Fighting the spread of the spotted lanternfly with a new data science tool

“The lydemapr package will aid researchers, managers and the public in their understanding, modelling and managing of the spread of this invasive pest,” says Dr. De Bona, the lead author of the study.

“Stomp, squash, smash” has been the accompanying soundtrack to the expansion of an odd-looking bug through the Eastern US. The spotted lanternfly, a large planthopper native to Asia, has been popularized in media outlets as the most recent enemy one ought to kill on sight.

Spotted lanternflies. Photo by Matthew Helmus

This charismatic insect was first discovered in the US in Berks county, Pennsylvania, in 2014, likely the result of an accidental introduction alongside shipments of landscaping materials. Since then, the invasive pest has spread throughout the country, fueled by its ability to hitch rides undetected on cargo and passenger vehicles, and aided by the widespread presence of one of its favorite food sources, the tree of heaven, another invasive in North America. As of 2023, it has been found in 14 US states.

Unfortunately, this species is not picky when it comes to the plants it consumes, favoring both crops and ornamentals, and showing a particular preference for cultivated grape. This dietary choice has impacted several wine-making areas throughout Pennsylvania and New York state, and is threatening important wine hubs on the Western coast of the US.

When it comes to controlling the spread of this pest, two of the main challenges for researchers and field managers alike are to 1) know where this species is today so that eradication campaigns can be targeted and 2) predict where it will be tomorrow, to invest in prevention practices. Both efforts rely on accurate and extensive knowledge of its past and present distribution.

Many state and federal agencies, as well as individual research institutions, have been involved in conducting surveys to detect this bug in the field. In addition, a campaign to raise public awareness has fostered the development of self-reporting tools citizens can use to track sightings of this insect. Unfortunately, given the different practices adopted by these parties, the data on the presence of spotted lanternfly are scattered and hard to access, which makes it harder to assess and manage its spread.

Spotted lanternflies. Photo by Matthew Helmus

The need to put together a current, comprehensive, consistent and openly available dataset pushed researchers at Temple University to take action. A research group led by Dr. Matthew Helmus has been closely monitoring the spread of this invasive pest since its inception, contacting institutions and collecting data. In a recent work published in the journal NeoBiota, Dr. Helmus and Dr. Sebastiano De Bona, together with collaborators across several agencies, put together an anonymized and comprehensive dataset that collected all records of spotted lanternfly in the US to date. These records come from a plethora of sources, from control actions, citizen-science projects, and research efforts. The resulting dataset contains highly detailed data (at 1 km2 resolution) with yearly information on the presence or absence of spotted lanternflies, the establishment status of this pest, and estimated population density, across over 650,000 observations.

“The lydemapr package will aid researchers, managers and the public in their understanding, modelling and managing of the spread of this invasive pest,” says Dr. De Bona, the lead author of the study.

The scientists hope that this package will make forecasting the spread of the spotted lanternfly easier and foster more effective collaboration between agencies and researchers.

Research article:

De Bona S, Barringer L, Kurtz P, Losiewicz J, Parra GR, Helmus MR. 2023. lydemapr: an R package to track the spread of the invasive Spotted Lanternfly (Lycorma delicatula, White 1845)(Hemiptera, Fulgoridae) in the United States. NeoBiota 85: 151–168, DOI: 10.3897/neobiota.86.101471

Follow NeoBiota on social media:

Desert locusts remain a serious threat to Pakistan

The recent Desert Locust upsurge had a major impact on Pakistan’s agriculture, with swarms causing immense damage to all types of crops. A joint French-Pakistani team provides an overview of the dynamics of this upsurge, assesses its impact and control measures, and clarifies the role of different stakeholders in the management of this pest, suggesting various improvements for the future. The study was published in the open access Journal of Orthoptera Research.

In 2019 and 2020, desert locusts once again plagued parts of East Africa and huge areas as far as India and Pakistan through the Arabian Peninsula, in an infestation that was described as the worst in decades. A serious agricultural pest, the desert locust Schistocerca gregaria can feed on most types of crops, including grains, vegetables and fruit, causing significant damage to agricultural production and threatening food security in many countries.

Since the 1960s, a preventive control strategy against this pest has been implemented, based on monitoring of outbreak areas and ecological conditions, followed, if necessary, by early intervention and limited use of pesticides, so that any outbreak can be stopped as soon as possible. With 60 years of hindsight, desert locust invasions are now less frequent, smaller in scale and, if they cannot be stopped early, they are adequately managed.

Desert Locust: mature adult. Photo by A. Monard, CIRAD

However, financial and political uncertainties in many parts of the desert locust’s range continue to sustain the threat, and not all invasions can be stopped early. This was the case in 2018, when such an upsurge was largely aided by rains in the southern Arabian Peninsula. Locusts could not be detected for several months and therefore went unchecked, mainly due to the insecure conditions, especially in Yemen. The swarms then progressively contaminated a large part of East Africa and spread to Iran, Pakistan and India. Pakistan, in particular, subject to periodic swarm invasions in the past, faced a particularly severe situation in 2019-2020, where the swarms could only be contained after several months of intensive control.

Scientists Riffat Sultana, Ahmed Ali Samejo and Samiallah Soomro (University of Sindh, Pakistan), Santosh Kumar (University of Cholistan, Pakistan) and Michel Lecoq (former director of a locust research unit at CIRAD, France) synthesised these two years of upsurge in a new research article published in the open-access Journal of Orthoptera Research. They focused on Pakistan, the damage caused in this country, and the surveillance and control operations undertaken, clarifying, at the same time, at both national and international level, the role of the different actors in the management of this pest, and suggesting some improvements for the future.

Desert Locust: hopper. Photo by A. Foucart, CIRAD

During this upsurge, a great deal of damage was caused to all types of crops. The Government of Pakistan’s preliminary estimate of monetary losses due to desert locusts for the agricultural seasons 2020 and 2021 ranges from $3.4 billion to $10.21 billion. More than 3 million people were facing severe acute food insecurity.

The authors also note that Pakistan needs to continue to be prepared and improve the prevention system already in place. They suggest developing compensatory measures for local populations in the event of an uncontrolled invasion at an early stage, increasing the use of alternatives to chemical pesticides such as mycopesticides, and maintaining funding mechanisms that provide sustainable support even in times of recession. Perhaps the most important challenge is certainly to maintain long-term efforts to build resilience, despite the apparent absence of imminent threats.

Research article:

Sultana R, Kumar S, Samejo AA, Soomro S, Lecoq M (2021) The 2019–2020 upsurge of the desert locust and its impact in Pakistan. Journal of Orthoptera Research 30(2): 145-154. https://doi.org/10.3897/jor.30.65971

New methods needed to boost success of Classical Biological Control to fight insect pests

The success of Classical Biological Control in the Western Paleartic ecozone is rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases

A CABI-led study has revealed that the success of Classical Biological Control (CBC) in Europe, North Africa and the Middle East is only rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases.

The research – published in the journal NeoBiota – suggests that the overall success of biological control introductions of insect predators and parasitoids against herbivorous insects in the Western Paleartic ecozone is comparable to the success of CBC worldwide. However, over 100 years of CBC in this region, has resulted in no overall rise in success in the fight against insect pests – including those of crops such as citrus, olive, potato, mulberry and various other fruits.

An illustration of a case of biological control of the Comstock mealybug Pseudococcus comstocki with the parasitoid wasp Allotropa burrelli. Image by Lukas Seehausen

Lead author Dr Lukas Seehausen, together with colleagues from CABI Switzerland, the University of Lisbon and the University of Bordeaux, argue that a focus on life-history traits of the biological control agent to increase the chances of successful CBC is not fully justified and should be complemented with the consideration of traits regarding the pest and its host plant, as well as other aspects of CBC, such as climate and management – including ways in which CBC agents are released.

For example, if a CBC agent is released repeatedly against the same pest in different years and countries, the chances of successful establishment and control of the target increase. This is an indication for the importance of release strategies for the success of CBC programmes.

Dr Seehausen said, “What makes our study different from others is that we studied factors that may impact the outcome of CBC not independently of each other but using a holistic analysis, which reveals their relative importance within the complexity of CBC programmes.

“The results from this study should be understood as a first step to give the incentive for a holistic, rather than an independent consideration of factors affecting the success of CBC.”

By filtering data from the BIOCAT catalogue, the scientists found that 780 introductions of insects for biological control were undertaken in the Greater Western Palearctic ecozone between 1890 and 2010. This constituted 416 agent-target combinations.

The results showed that eight countries were responsible for more than two thirds (70.5%) of all introductions: Israel (16.3%), Italy (14.0%), Former USSR (10.1%), France (7.3%), Greece (7.1%), Spain (6.0%), Egypt (5.3%), and Cyprus (4.4%). Within these countries, the percentage of complete target control was very variable.

Overall, the study showed that while the success of agent establishment was 32%, the successful impact of single agents on their target was 18% and the success of complete control was 11%.

However, the success rates of agent establishment and target control were higher in CBC projects targeting pests of woody plants than pests of other types of plants.

A reason for this, the scientists say, might be that being perennial, trees provide a more stable and predictable environment when compared to herbaceous plants such as annual plants or crops.

In carrying out the research, Dr Seehausen and the team added 15 new explanatory variables including consideration of the biological control agent feeding strategy, host range and life-stage killed by the biological control agent.

Dr Seehausen explains, “We found that only a few CBC agent-related factors significantly influenced the success of CBC – suggesting that the reoccurring focus on agent-related traits is not justified.

“Our attention should be redirected to include lower trophic levels and other aspects of CBC – such as abiotic factors including climate and management.”

The scientists conclude by stressing that analysis of the entire BIOCAT catalogue, or an updated version including more factors, should lead to further insights and help to develop decision support tools to increase the success of CBC at all levels.

Original source:

Seehausen ML, Afonso C, Jactel H, Kenis M (2021) Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success? NeoBiota 65: 169-191. https://doi.org/10.3897/neobiota.65.66276

Be prepared: Prioritising invasive species for strategic prevention in Durban, South Africa

Durban Harbour, used for both commercial and recreational purposes, is an important hub of human activity. The harbour was found to be an important point of first introduction as well as a site for naturalisation for the three species highlighted in this study.
(Photos by Şerban Procheş /left/ and Carl Munsamy /right/)

While exploring the way alien species invade cities around the world, South African PhD student Ashlyn L. Padayachee (University of KwaZulu-Natal, UKZN) and her supervisors, Serban Proches (UKZN) and John Wilson (SANBI and Stellenbosch University) remember suddenly being stricken.

What they realised was that while cities were gradually starting to prepare for climate change, their responses to invasions were rather reactive. Even though management focused on widespread invasive species, which were currently having the most negative impacts on native biodiversity, the researchers noted that if those decision makers had only targeted the next highly damaging invaders ahead of their arrival, the associated costs would have greatly decreased.

Consequently, the team developed a methodology, based on three key aspects: priority species, points of first introduction and sites of naturalisation, in order to identify the most probable and concerning invasive species for Durban (eThekwini in KwaZulu Natal), a coastal city in South Africa. Furthermore, their work, published in the open-access journal Neobiota provides decision makers from around the world with a new tool, that is easy to use and adjustable to the specificity of different cities.

Firstly, the researchers identified cities with a similar climate to Durban and used existing alien species watch lists, environmental criteria and introduction pathways to identify species, which are not present in South Africa, but are considered of unacceptable risk of invasion. The team continued by figuring out which of those selected species are likely to have pathways facilitating their introduction to the city and developed a climatic suitability model for each. Finally, the scientists linked the climate and pathway information, so that they could identify sites within Durban to be considered as a focus for the contingency planning for particular species.

As a result, the authors identified three alien species as priorities for Durban: Alligator weed (Alternanthera philoxeroides), American bullfrog (Lithobates catesbeianus) and the red imported fire ant (Solenopsis invicta).


River systems are ideal habitats for Alligator weed. River systems adjacent to points of first introduction were identified as important sites of first naturalisation of this species.
(Photo by Şerban Procheş)

In terms of points of introductions, the data highlighted the Durban Harbour, especially for the red imported fire ant. Plant nurseries and garden centres, as well as pet and aquarium shops were also identified as important sites for the three studied species. Additionally, suitable habitats located near the points of introduction, such as river systems and built infrastructure, were found in need of monitoring.


The red imported fire ant is usually found in close proximity to human dwellings, which provide ideal habitats for this species. Built infrastructure, especially those adjacent to the Durban Harbour, was identified as an important site of its naturalisation.
(Photo by Şerban Procheş)

In conclusion, the implementation of prioritisation schemes to consider the three aspects (species, pathways, and sites) allows managers to focus resources on those species which pose a greater risk of invasion and impact.

“This will only ever be one part of a broad range of biosecurity efforts, but it is one where, we believe, we can be prepared,” comment the authors.

###

Original source:

Padayachee AL, Proches S, Wilson JRU (2019) Prioritising potential incursions for contingency planning: pathways, species, and sites in Durban (eThekwini), South Africa as an example. NeoBiota 47: 1-21. https://doi.org/10.3897/neobiota.47.31959

New improvements to how impacts of non-native species are assessed recommended

A farmer sets a pheromone trap to fight tomato leaf miner. Photo by CABI.

The Centre for Agriculture and Bioscience International (CABI) has led an international team of non-native species (NNS) specialists who have compiled a list of recommendations to improve the way in which the impact of a range of invasive pests – such as the tomato leaf miner Tuta absoluta – are assessed, potentially helping towards ensuring greater global food security.

Lead authors Dr Pablo González-Moreno and Dr Marc Kenis, Senior Researchers at CABI are two of 89 NNS experts from around the world who have collaborated on the paper, published in NeoBiota, that calls for ‘more robust and user-friendly’ impact assessment protocols to predict the impacts of new or likely invaders as well as to assess the actual impact of established species.

The manuscript is the outcome of an enormous collective effort using 11 different protocols to assess the potential impact of 57 NNS to Europe yielding a total of 2614 separate assessments. This unique dataset has allowed the authors to identify which are the main factors increasing the robustness of protocols and provide recommendations on how the robustness and applicability of protocols could be enhanced for assessing NNS impacts.

As reported in the study, entitled ‘Consistency of impact assessment protocols for Non-Native Species’, Dr González-Moreno and fellow scientists – from 80 institutions including the UK-based Centre for Ecology & Hydrology (CEH), University of Milan, University of Bern and Queens University Belfast – argue that ‘assessment of the realised or potential impacts of NNS is particularly important for the prioritization of management actions.’

Millions of the world’s most vulnerable people face problems with invasive weeds, insects and plant diseases, which are out of control and have a major impact on global prosperity, communities and the environment. Developing countries are disproportionately affected.

The global cost of the world’s 1.2 million invasive species is estimated at $1.4 trillion per year – close to 5 percent of global gross domestic product. In East Africa, five major invasive species alone cause $1 billion in economic losses to smallholder farmers each year.

The scientists believe that, currently, the large variety of metrics adopted to measure the impacts of invasive species undermines direct comparison of impacts across species, groups of taxa, localities or regions. They go on to argue that in general we have ‘little understanding of the patterns in consistency of impact scores across assessors and protocols, and more importantly, which factors contribute to high levels of consistency.’

Dr González-Moreno said,

“There is an increasing demand for robust and user-friendly impact assessment protocols to be used by professionals with different levels of expertise and knowledge.
Robust NNS impact protocols should ideally result in accurate and consistent impact scores for a species even if applied by different assessors, as long as they have the adequate expertise in the assessed species and context.
Several key factors should be taken into account when selecting or designing an NNS risk assessment protocol, such as the aim, the scope, the consistency and the accuracy of the outcomes, and the resources available to perform the assessment – for example time or information available.”

In compiling a list of recommendations for improved NNS impact protocols, Dr González-Moreno and the team of researchers used 11 different protocols to assess the potential impact of 57 species not native to Europe and belonging to a very large array of taxonomic groups (plants, animals, pathogens) from terrestrial to freshwater and marine environments.

They agree that using a ‘5-level scoring, maximum aggregation method and the moderation of expertise requirements’ offers a good compromise to reducing inconsistencies in research findings without losing discriminatory power or usability.

Dr González-Moreno added, “In general, we also advise protocol developers to perform sensibility tests of consistency before final release or adoption. This is crucial as if a protocol yields inconsistent outcomes when used by different assessors, then it is likely that decisions taken based on the results could be variable and disproportionate to the actual impacts.”

Original source:

González-Moreno P, Lazzaro L, Vilà M, Preda C, Adriaens T, Bacher S, Brundu G, Copp GH, Essl F, García-Berthou E, Katsanevakis S, Moen TL, Lucy FE, Nentwig W, Roy HE, Srėbalienė G, Talgø V, Vanderhoeven S, Andjelković A, Arbačiauskas K, Auger-Rozenberg M-A, Bae M-J, Bariche M, Boets P, Boieiro M, Borges PA, Canning-Clode J, Cardigos F, Chartosia N, Cottier-Cook EJ, Crocetta F, D’hondt B, Foggi B, Follak S, Gallardo B, Gammelmo Ø, Giakoumi S, Giuliani C, Guillaume F, Jelaska LS, Jeschke JM, Jover M, Juárez-Escario A, Kalogirou S, Kočić A, Kytinou E, Laverty C, Lozano V, Maceda-Veiga A, Marchante E, Marchante H, Martinou AF, Meyer S, Michin D, Montero-Castaño A, Morais MC, Morales-Rodriguez C, Muhthassim N, Nagy ZA, Ogris N, Onen H, Pergl J, Puntila R, Rabitsch W, Ramburn TT, Rego C, Reichenbach F, Romeralo C, Saul W-C, Schrader G, Sheehan R, Simonović P, Skolka M, Soares AO, Sundheim L, Tarkan AS, Tomov R, Tricarico E, Tsiamis K, Uludağ A, van Valkenburg J, Verreycken H, Vettraino AM, Vilar L, Wiig Ø, Witzell J, Zanetta A, Kenis M (2019) Consistency of impact assessment protocols for non-native species. NeoBiota 44: 1-25. https://doi.org/10.3897/neobiota.44.31650

Additional information:

The paper is based upon work from the COST Action TD1209: ALIEN Challenge. COST (European Cooperation in Science and Technology) is a pan-European intergovernmental framework. The mission of COST is to enable scientific and technological developments leading to new concepts and products and thereby contribute to strengthening Europe’s research and innovation capacities.

Dr Pablo González-Moreno was supported by the CABI Development Fund (with contributions from ACIAR (Australia) and DFID (UK) and by Darwin plus, DPLUS074 ‘Improving biosecurity in the SAUKOTs through Pest Risk Assessments’.

 

Text originally published by CABI.

Non-native pest-controlling wasp identified in Canada prior to formal approval

A samurai wasp (Trissolcus japonicus) lays an egg inside a brown marmorated stink bug (Halyomorpha halys) egg. The samurai wasp’s offspring will develop inside the pest’s egg and emerge as an adult wasp. Photo by Warren Wong.

Thought to be Canada’s most promising potential defense against the brown marmorated stink bug – a globally spreading agricultural pest native to Asia – the samurai wasp (another species from Asia and natural parasitoid of the former) has been considered for future release in the country in recent years.

However, prior to any formal decision and regulatory approval, the parasitoid, which is known to be specialized on stink bug eggs, was identified at a heavily infested site in Chilliwack, British Columbia, during a survey of the local enemies of the bug, conducted by a research team led by Dr. Paul Abram of Agriculture and Agri-Food Canada. Their findings are published in the open-access Journal of Hymenoptera Research.

Native to China, Japan, Taiwan and the Korean peninsula, the brown marmorated stink bug (Halyomorpha halys) has already established in areas of the United States and Europe and continues to spread. It is highly damaging to a wide range of vegetable and fruit crops, including peaches, apples, pears, soybeans, cherries, raspberries and pears. Curiously, those infested areas in both the USA and Europe also saw the arrival of the samurai wasp (Trissolcus japonicus) amid assessments whether releasing samurai wasps in the wild should be warranted.

“Classical (importation) biological control of invasive pests, where natural enemies are imported and intentionally introduced from a pest’s area of origin, involves years of research to assess risks and benefits of proposed introductions, followed by regulatory approval,” explain the researchers in their paper.

“However, there is increasing recognition that unintentional introductions of natural enemies are probably common, introducing a high level of uncertainty to the regulatory process for biological control introductions.”

In two consecutive years (2017 and 2018), the team of Dr Abram placed a total of 1,496 egg masses (41,351 eggs) of brown marmorated stink bugs at 16 field sites in coastal and interior British Columbia – already known to host large and well-established breeding populations of the species – in order to monitor and identify the local enemies of the pest. Later on, when the researchers retrieved the eggs and studied their parasitoids, they found three native wasp species, but their parasitism appeared largely unsuccessful.

Female samurai wasp (Trissolcus japonicus) collected from Chilliwack, British Columbia. Photo by Elijah Talamas.

According to the scientists, as well as previous studies conducted in both the USA and Europe, native wasps would often lay their eggs in those of the brown marmorated stink bug, but their larvae would rarely complete development. Even when they emerged, they were unlikely to produce their own offspring.

In one of the egg masses, however, the scientists noted that all eggs had been parasitized and, moreover, each produced a viable wasp. Later, the offspring would register a success of >90% in parasitizing brown marmorated stink bug eggs. Following these observations, the team identified these parasitoids as samurai wasps.

While the species is currently being redistributed within some US states on purpose, samurai wasp populations advancing to other localities suggest that much like its host, the parasitoid is also becoming a “global invader”. Therefore, it is quite possible that the samurai wasps in British Columbia have simply crossed a distance of >400 km from nearby Washington State, and the wasp is still at the early stages of its establishment in Canada.

“Nonetheless, the detection of this exotic biological control agent in Canada concurrently with regulatory review of its intentional importation and release is emblematic of the current uncertainty around regulatory control on the movement of biological control agents across borders,” comment the authors of the study.

Field surveys and extensive analyses are currently underway to track the establishment and biological control impact of the samurai wasp in Canada and also reveal how the species ended up in British Columbia.

 

###

Original source:

Abram PK, Talamas EJ, Acheampong S, Mason PG, Gariepy TD (2019) First detection of the samurai wasp, Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), in Canada. Journal of Hymenoptera Research 68: 29-36. https://doi.org/10.3897/jhr.68.32203

Scientists forecast where is the highly invasive fall armyworm to strike next

The fall armyworm is the larvae of the fall armyworm moth species Spodoptera frugiperda. Photo by Centre for Agriculture and Bioscience International (CABI).

Staple and economically important crops throughout the world could be at serious risk if efficient measures are not taken soon

Known to be feeding on many economically important crops cultured across the world, including maize, rice, sugarcane, sorghum, beet, tomato, potato, cotton and pasture grasses, the larvae of the native to the Americas fall armyworm moth seem to have already found a successful survival strategy in a diverse and changing world.

Furthermore, having taken no longer than 2 years to invade and spread throughout most of sub-Saharan Africa, the pest has already demonstrated its huge potential in severely affecting livelihoods around the globe.

A recent study in the open-access journal NeoBiota, conducted by Dr Regan Early of Exeter University, United Kingdom and her colleagues at the Centre for Agriculture and Bioscience International: Dr Pablo González-Moreno, Sean T. Murphy and Roger Day, looks into the factors and likelihood for the fall armyworm (Spodoptera frugiperda) to spread to other regions and continents.

Invasion progress

The alarming reports started in January 2016 when major outbreaks of fall armyworms were registered in Nigeria and Ghana, preceding signals from Benin, Sao Tomé and Togo shortly after. By September 2017, the pest had already been confirmed in 28 sub-Saharan African countries, with nine states expected to follow suit.

While unaided dispersal of the species in Africa is considered unlikely, it is speculated that the pest had arrived on a passenger flight from America. To back this theory, the researchers point out that the first countries to house the invader are also the major air transportation hubs in Africa and have warm, moist climate similar to those in the pest’s natural habitat.

In the aftermath, recent estimates point to up to 50% maize yield loss in Africa attributed to the fall armyworm. However, scientists believe that the species is far from finished spreading and is highly likely to invade new continents.

Who’s next?

To find what makes a region an inviting new habitat for the fall armyworm, hence which countries face the highest threat of future invasions, the researchers looked into both the native and African distributions of the species, and the effects different temperatures and precipitation levels have on it.

Having concluded that the lowest temperatures and the maximum amount of rain play the main role in determining whether the fall armyworm is to establish in a certain region, the scientists concluded that South and Southeast Asia, as well as Australia face the most serious risk, since their climate is very similar to the one preferred by the pest.

However, the authors of the study remind that this forecast shall in no way be taken with a sigh of relief by countries with milder climatic conditions. While the moth needs particular temperature and precipitation amplitudes at its year-round habitat, it could easily travel back and forth up to several hundred kilometres during its seasonal migrations. Therefore, if the fall armyworm establishes in North Africa, it could migrate to Europe during the warmer months, just like it has already been observed to travel from its year-round localities in Argentina, Texas and Florida all the way to Canada’s Québec and Ontario in the north.

The increasing transportation and international trade are also likely to facilitate the further spread of the fall armyworm outside Africa. The scientists conclude that, given the current travel air routes, it is Australia, China, India, Indonesia, Malaysia, Philippines and Thailand which are at high risk of becoming the pest’s new habitat.

The map illustrates the likelihood of the establishment of the fall armyworm if introduced at different parts of the world. Image by Regan Early.

What’s next?

Having concluded that there is a considerable potential for near global invasion and seasonal migration of fall armyworm, the scientists call for vigilance from farmers and programme managers alike. They remind that early detection of small larvae is crucial, since it is only at this stage that chemical insecticides would work effectively.

“As fall armyworm has huge potential to affect staple and economic crops globally, we urgently need information on the pest’s potential distribution and environmental limitations,” comment the researchers.

“Management decisions would be improved by further research on fall armyworm’s seasonal migration and population dynamics and the environmental dependency of interactions with other species.”

###

Original source:

Early R, González-Moreno P, Murphy ST, Day R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40: 25-50. https://doi.org/10.3897/neobiota.40.28165

A preprint of the study was published earlier on bioRxiv.

Advanced computer technology & software turn species identification interactive

Important group of biocontrol wasps from Central Europe are used to demonstrate the perks and advantages of modern, free-to-use software

Representing a group of successful biocontrol agents for various pest fruit flies, a parasitic wasp genus remains largely overlooked. While its most recent identification key dates back to 1969, many new species have been added since then. As if to make matters worse, this group of visually identical species most likely contains many species yet to be described as new to science.

Having recently studied a species group of these wasps in Central Europe, scientists Fabian Klimmek and Hannes Baur of the Natural History Museum Bern, Switzerland, not only demonstrate the need for a knowledge update, but also showcase the advantages of modern taxonomic software able to analyse large amounts of descriptive and quantitative data.

Published in the open access Biodiversity Data Journal, the team’s taxonomic paper describes a new species – Pteromalus capito – and presents a discussion on the free-to-use Xper3, developed by the Laboratory of Informatics and Systematics of Pierre-and-Marie-Curie University. The software was used to create an openly available updated key for the species group Pteromalus albipennis.

The fully illustrated interactive database covers 27 species in the group and 18 related species, in addition to a complete diagnosis, a large set of body measurements and a total of 585 images, displaying most of the characteristic features for each species.

“Nowadays, advanced computer technology, measurement procedures and equipment allow more sophisticated ways to include quantitative characters, which greatly enhance the delimitation of cryptic species,” explain the scientists.

“Recently developed software for the creation of biological identification keys like Xper3, Lucid or Delta could have the potential to replace traditional paper-based keys.”

To put the statement into context, the authors give an example with one of the studied wasp species, whose identification would take 16 steps if the previously available identification key were used, whereas only 6 steps were needed with the interactive alternative.

One of the reasons tools like Xper3 are so fast and efficient is that the key’s author can list all descriptive characters in a specific order and give them different weight in species delimitation. Thus, whenever an entomologist tries to identify a wasp specimen, the software will first run a check against the descriptors at the top, so that it can exclude non-matching taxons and provide a list of the remaining names. Whenever multiple names remain, a check further down the list is performed, until there is a single one left, which ought to be the one corresponding to the specimen. At any point, the researcher can access the chronology, in order to check for any potential mismatches without interrupting the process.

Being the product of digitally available software, interactive identification keys are not only easy, quick and inexpensive to publish, but they are also simple to edit and build on in a collaborative manner. Experts from all around the world could update the key, as long as the author grants them specific user rights. However, regardless of how many times the database is updated, a permanent URL link will continue to provide access to the latest version at all times.

To future-proof their key and its underlying data, the scientists have deposited all raw data files, R-scripts, photographs, files listing and prepared specimens at the research data Zenodo, created by OpenAIRE and CERN.

###

Original source:

Klimmek F, Baur H (2018) An interactive key to Central European species of the Pteromalus albipennis species group and other species of the genus (Hymenoptera: Chalcidoidea: Pteromalidae), with the description of a new species. Biodiversity Data Journal 6: e27722. https://doi.org/10.3897/BDJ.6.e27722

Tiny moth from Asia spreading fast on Siberian elms in eastern North America

In 2010, moth collector James Vargo began finding numerous specimens of a hitherto unknown pygmy moth in his light traps on his property in Indiana, USA. When handed to Erik van Nieukerken, researcher at Naturalis Biodiversity Center (Leiden, the Netherlands) and specialist in pygmy moths (family Nepticulidae), the scientist failed to identify it as a previously known species.

These are male specimens of the studied leaf mining moth Stigmella multispicata collected from Iowa, USA.

Then, Erik found a striking similarity of the DNA barcodes with those of a larva he had recently collected on Siberian elm in Beijing’s botanical garden. At the time, the Chinese specimen could not be identified either.

In October 2015, Daniel Owen Gilrein, entomologist at Cornell Cooperative Extension of Suffolk County (New York, USA), received samples of green caterpillars seen to descend en masse from Siberian elm trees in Sagaponack, New York. He also received leafmines from the same trees.

Once they joined forces, the researchers did not take long to find out that the specimens from James Vargo and the caterpillars from New York belonged to one and the same species. The only thing left was its name.

Following further investigation, the scientists identified the moth as Stigmella multispicata – a pygmy moth described in 2014 from Primorye, Russia, by the Lithuanian specialists Agne Rociene and Jonas Stonis.

“Apparently, this meant that we were dealing with a recent invasion from East Asia into North America,” explains Erik.

Once the researchers had figured out how to identify the leafminer, they were quick to spot its existence in plenty of collections and occurrence reports from websites, such as BugGuide and iNaturalist.

With the help of Charley Eiseman, a naturalist from Massachusetts specializing in North American leafminers, the authors managed to conclude the moth’s existence in ten US states and two Canadian provinces. In most cases, the species was found on or near Siberian elm – another species transferred from Asia to North America.

Their study is published in the open access journal ZooKeys.

Despite the oldest records dating from 2010, it turned out that the species had already been well established at the time. The authors suspect that the spread has been assisted by transport of plants across nurseries.

“Even though Stigmella multispicata does not seem to be a real problem, it would be a good idea to follow its invasion over North America, and to monitor whether the species may also attack native elm species,” the researchers point out.

Distribution in North America.

Interestingly, in addition to the newly identified moth, the Siberian elms in North America have been struggling with another, even more common, invasive leafminer from Asia: the weevil species Orchestes steppensis. The beetle had been previously misnamed as the European elm flea weevil.

###

Original source:

van Nieukerken EJ, Gilrein DO, Eiseman CS (2018) Stigmella multispicata Rociene & Stonis, an Asian leafminer on Siberian elm, now widespread in eastern North America (Lepidoptera, Nepticulidae). ZooKeys 784: 95-125. https://doi.org/10.3897/zookeys.784.27296

Cage the fly: Walk-in field cages to assess mating compatibility in pest fruit flies

Fruit flies mating compatibility studies have been examined by an international team of researchers to assess the usefulness of walk-in field cages in studying the sexual behavior within fruit fly species complexes and recognition of taxonomically misplaced flies. In addition, they have also evaluated the relevant chemical signals during pheromone emission for species discrimination. The experimental part was conducted with the support of Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in Seibersdorf, Austria. Their findings are published in the open-access journal ZooKeys.

Evolution has led to divergence in some groups, which sometimes results in new, yet very similar species. Hence, they might successfully confuse taxonomists, making them coin terms like ‘cryptic’ species, or in other words, distinct species misplaced under the same name.

However, these species are kept isolated from each other via reproductive barriers. Preventing interbreeding and hybridization, they can be ecological and mechanical, but also behavioral (i.e. sexual). The latter are behaviors or signals that affect recognition within a species, as well as attractiveness and mate choice. They affect their evolution and therefore, are key elements in species differentiation.

The authors of the present paper have found that the walk-in field cages methodology provides an appropriate ground to study these issues. By applying it, researchers around the world are able to detect pest species among others when occurring in the same populations.

Apart from taxonomic value, the scientists also point out the significance of these findings to pest management. As the studied pest fruit fly species are agricultural pests of major economic importance, assessing their mating behaviour, including the pheromones the males emit when attracting partners, can be utilised in the development of highly specific control methods. For instance, there is the sterile insect technique that involves releasing males reproductively sterilised via ionizing radiation into a wild population, where they inseminate the pest females with sterile sperm so that they end up with unviable offspring.

The main advantage of using walk-in field cages, rather than small laboratory-based ones, is that they provide semi-natural conditions under which they are “reliable and powerful tools to measure the level of mating compatibility among different species and populations of a putative single species.”

However, the present paper highlights that such an approach is only to be applied as a part of integrative taxonomic analyses, together with molecular, physiological and morphological approaches when assessing to which species a particular pest population belongs.

###

Original source:

Juarez ML, Devescovi F, Brizova R, Bachmann G, Segura DF, Kalinova B, Fernandez P, Ruiz MJ, Yang J, Teal PEA, Caceres C,, Vreysen MJB, Hendrichs J, Vera MT (2015) Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 125-155. doi: 10.3897/zookeys.540.6133