hollywood star Brad Pitt. The researchers have published their findings in the open access journal ZooKeys.bradpitti wasp img2

The new wasp species, called Conobregma bradpitti, belongs to a large worldwide group of wasps parasitising in moth or butterfly caterpillars. These wasps lay their eggs into a host, which once parasitised starts hardening. Thus, the wasp cocoon can safely develop and later emerge from the ‘mummified’ larva. Despite their macabre behaviour, many of these wasp species are considered valuable in agriculture because of their potential as biological control.

Brad Pitt’s flying namesake is a tiny creature measuring less than 2 mm. Its body is deep brown, nearly black in colour, while its head, antennae and legs are brown-yellow. The wings stand out with their much brighter shades.

Interestingly, the wasp with celebrity name unites two, until now, doubtful genera. Being very similar, they had already been noted to have only four diagnostic features that set them apart. However, C. bradpitti shared two of those with each. Thus, the species prompted the solution of the taxonomic problem and, as a result, the two were synonymised.

In their paper, the authors from Chulalongkorn University, Thailand and the University of Calicut, India, also describe another new species of parasitic image 3wasp. It is the first from its subtribe spotted in the whole of India, while its closest ‘relative’ lives in Nepal.

###

Original source:

Butcher BA, Quicke DLJ, Shreevihar S, Ranjith AP (2016) Major range extensions for two genera of the parasitoid subtribe Facitorina, with a new generic synonymy (Braconidae, Rogadinae, Yeliconini). ZooKeys 584: 109-120. doi: 10.3897/zookeys.584.7815

Flightless survivors: Incredible invertebrate diversity in Los Angeles metropolitan area

Urban wildlife is surprisingly understudied. We tend to know more about animals in exotic places than about those that live in our cities.

This is why researchers Emile Fiesler, president of Bioveyda Biological Inventories, Surveys, and Biodiversity Assessments, USA, and Tracy Drake, manager of the Madrona Marsh Preserve, looked into the fauna of the Madrona Marsh Preserve, California, a small nature preserve in one of the world’s largest metropolitan areas.

Consequently, they published the astonishing number of 689 species of invertebrates, which have managed to survive decades of farming and oil exploration, followed by development pressures, in the open access Biodiversity Data Journal. The study was minimally invasive as the live animals have been recorded with macro-photography.

Even though it is the insects that first developed the ability to fly, long before the dinosaurs became birds, the latter have always received the most of our attention. This major evolutionary breakthrough, which has occurred more than once in the past, is also a reason why insects are currently the most diverse animals on earth in terms of number of species.

“Insects and other invertebrates have filled all ecological niches and all corners of our planet,” explain the authors. “No surprise that these small creatures conquered our cities and invaded our homes as well.”

Most of the urban dwellers, however, have been introduced – accidentally or deliberately – by humans.

“The remainder – native ‘wild’ species – are able to survive in the city mainly due to their adaptivity,” they point out. “It is therefore surprising to find a number of flightless species in a small area surrounded by urbanization.”

The Madrona Marsh Preserve is located in Torrance, which is part of the Los Angeles metropolitan area. The greater Los Angeles Metropolitan area is one of the world’s largest, with a human population of more than 17 million.

Figure 2 = Bradynobaenid Wasp Fiesler-2016The Madrona Marsh Preserve, boasting seasonal wetlands, is well known as a birdwatchers’ paradise. Besides birds, its other vertebrates (mammals, reptiles, amphibians, and fishes), as well as its flowering plants, are relatively well known. The invertebrate fauna of the Preserve, on the other hand, aside from butterflies and dragonflies, was virtually unknown.

Interestingly, night surveys revealed the presence of a ‘second shift’ diversity, or creatures seemingly complementary to those active during the day.

Among the long-time survivors are wingless camel crickets as well as velvet ants, which are wasps whose flightless females look like furry ants. Another curiosity that intrigued the researchers is an obscure flightless female bradynobaenid wasp.

The researchers were especially surprised by their encounter with a large Solifugid [image 3] – also known as Camel Spider or Wind Scorpion. Solifugids are little-known arachnids that are neither spiders, nor scorpions, and can grow up to 15 cm (6 in). Their order’s name Solifugae translates from Latin as “those that flee from the sun”.Figure 3 = Solifugid Fiesler-2016

All in all, the biodiversity study resulted in 689 species without a backbone, belonging to 13 classes, 39 orders, and 222 families, found on this island surrounded by urbanization.

“Not unlike the moas and dodos, these ‘island’ inhabitants stayed grounded through the ages,” acknowledge the researchers.

###

Original source:

Fiesler E, Drake T (2016) Macro-invertebrate Biodiversity of a Coastal Prairie with Vernal Pool Habitat. Biodiversity Data Journal 4: e6732. doi: 10.3897/BDJ.4.e6732

 

About the authors:

Emile Fiesler is president of Bioveyda Biodiversity Inventories, Surveys, and Studies, and Tracy Drake is manager of the Madrona Marsh Preserve.

Tracing the ancestry of dung beetles

One of the largest and most important groups of dung beetles in the world evolved from a single common ancestor and relationships among the various lineages are now known, according to new research by an entomologist from Western Kentucky University.

The study by Dr T. Keith Philips, recently published in the open access journal ZooKeys, provides important insights into the evolution and diversity of these dung beetles, which make up about half of the world’s dung beetle fauna.

The two tribes studied, the onthophagines and oniticellines, evolved from a single common ancestor and are found worldwide, except for Antarctica. These dung beetles make up the vast majority of species and dung beetle biomass in many ecosystems, feeding on mammal dung.

Dung beetles are well known to many people because many species are colorful and active in the daytime. Additionally, many taxa have unusual behaviors, such as making and rolling balls of dung away from a dung pile. Often thought of as nature’s garbage collectors, the important ecosystem service offered by dung beetle helps recycle nutrients, reduces parasites, and can even help seeds germinate.

While the two tribes studied do not have species that create balls, they instead have evolved many other diverse behaviors. This includes species that do not feed on dung but specialize on fungi, carrion, and dead millipedes. Many species that evolved from the same common ancestor even live in close association with termites and ants, where they might be feeding on nest debris.

“This is one of the most important groups of dung beetles that finally has a hypothesis on how they evolved and diversified on earth,” Philips notes. “The evolutionary scenario can now be tested and refined in the future with more data.” Although relatively well known, this group still may have as many as 1,000 undiscovered species left for scientists to document.

###

Original source:

Philips TK (2016) Phylogeny of the Oniticellini and Onthophagini dung beetles (Scarabaeidae, Scarabaeinae) from morphological evidence. ZooKeys 579: 9-57. doi: 10.3897/zookeys.579.6183.

The city of angels and flies: 12 unknown scuttle fly species have been flying around L.A.

Although the second-largest and rather concrete metropolis in the United States might not be anywhere near one’s immediate association for a biodiversity hotspot, the fly fauna of Los Angeles is quite impressive. As part of BioSCAN, a project devoted to exploring the insect diversity in and around the city, a team of three entomologists report on their latest discovery – twelve new scuttle fly species. Their study is published in the open access Biodiversity Data Journal.

Launched in 2013, the Natural History Museum of Los Angeles County‘s project BioSCAN seems to never cease to amaze with large numbers of newly discovered species. The first phase of the study finished with 30 species of flies new to science from sites in 27 backyards, 1 community garden, the Los Angeles Ecovillage, and the Nature Gardens at the Museum. In recognition to the residents, who had literally let the scientists in their homes, each of those flies was named after the relevant site’s host.

When they decided to revisit the specimens they had collected during the first year of the project as well as older museum collections, the authors of the present paper were in fact quite certain they were about to find a new batch of unknown flies.

Img2 M. stoakesi

Having already described so many new scuttle fly species, the latest twelve had initially gone undercover, all being rare and often represented by only one specimen among the total of 43,651 collected individuals.

“The remarkable diversity of biologies of these flies makes them a varied and essential group to document in any ecosystem,” the entomologists explain.

The extensive BioSCAN project is still ongoing thanks to its passionate staff, international collaborators and advisors, as well as the large number of students and volunteers. Being especially grateful for their help, the scientists have named one of the fly species M. studentorum and another one – M. voluntariorum. The project is currently in its second phase of collecting.

“These volunteers are critical to our operation, and have contributed to everything from public outreach in the NHM Nature Lab to specialized work on phorid flies,” point out the authors.

In the end, the researchers hope that they will get their message across to other taxonomists, funding agencies, institutions and the public alike. Urban environments with their fast-changing conditions and biodiversity profile, need constant attention and scientific curiosity.

“There is an enormous taxonomic deficiency, including, or, perhaps, especially, in rapidly changing urban environments,” they say. “Taxonomists and their funding agencies must give time, attention and money to the environments surrounding their towns and cities.”Img3 M. wongae

“Baseline collections of urban fauna must be established in the present if there is hope for understanding the introductions and extinctions that will occur in the future,” they stress.

###

Original source:

Hartop E, Brown B, Disney R (2016) Flies from L.A., The Sequel: A further twelve new species ofMegaselia (Diptera: Phoridae) from the BioSCAN Project in Los Angeles (California, USA).Biodiversity Data Journal 4: e7756. doi: 10.3897/BDJ.4.e7756