Now, we are up to another challenge: we have joined the Advisory Panel appointed by cOAlition S to help further the improvement and development of this important service. The Advisory Panel consists of twelve members (six publishers and six end-users) representing different stakeholders in the scholarly communication ecosystem.
Journal Comparison Service (JSC) is an initiative by cOAlition S aimed to improve transparency and communication regarding publishing costs between publishers and institutions.
It serves to provide the libraries with all the information they need to make informed decisions about whether the fees charged by a particular journal are reasonable and commensurate with the services delivered.
In their turn, the publishers can use it to demonstrate their dedication to fostering an open business culture and to bring awareness of the value of their services.
To facilitate this process, the publishers are advised to submit information about their prices and publishing policies on an annual basis using the JCS Frameworks format.
An Advisory Panel will review the Frameworks and offer suggestions on how to improve them, aiming to make the data collected as valuable as possible to all involved parties. Additionally, the Panel will actively promote the use of JCS among stakeholders.
The panel will meet twice a year, and the first meeting has already been scheduled for May 2023.
We are delighted that we have been able to establish such a high-quality Advisory Panel, representing all the key stakeholders. The primary function of the Panel will make recommendations on how the data collection frameworks might be further developed to ensure that the price and service data is as useful as possible for those who procure publishing services, whilst remaining deliverable by the publishers who are asked to provide these data,
commented Robert Kiley, Head of Strategy at cOAlition S.
Additional information
About JCS:
Journal Comparison Service is a secure, free-of-charge service that enables libraries, library consortia, and funders to better understand if the fees they pay are commensurate with the publication services delivered. Publishers provide information in a standard format, including information about the publication frequency, the peer review process, times from submission to acceptance, the range of list prices for APCs and subscriptions and more.
About cOAlition S:
On 4 September 2018, a group of national research funding organisations, with the support of the European Commission and the European Research Council (ERC), announced the launch of cOAlition S, an initiative to make full and immediate Open Access to research publications a reality. It is built around Plan S, which consists of one target and 10 principles. Read more on the cOAlition S website.
The so-called High Seas Treaty is a legal framework for the protection of marine biodiversity and responsible and equitable use of resources of areas beyond national jurisdiction (BBJN). Its draft, published on the 5th of March 2023, is the outcome of two decades of negotiations, and is part of the international effort to protect a third of the world’s biodiversity by 2030.
An unwavering dedication to the protection and conservation of biodiversity will be required to see the firm landing of this hopeful step.
On this occasion, we look back at some impactful studies published in our journals that have made waves, hopefully in the right direction towards impactful conservation measures and actions.
Following President Barack Obama’s expansion of the largest permanent Marine Protected Area on Earth (Papahānaumokuākea Marine National Monument) in 2016, a new species of coral-reef fish was named in his honour. The fish is the only known coral-reef species to be endemic to the Monument, and, despite its small size, it carries wide-reaching cultural and political significance as a reminder of how politics go hand in hand with science.
Other studies from our flagship zoology journal ZooKeys have focused on the benthic megafauna and abyssal fauna of the Clarion-Clipperton Zone (CCZ) in the Pacific Ocean.
The Clarion-Clipperton Zone, managed by the International Seabed Authority, has been targeted by deep-sea mining interests. In the context of heightened concern over potential biodiversity loss, scientific research is crucial for informing policy-makers and the general public about the risks and outcomes of such initiatives.
The rich biodiversity of the deep sea has also been documented in big-scale taxonomic inventories and checklists in the Biodiversity Data Journal.
Going forward, the expansion of Marine Protected Areas should also ensure the implementation of policies for the methods of resource extraction and their equitable sharing and use among the world’s nations.
Over the next few years, we hope to see an ever increasing interest in biodiversity conservation - from the general public, stakeholders and policy makers, and, of course, research institutions.
We need to love what we protect in order to be able to protect it.
Follow Pensoft on Twitter and Facebook, and sign up for our newsletter on the right.
I am a retired government bureaucrat who worked for 40 years as an administrator in state and federal taxation. I have absolutely no formal training in botany, but now I find myself as an active participant in a major taxonomic revision and a coauthor in the publication of 18 new species in a plant family called Costaceae. This is the story of how my gardening hobby turned into an avocation and led me to work with some of the premier botanists in the world. It is also the story of how I have met several other plant enthusiasts from countries throughout the tropics who have contributed so very much to our work. I write this story in the hopes of encouraging more professional scientists to incorporate the observations of such “citizen scientists” in their research, and to encourage these enthusiasts to more carefully document their observations and post their photos and notes to resources like Inaturalist.org.
My story started about 30 years ago when my wife gave me a rhizome of the white butterfly ginger (Hedychium coronarium) as a Christmas present. I became interested in gingers, species of the family Zingiberaceae, but soon my interests began to focus almost exclusively on the closely related “spiral gingers” in the family Costaceae. I loved the architecture of the plants with their spiral staircase of leaves leading up to a variety of shapes and colors of bracts and flowers. I started collecting any cultivated Costus plants I could find in nurseries or mail-order catalogues. Soon, I learned that only a few species can survive outdoors in the winter where I live, so built a greenhouse.
Costus convexus, one of the 18 newly described species in Costaceae.
My serious interest in Costaceae began after I obtained a copy of the 1972 monograph of New World Costaceae by Dr. Paul Maas. It became my bible.
As I studied his descriptions of the species and applied his identification keys to the cultivated plants, I soon realized that many of the popular Costus species in cultivation had been incorrectly identified. I started doing presentations to garden clubs and posting to online groups. I developed a website called “Gingers ‘R’ Us.”
My “real job” had me traveling to Washington, DC periodically and I always tried to carve out time to visit Mike Bordelon at the Smithsonian Greenhouses in Suitland, Maryland. On one of these trips, I met Dr. Chelsea Specht, who was working at the Smithsonian Institution as a postdoctoral fellow.
Chelsea Specht and Mike Bordelon at the Smithsonian Greenhouses in 2004.
She had written what I believe is the first molecular study in Costaceae in 2001.This opened up a whole new world of interest for me as I tried to understand these new-to-me terms, like “clades” and “phylogenetic relationships”. In this paper she introduced the new generic divisions of the family that were solidified five years later in a more complete phylogenetic study . Chelsea very patiently answered my novice questions about phylogenetic trees and how they relate to the taxonomy of the plants.
Reinaldo Aguilar in 2013 at the type locality of Costus maritimus, now a synonym in the Costus comosus complex.
In 2005 I made my first trip to the New World tropics looking for Costus in its native habitat. On the Osa Peninsula of Costa Rica, I was incredibly lucky to meet Reinaldo Aguilar, the world-famous “para-taxonomist” who has studied the plants of the Osa for over 30 years. He is is self-taught like me and does not have a botanical degree, but has coauthored many scientific articles. He worked closely with the late Scott Mori of the New York Botanical Garden and was honored in a 2017 article in NYBG Science Talk.
That first trip to Costa Rica had me hooked. I fell in love with tropical forests and over the next few years made trips to several other Latin American countries as well as back to Costa Rica. Always, my focus was on Costus and the other members of its family.
Along the way, I met several “unsung heroes” in the plant world, like Marco Jiménez Villata, whom I met in the town of Zamora in southern Ecuador. Marco specializes in orchids, but he is also a generalist and knows a lot about the plants of southern Ecuador. He (now retired) was a school administrator and had traveled to many remote villages in the province and was always on the lookout for interesting plants. I have traveled with Marco and his son Marco Jiménez León several other times and we have become good friends.
Marco Jimenez and son Marco with Costus convexus.
In 2015 we went to the type locality of the species Costus zamoranus and took the first photographs of this species. At that trip, Marco showed me an area of high elevation near the Podocarpus National Park, where I found an unusual-looking Costus that we are now describing as Costus oreophilus. He also showed me unexplored places where I found another new species, Costus convexus. I made sure we credited him with his role in the discovery and documentation of those new species in our publication in PhytoKeys.
I have also traveled several times in Panama and Ecuador with another very well known, but non-doctorate plant enthusiast – Carla Black. Carla is the president of the Heliconia Society International, an organization uniting enthusiasts (scientists and non-scientists) in the order Zingiberales.
Carla Black with Juan Carlos Amado on the old Camino Real.
In 2015 we searched for the critically endangered Costus vinosus. We found a few plants growing deep in the forest of the Chagres National Park along an old Spanish trail used to transport gold to the Atlantic coast. There is still a mystery regarding the true form of the flower of C. vinosus, and I am in touch with another Inaturalist observer who has found it (not in flower) in the mountains northeast of Panama City. He will let me know when he finds it in flower!
Costus callosus, one of the 18 newly described species in Costaceae.
In 2019 Carla and I visited the “Willie Mazu” site in Panama to photograph and study the new species Costus callosus, and in Santa Fé de Veraguas, we looked for a species proposed by Dr. Maas that is now described as Costus alleniopsis.
My serious collaboration with Dr. Maas began in 2017, when I was preparing for a trip to Oaxaca in southern Mexico. He asked me to be on the lookout for two species of Costus from that region that he had identified as new based solely on his examination of herbarium specimens, without any good data on the floral parts.
By that time, I was posting my Costus observations on Inaturalist.org and using that resource to look for interesting plants. I also used it to find plant people to contact for local information. For this Mexico trip I found a huge number of observations posted by Manuel Gutiérrez from Oaxaca City.
Manuel Gutiérrez photographing the plant that turned out to be Costus sepacuitensis.
I found that he had extensive knowledge of the Chinantla region in the mountains east of Oaxaca City and had worked with the indigenous tribe there. Together, we explored the indigenous lands of Santa Cruz Tepetotutla.
We found many plants in flower of what Dr. Maas wanted to describe as Costus alticolus. We also found the species he planned to describe as Costus oaxacus, but I later found the same species in Guatemala, already described as Costus sepacuitensis.
Later I learned of the plans to prepare a complete revision to the taxonomy of the New World Costaceae. Together with Paul and Hiltje Maas, we spent several days at the Naturalis Herbarium in Leiden, comparing my photos against the hundreds of Costus herbarium specimens there. I had a long list of species that was curious about, and we were able to get through it and figure out what questions remained, even though we had not come up with all the answers.
Dave Skinner and Paul Maas discussing some Costus spp. in Leiden in 2017.
It was soon apparent that there are major changes needed in the taxonomy and nomenclature of these plants, and that information from the field would be an essential supplement to the observations made from the herbarium specimens.
Paul and Hiltje Maas in Leiden in 2017.
In 2016 I visited the type locality of Costus laevis in central Peru. I was surprised to find that the plants there are nothing at all like the Costus laevis of Central America, but match perfectly to the herbarium specimen that was deposited in Spain over 230 years ago. It was clear to me that the herbarium specimen designated as the type had been misinterpreted. I wrote an article explaining the problem – but I had no idea what the solution might be.
Dr. Maas agreed that there was a problem with that species that we eventually resolved. This resolution will be a part of the forthcoming revision of the New World Costaceae that is in preparation, nearing completion.
Another major problem involved the Costus guanaiensis complex. Paul and Hiltje, along with Chelsea, had visited the New York Botanical Garden Herbarium, where the holotype of that species is held, and realized that it had been misinterpreted due to the lack of a good flower description. What had been identified as Costus guanaiensis in the herbarium was actually a completely different species that Maas had planned to describe as a new species.
Dave Skinner with a plant in cultivation of Costus gibbosus at Rio Palenque Science Center, Ecuador.
The entire C. guanaiensis complex needed name changes and redefinitions of species boundaries, ultimately resulting in the description of Costus gibbosus that is published in PhytoKeys. The resolution of the other members of that complex will be explained in the forthcoming revision. Over the next several years, Paul and I exchanged 1,626 emails (yes, I counted them – with the help of MS Outlook) pounding out the details of the changes needed in the taxonomy of New World Costaceae. In collaboration with him, I made many more field trips to resolve the remaining questions we had.
My extensive collaboration with Paul Maas has been one of the most rewarding experiences of my lifetime. He has taught me so much about the rules of nomenclature and the process of describing a new species. The one thing he could never teach me was his almost uncanny ability to look at a dried herbarium specimen and make a determination of the species. I suppose that only comes from experience as he has examined over 11,000 specimens of Costaceae that will become our list of exxicatae when the full revision is published.
I should not fail to mention my time working with Dr. Thiago André. In 2014 I flew to Rio de Janeiro and then Thi and I, along with his academic advisor and another student, went to the state of Espirito Santo to look for the endangered species Chamaecostus cuspidatus. Thi has been our expert in that genus and has helped with the review of the new species published in PhytoKeys, Chamaecostus manausensis. In 2014 he was still finishing his doctorate and was in process of preparing a molecular phylogeny and morphological study of the species complex of Chamaecostus subsessilis.
Thiago André with Chamaecostus cuspidatus in 2014.
Thi and I have stayed in close contact, and he came to Florida one year to visit in my home and see the Costaceae in my private garden, Le Jardín Ombragé. He is now a professor at the Universidade de Brasília.
Finally, I should discuss my collaboration with Eugenio Valderrama and the other members of the Specht Lab at Cornell University. In 2018 I went to Cornell to visit Eugenio and we discussed the sampling to be used in the molecular phylogeny that will be a very important part of the full revision when it is published.
Eugenio Valderrama and Chelsea Specht with Costus convexus.
At Cornell, Eugenio produced a novel baiting schema for extracting specific genes from across all Costus species and in 2020 published a paper. With further sampling, another paper was published in 2022 to reveal interesting data on a whole package of pollination-related characters, and how they show evidence of convergent evolution. Eugenio’s phylogenies very well support the new species we are publishing in PhytoKeys, and the full molecular phylogeny will be included in our full revision when it is published.
Eugenio checking out a Renealmia sp. Antioquia, Colombia 2022.
Just this past December I went to Colombia to attend the Heliconia Society Conference at Quindío, and Eugenio and I each made presentations there about our work with Costaceae. Then we traveled together to investigate several other interesting species of Costaceae, including the new species Costus antioquiensis, and a strange yellow bracted form of Costus comosus found in the species-rich area of San Juan de Arama in Meta.
How did I know to look there? An observer, a citizen scientist, had posted his records and photos on Inaturalist.org. I have my account set to filter all Costaceae and send me a daily email with all the new postings of the family, and this plant will now be appearing as a sample in a molecular phylogeny and as an observed species in a monograph.
I hope this blog article will provide some background and insight into what I think must be an unusual collaboration between a citizen scientist and the much more qualified lead authors of our PhytoKeys article describing eighteen new species in Costaceae. It has certainly been a rewarding experience for me, and I hope other plant enthusiasts will be encouraged to share their observations on forums like Inaturalist.org, providing detailed and accurate information and photos. At least for the one plant family I have some expertise in, I will continue to monitor and curate those observations on Inaturalist.
André T, Specht CD, Salzman S, Palma-Silva C, Wendt T (2015) Evolution of species diversity in the genus Chamaecostus (Costaceae): Molecular phylogenetics and morphometric approaches. Phytotaxa 204(4): 265-276. https://doi.org/10.11646/phytotaxa.204.4.3
Maas, P. J. M. (1972). Costoideae (Zingiberaceae). Flora Neotropica 8, 1–139. doi: 10.1093/aob/mch177
Maas PJM, Maas-van de Kamer H, André T, Skinner D, Valderrama E, Specht CD (2023) Eighteen new species of Neotropical Costaceae (Zingiberales). PhytoKeys 222: 75-127. https://doi.org/10.3897/phytokeys.222.87779
Salzman S, Driscoll HE, Renner T, André T, Shen S, Specht CD (2015) Spiraling into history: A molecular phylogeny and investigation of biogeographic origins and floral evolution for the genus Costus. Systematic Botany 40(1): 104–115. https://doi.org/10.1600/036364415X686404
Skinner D (2008) Costus of the Golfo Dulce Region. Heliconia Society Bulletin 14(4):1-6
Skinner D and Jiménez M (2015) Costus zamoranus: An endemic species to Zamora-Chinchipe Province in Southeastern Ecuador. Heliconia Society Bulletin 21(3):4-9
Skinner D (2016) Following Ruiz. Heliconia Society Bulletin 22(4): 7–14.
Skinner D and Black C. (2016) Search for the Mysterious Lost Plant (Costus vinosus). Heliconia Society Bulletin 22(3):1-3
Skinner D (2019) A Tale of Two Costus (Costus sepacuitensis) and Costus cupreifolius) Heliconia Society Bulletin 25(1):1-3
Specht CD, Kress WJ, Stevenson DW, DeSalle R (2001) A molecular phylogeny of Costaceae (Zingiberales). Molecular Phylogenetics and Evolution 21(3): 333–345. https://doi.org/10.1006/mpev.2001.1029
Specht CD, Stevenson DW (2006) A new phylogeny-based generic classification of Costaceae (Zingiberales). Taxon 55(1): 153–163. https://doi.org/10.2307/25065537
Valderrama E, Sass C, Pinilla-Vargas M, Skinner D, Maas PJM, Maas-van de Kamer H, Landis JB, Guan CJ, AlmeidaA., Specht CD (2020) Unraveling the spiraling radiation: A phylogenomic analysis of neotropical Costus L. Frontiers in Plant Science 11: 1195. https://doi.org/10.3389/fpls.2020.01195
Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kamer H, Sass C, Pinilla-Vargas M, Guan CJ, Phillips R, Almeida A, Specht CD (2022) The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L.Frontiers in Plant Science 13: https://doi.org/10.3389/fpls.2022.874322
Coastal and marine biodiversity has been declining at an alarming rate in recent years due to anthropogenic activity, climate change, ocean acidification and other factors.
To help protect and preserve these precious ecosystems, the new research project under the name of ANERIS (operAtional seNsing lifE technologies for maRIne ecosystemS) and coordinated by the Institute of Marine Sciences (ICM-CSIC) was launched under the Horizon Europe program.
ANERIS aims to contribute to improving the understanding, monitoring and protection of these ecosystems through technological, scientific and methodological innovation in the fields of marine life-sensing and monitoring.
Pensoft is joining the ANERIS consortium as a leader of WP6 Exploitation, Communication and Networking. The Pensoft team is to develop and implement sustainable communication and dissemination strategies, which will ensure the impactful knowledge exchange between partners and external stakeholders.
In addition, Pensoft is responsible for the development of a long-lasting brand identity of the project, which shall be reached by establishing and maintaining a user-friendly and eye-appealing public website. The overall visual identity of ANERIS will be supported by a set of innovatively-designed promotional materials.
The project
ANERIS project’s intro video: Towards a network of Operational Marine Biology
ANERIS launched in January 2023 and will be running until December 2026 with the support of EUR 10 million of funding provided by the European Union’s Horizon Europe program and the work on the project officially kicked off with the project’s first consortium meeting, which took place on the 8th and 9th of March 2023 in Barcelona, Spain.
The joint mission of the ANERIS partners for the next four years is to build the next generation of marine-sensing instruments and infrastructure for systematic routine measurements and monitoring of oceanic and coastal life, and their rapid interpretation and dissemination to all interested stakeholders.
In total, ANERIS aims to pioneer 11 novel technologies rerelated to marine ecosystem monitoring, data processing and dissemination:
NANOMICS – NAnopore sequeNcing for Operational Marine genomICS
MARGENODAT – workflows for the MARine GENOmics DAta managemenT
SLIM-2.0 – A Virtual Environment for genomic data analysis (ANERIS extended version)
EMUAS – Expandable Multi-imaging Underwater Acquisition System
AIES-ZOO – Automatic Information Extraction System for ZOOplankton images
AIES-PHY – Automatic Information Extraction System for PHYtoplankton images
ATIRES – Automatic underwaTer Image REstoration System
AIES-MAC – Automatic Information Extraction System for MACroorganisms
AMAMER – Advanced Multiplatform App for Marine lifE Reporting
AMOVALIH – Advanced Marine Observations VALidation-Identification system based on Hybrid intelligence
AWIMAR – Adaptive Web Interfaces for MARine life reporting, sharing and consulting
These technologies will be validated across four ANERIS case studies which aim to bridge the gaps between existing technologies and incorporate them into a functional technological framework:
High-temporal resolution marine life monitoring in research infrastructure observatories;
Improved spatial and temporal resolution of marine life monitoring based on genomics;
Large scale marine participatory actions;
Merging imaging and genomic information in different monitoring scenarios.
The final goal of the project through the creation and validation of these novel technologies and involving academia, industry, governments and civil society, is to build up the concept of Operational Marine Biology (OMB) to provide faster, higher quality, reliable, and accessible marine and coastal life data. OMB opens the door for near-real-time marine observations, data interpretation and decision making based on that data.
International Consortium
The interdisciplinary ANERIS consortium consists of 25 partnering organisations from 13 countries around Europe, the Mediterranean basin and Israel, bringing diverse expertise spanning from robotics, biooptics, marine biology and genomics, to programming and sustainability.
Many partners represent acclaimed scientific institutions with rich experience in collaboration in EU projects, specifically in the fields of marine research.
“In the present biodiversity crisis scenario, it is critical that we do not neglect basic scientific disciplines like taxonomy, since cataloguing biodiversity is a fundamental step towards its preservation.”
The knowledge of biodiversity in allegedly well-known places is not as complete as one would expect and its detailed study by researchers continues to offer surprises, is what we find out in a new study of the flora of south-central Spain.
Now, Spanish botanists from Pablo de Olavide University (Seville, Spain) have described a new plant species of the papyrus family (Cyperaceae) restricted to the La Mancha region in south-central Spain. This region is in fact well-known for classic literary fans, who might recognise the name as the main setting in Miguel de Cervantes’ (1547–1616) masterpiece Don Quixote.
Artistic recreation depicting Don Quixote and his squire Sancho Panza with the iconic La Mancha windmills, and a Carex quixotiana’s habitat. Image by Faro Míguez.
The epic novel, which tells the story of the life and journeys of Alonso Quijano, a Spanish hidalgo (nobleman), who becomes the knight-errant Don Quixote de la Mancha, is commonly considered to be one of the greatest literary works ever written, with its number of editions and translations thought to be only surpassed by those of the Bible.
The new species, now scientifically known as Carex quixotiana, belongs to sedges of the genus Carex, a group of herbs included in the papyrus family (Cyperaceae). The classification (taxonomy) of these plants is difficult, as it is a highly diverse and widely distributed genus, whose species are frequently hard to tell apart. In fact, C. quixotiana has itself evaded the eyes of expert botanists for decades, because of its close resemblance to related species.
“Cryptic species are frequent in complex plant groups, such as sedges, and integrative studies encompassing different data sources (e.g. morphology, molecular phylogeny, chromosome number, ecological requirements) are needed to unravel systematic relationships and accurately describe biodiversity patterns,”
says Dr. Martín-Bravo, senior author of the paper.
After a preliminary genetic study pointed to something odd about specimens of what was later to be known as Carex quixotiana, the authors set off on exhaustive field collecting campaigns across La Mancha. As they studied additional populations of the plant in further detail, using morphology, phylogenetics, and chromosome number, the scientists confirmed that they were looking at a species previously unknown to science. Understandably, the distribution range of the newly discovered species, restricted to the mountain ranges surrounding La Mancha (Sierra Madrona and Montes de Toledo), made the authors think about Cervantes’ masterpiece.
So far only known from 16 populations, Carex quixotiana prefers habitats with high water availability, such as small streams, wet meadows and riverside (riparian) forests.
Since little is known about the species’ demographics, including the number of mature individuals in the wild, further investigation is required to determine its conservation status. However, based on what they have learnt so far about the species, the authors of the present study assume that:
“it is an Iberian endemic with a relatively small number of populations and distribution range, which would benefit from legal protection and inclusion in in-situ/ex-situ conservation programmes.”
“In the present biodiversity crisis scenario, it is critical that we do not neglect basic scientific disciplines like taxonomy, since cataloguing biodiversity is a fundamental step towards its preservation and, thus, sustainable management,”
say the researchers.
In conclusion, the scientists point to their results as yet another proof of how much there is still to learn about Earth’s biodiversity, even when it comes to supposedly well-known organisms, such as flowering plants, and countries, whose flora is presumed to be fully documented. The “Flora Iberica”, for example, which covers Spain and Portugal, has only recently been finalised, the team reminds us.
Close-up images of reproductive parts (inflorescences known as spikes) of the newly described species Carex quixotiana. Photo by Modesto Luceño.
Research article:
Benítez-Benítez C, Jiménez-Mejías P, Luceño M, Martín-Bravo S (2023) Carex quixotiana (Cyperaceae), a new Iberian endemic from Don Quixote’s land (La Mancha, S Spain). PhytoKeys 221: 161-186. https://doi.org/10.3897/phytokeys.221.99234
The two new species of butterworts were discovered in poorly explored, remote areas in the Amotape-Huancabamba zone, a biodiversity hotspot in southern Ecuador.
A team of botanists from Ecuador, Germany, and the United States has described two new species of carnivorous plants with striking appearance. They are part of the butterworts (genus Pinguicula), a group of flowering plants with about 115 species that can catch and digest small insects with their sticky leaves. Whereas the majority of butterwort species is distributed in the northern hemisphere, these new species were discovered in the high Andes of southern Ecuador, close to the border with Peru.
Pinguicula ombrophilasp. nov. Photograph by Álvaro J. Pérez.
Carnivorous plants use animals (usually small insects) as an additional source of nutrients to compensate the nutrient deficiency of the substrate they’re growing in. This gives them a competitive advantage over other plants and enables them to thrive in challenging habitats. The tropical high Andes have a variety of such habitats, for example marshland and rocky slopes covered in constant rain and clouds.
The two new species described in the study, Pinguicula jimburensis and Pinguicula ombrophila, were found on the shore of a highland lagoon at 3400 m and on a nearly vertical rock face at 2900 m, respectively. Their small-scale habitats lie within the so-called Amotape-Huancabamba zone, which encompasses large portions of southern Ecuador and northern Peru. This area is characterized by exceptional biodiversity, due in part to the fact that the rugged terrain and varied climate of the Andes provide so many microhabitats.
Pinguicula jimburensissp. nov. Photograph by Kabir Montesinos.
“And as small and scattered as the species’ suitable habitats are, so is the species composition,”
“Both of these new species are only known from a single location, where only a few dozens of plant individuals occur in each case.”
For one of them, only one population with about 15 mature individuals was discovered, making it vulnerable even if it is hidden in an isolated, difficult-to-access area. This narrow endemism (limited distribution in a particular area) is typical of the Amotape-Huancabamba zone, and there are many more new plant and animal species awaiting discovery, Henning says.
With the description of these two new species, the number of Pinguicula species recorded in Ecuador has tripled, as previously only P. calyptrata was known, discovered by none other than Alexander von Humboldt. The authors are convinced that there are many more new species awaiting formal scientific recognition, but admit that lately it has been a race against time.
“The results presented in this study show that the assessment of the Neotropical biodiversity is far from complete. Even in well-known groups such as the carnivorous plants, new taxa are continuously discovered and described, in particular from remote areas that become accessible in the course of the unlimited urban sprawl,” Henning, Pérez, and their colleagues write in a scientific article dedicated to the new plants that was published in the peer-reviewed journal PhytoKeys. “This is both encouraging and worrying at the same time“.
“Relentless urban sprawl and the accompanying destruction of habitats pose a massive threat to biodiversity in general, and to the tightly-knit and specialized organisms that depend on their fragile microhabitats in particular,”
Henning points out.
Although the two new species are relatively safe from direct human interference – as they both occur within protected areas – human-induced climate change is increasingly affecting ecosystems regardless of location, especially those that rely on regular precipitation, such as mountain wetlands.
The dependence on a constant climate is even reflected in the name of one of the two new species: Pinguicula ombrophila means “rain-loving butterwort”, as the plant prefers very wet conditions, receiving moisture from the waterlogged paramo-soil and enjoying the frequent rain and fog typical for this area.
Pinguicula ombrophilasp. nov. Photograph by Álvaro J. Pérez.
Additional information:
The expedition to Cerro Plateado in 2016 was supported by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación de la República del Ecuador (SENESCYT, Arca de Noé Initiative; S. R. Ron and O.Torres–Carvajal, Principal Investigators) and in 2021 by the International Palm Society (IPS) Endowment Fund and by Claes Persson (University of Gothenburg), the expedition also received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 865787, GLOBAL project). The Open Access Fund of the Leibniz Association covered the publication costs for the article.
Original source:
Pérez ÁJ, Tobar F, Burgess KS, Henning T (2023) Contributions to Ecuadorian butterworts (Lentibulariaceae, Pinguicula): two new species and a re-evaluation of Pinguicula calyptrata. PhytoKeys 222: 153-171. https://doi.org/10.3897/phytokeys.222.98139
The Southern Flying Squirrel (Glaucomys volans) was spotted in an area where forestry and silvicultural activities are carried out for the sustainable exploitation of pine logging and timber.
The presence of The Southern Flying Squirrel (Glaucomys volans) was documented in Honduras for the first time after 43 years. The record is from a site of the forest management plan called “Las Lechuzas”, municipality of Concordia, department of Olancho.
Apart from this newly confirmed location, the species has also been recorded in Zambrano, department of Francisco Morazán in 1935, in Gracias, department of Lempira, and finally in the Department of paradise in 1979. Based on these records, Honduras is considered the southernmost distribution known for this species.
G.volans before it started to glide to the oaks. Photograph by MATC.
The discovery was possible thanks to a project of El Aserradero Sansone, a company focused on sustainable forestry activities in Honduras, and is published in a research article in the peer-reviewed journal Check List.
This finding confirmed that there is at least one population of G. volans in the country, at the Las Lechuzas site, which is currently also the southernmost locality known in its global distribution.
The species has been assessed as Least Concern by the IUCN (meaning it has stable populations), but is considered Data Deficient on the Red List of Honduran species. Considering the low number of records and the high rate of destruction of pine forests in Honduras, G. volans is a priority for conservation in the country.
Part of the team that helped to encounter the squirrel. Photograph by MATC.
In support of the conservation of the biodiversity of Las Lechuzas, the company Sansone is now committed to giving priority to the conservation of G. volans in the area. The use of artificial shelters for G. volans is also being studied, as the animal is at greater risk when its nests are disturbed.
Based on recommendations suggested in the study, Sansone will work to increase the quantity and quality of tree seedlings that will grow in the canopy and educate people in the community about the need to protect pine ecosystems and rare animals. Additionally, within the 3,139.62 ha of the management plan of Las Lechuzas, there are 836.63 ha that have been declared as hydrological protection zones. Currently, there is no record of G. volans in any protected area of Honduras.
“As a professional with an experience of 43 years, I capitalize on the detection of the Flying Squirrel as an event that opens the doors to the true dimension posed by the Honduran forest law in the proper administrative management. That includes biodiversity conservation and protection and rationality of the protection of natural resources. The latter turns out to be of greater importance in view of the strong social pressures in favor of the conversion of the use of forest land destined for extensive agriculture and livestock, as well as the environmental impacts caused by climate change that is being sustained by the mismanagement of our resources,”
says José Muñoz, one of the authors in the study.
About El Aserradero Sansone:
El Aserradero Sansone was founded in 1957, characterized by compliance with the laws of Honduras, especially those related to forest management. It has developed an evolutionary and progressive process of achievements in the implementation of management plans, including such related to the evaluation of environmental impacts.
In this sense, the environmental importance in the management of natural resources has continued to promote evolution, defining the need to venture into aspects related to the conservation of flora and fauna as well as the incidence of climatic and environmental factors in the administration of natural resources. Within this responsibility, the last challenge that the company Sansone is welcoming with great optimism lies in adhering to the international criteria and indicators of the forest certification process through the principles of FSC (Forest Stewardship Council) and through the GFA company of Hamburg, Germany.
Research article:
Turcios-Casco MA, Hernández GS, Mancía FE, Molinero CF, Muñoz J, López CM, Ordóñez-Garza N (2023) Unseen for 43 years! A new occurrence of Glaucomys volans (Linnaeus, 1758) (Rodentia, Sciuridae) in Honduras. Check List 19(1): 133-139. https://doi.org/10.15560/19.1.133
Spectacular subtropical montane forest scenery in Yushan National Park. Credit: Ms. Wen-Ling Tsai
Montane forests, known as biodiversity hotspots, are among the ecosystems facing threats from climate change. To comprehend potential impacts of climate change on birds in these forests, researchers set up automatic recorders in Yushan National Park, Taiwan, and developed an AI tool for species identification using bird sounds. Their goal is to analyze status and trends in animal activity through acoustic data.
Compared to traditional observation-based methods, passive acoustic monitoring using automatic recorders to capture wildlife sounds provides cost-effective, long-term, and systematic alternative for long-term biodiversity monitoring.
The authors deployed six recorders in Yushan National Park, Taiwan, a subtropical montane forest habitat with elevations ranging from 1,200 to 2,800 meters. From 2020 to 2021, they recorded nearly 30,000 hours of audio files with abundant biological information.
An automatic recorder was installed on a tree to capture the surrounding soundscape. Credit: Ph.D. Candidate Shih-Hung Wu
However, analyzing this vast dataset is challenging and requires more than human effort alone.
To tackle this challenge, the authors utilized deep learning technology to develop an AI tool called SILIC that can identify species by sound.
SILIC can quickly pinpoint the precise timing of each animal call within the audio files. After several optimizations, the tool is now capable of recognizing 169 species of wildlife native to Taiwan, including 137 bird species, as well as frogs, mammals, and reptiles.
In this study, authors used SILIC to extract 6,243,820 vocalizations from seven montane forest bird species with a high precision of 95%, creating the first open-access AI-analyzed species occurrence dataset available on the Global Biodiversity Information Facility. This is the first open-access dataset with species occurrence data extracted from sounds in soundscape recordings by artificial intelligence.
The Gray-chinned Minivet (left) displays a secondary non-breeding season peak (right) which is possibly related to flocking behavior. Credit: Shih-Hung Wu, Ph.D. Candidate
The dataset unveils detailed acoustic activity patterns of wildlife across both short and long temporal scales. For instance, in diel patterns, the authors identify a morning vocalization peak for all species. On an annual basis, most species exhibit a single breeding season peak; however, some, like the Gray-chinned Minivet, display a secondary non-breeding season peak, possibly related to flocking behavior.
As the monitoring projects continue, the acoustic data may help to understand changes and trends in animal behavior and population across years in a cost-effective and automated manner.
The sound of Gray-chinned Minivet. Credit: Ph.D. Candidate Shih-Hung Wu
The authors anticipate that this extensive wildlife vocalization dataset will not be valuable only for the National Park’s headquarters in decision-making.
“We expect our dataset will be able to help fill the data gaps of fine-scale avian temporal activity patterns in montane forests and contribute to studies concerning the impacts of climate change on montane forest ecosystems,”
they say.
Original source:
Wu S-H, Ko JC-J, Lin R-S, Tsai W-L, Chang H-W (2023) An acoustic detection dataset of birds (Aves) in montane forests using a deep learning approach. Biodiversity Data Journal 11: e97811. https://doi.org/10.3897/BDJ.11.e97811
You can also follow Biodiversity Data Journal on Twitter and Facebook.
The Cinereous Vulture (Aegypius monachus) – also known as Black Vulture, Monk Vulture or Eurasian Black Vulture – is the largest bird of prey in Europe.
Globally classified as Near Threatened, its populations in southern Europe, once abundant, have been experiencing a dramatic decline since the late 1800s. So dramatic, in fact, that by the mid-1900s, these birds had already been nowhere to be seen throughout most of their distributional range across the Old Continent. In Bulgaria, the species has been considered locally extinct since 1985.
Thanks to the re-introduction initiative that was started in 2015 by three Bulgarian non-governmental organisations: the leading and oldest environmental protection NGO in Bulgaria: Green Balkans, the Fund for Wild Flora and Fauna and the Birds of Prey Protection Society, the species is now back in the country.
By mid-2022, the team imported a total of 72 individuals from Spain and European zoos, before releasing them in strategically-chosen sites in the Eastern Balkan Mountains and the Vrachanski Balkan Nature Park in Northwestern Bulgaria.
The team brought 63 immatures from Spain, where the birds had been found in distress and rehabilitated in aviaries. The other nine juveniles were captive-bred in zoos, and then released by means of hacking, which involves an artificial nest, from where the fledglings can gradually ‘’take off” to a life in the wild.
The re-introduction campaign to date is presented in a research article, published in the open-access Biodiversity Data Journal. There, the scientists led by Ivelin Ivanov (Green Balkans), report on and discuss the effectiveness and challenges of the different release methods and offer tips on the conservation and re-introduction.
For example, hacking proved to be inefficient for establishing an entirely new core (or nucleus) population of Cinereous Vultures in the Balkan Mountains in Bulgaria. It did not work for supplementing a small settled group of individuals either.
Instead, the team recommend the aviary method and delayed release, where captive-bred birds are introduced to the new locality after a period of acclimatisation, where the birds can gain life experience to the local environment.
“The Cinereous Vulture re-introduction establishment phase in Bulgaria in the two first release sites is running according to the plan, and the first results are satisfactory,”
the scientists comment.
“Two distinct nuclei are now created, and the species started breeding, which might be a reason to up-list it in the Red Data Book of Bulgaria from ’Extinct’ to ‘Critically Endangered.’”
These two newly created breeding nuclei of the Cinereous Vulture in Bulgaria are the second and third of their kind in the Balkan Peninsula.
“Following a dramatic decline throughout the 20th century for decades, the species had remained in only one breeding colony in Dadia-Lefkimi-Soufli Forest National Park in north-eastern Greece. Now, exchange between the three colonies will facilitate the exchange of individuals, ensure long-term stability, and give rise to the regional population,”
the authors of the study say.
However, the team points out that further monitoring and modelling and adaptive management are indispensable for the long-term persistence of the new national population. Now that there is already evidence that the imported vultures have been successfully breeding in Bulgaria, there is one step left before it can be officially confirmed that the Cinereous Vulture species has successfully re-established in the country. This conclusion can only be made after the core breeding populations begin to produce about ten chicks every year and after the locally fledged individuals begin to reproduce on their own. Such results are expected by 2030.
The re-introduction of the Cinereous Vulture is the latest in a series of conservation projects focused on birds of prey in Bulgaria.
First, in a programme that started in 2009, the Griffon Vulture was successfully re-introduced in Bulgaria after about 50 years of “extinction”. In fact, the team took a lot of the know-how and methods used in that project to apply in the present project. The success story was published in a research paper in the Biodiversity Data Journal in 2021.
In fact, the very same day in 2021 saw two publications in the Biodiversity Data Journal that reported on re-introduction successes involving birds of prey in Bulgaria, which had gone missing for decades. The second instance was the discovery of the first nesting Saker Falcons in twenty years
Both scientific publications are part of a dynamic ‘living’ collection, titled “Restoration of species of conservation importance”, whose aim is to collate publicly available research studies reporting on the reintroduction and/or restocking of animal and plant species of conservation importance around the world. The collection was inspired by the “International Scientific Conference on Restoration of Conservation-Reliant Species and Habitats” held in Sofia, Bulgaria, in 2020.
“The restoration of species is one of the most important conservation tools in the context of constantly intensified human-driven global biodiversity loss. The reintroduction/restocking activities are related to significant research and data gathering before and during the work process, which ensures their sustainable success,”
explain the collection editors.
Research article:
Ivanov I, Stoynov E, Stoyanov G, Kmetova–Biro E, Andevski J, Peshev H, Marin S, Terraube J, Bonchev L, Stoev IP, Tavares J, Loercher F, Huyghe M, Nikolova Z, Vangelova N, Stanchev S, Mitrevichin E, Tilova E, Grozdanov A (2023) First results from the releases of Cinereous Vultures (Aegypius monachus) aiming at re-introducing the species in Bulgaria – the start of the establishment phase 2018–2022. Biodiversity Data Journal 11: e100521. https://doi.org/10.3897/BDJ.11.e100521
You can also follow Biodiversity Data Journal on Twitter and Facebook.
Apart from communication, dissemination and data management tasks, within SOLO, Pensoft is also responsible for the development of the key project output: the SOLO platform
As the foundation of our food systems, healthy soils are essential for life on Earth. They provide clean water and habitats for biodiversity while contributing to climate resilience and support our cultural heritage and landscapes and are the basis of our economy and prosperity.
Soils are under multiple pressures, including climate change, urbanisation, pollution, overexploitation, nutrient mining and biodiversity loss with the European Commission estimating that under current management practices, it’s between 60% and 70% of our soils that are unhealthy.
funding an ambitious research and innovation programme with a strong social science component;
putting in place an effective network of 100 living labs and lighthouses to co-create knowledge, test solutions and demonstrate their value in real-life conditions;
developing a harmonised framework for soil monitoring in Europe;
raising people’s awareness on the vital importance of soils.
Achieving those objectives requires a direct involvement of a wide range of stakeholders, bringing together multiple perspectives in ecological, environmental, economic and social contexts.
The project
SOLO launched in December 2022 and will be running until November 2027 with the support of 5 million euros provided by the European Union’s Horizon Europe program.
SOLO will identify current knowledge gaps, drivers, bottlenecks, and novel research and innovation approaches to be considered in the European Soil Mission research and innovation roadmap.
The project aims to create a knowledge hub for soil health research and innovation that will last beyond the project’s lifespan by establishing strategic partnerships and by implementing a participatory and transparent process.
The project will implement Think Tanks, one for each Mission objective, with the aim of co-creating knowledge and identifying the knowledge gaps, drivers, bottlenecks, and novel approaches in terms of research and innovation.
The Think Tanks will consist of groups of experts who will together tackle the issues regarding soil health, set out in the EU Mission ‘A Soil Deal for Europe’. Together with an open digital platform, based on Pensoft’s ARPHA Writing Tool, the Think Tanks will function as an operational tool for implementing a participatory process that will last beyond SOLO’s lifespan.
The project will engage users at regional, national and European level to support the co-design of comprehensive research and innovation roadmaps for the Soil Mission and identify knowledge gaps and novel avenues for European soil research and innovation in the context of the Soil Mission objectives.
Furthermore, SOLO will identify, describe and assess the drivers and barriers to soil health in Europe, develop dynamic roadmapsas effective research and innovation agendas for the Soil Mission with a particular focus on the integration and synthesis across sectors.
The 3rd Global Soil Biodiversity Conference (March 2023; Dublin, Ireland) saw several talks by researchers involved in the SOLO project, while communication materials provided additional information to the delegates who stopped by the Pensoft exhibition stand.
You can find out more about the project on the Soils for Europe (SOLO) website: soils4europe.eu. Stay up to date with the project’s progress on Twitter (@soils4europe) and LinkedIn (/Soils-for-Europe).
The innovative open-access digital publishing platform provides a forum for open review and co-creation of the European Mission Soil research and innovation roadmaps in support of more integrative and encompassing policies aiming to achieve improvements in soil health and a thriving environment for soil-related research in Europe.
The consortium
SOLO’s consortium comprises a European network of established professionals from the academic and non-academic fields from various backgrounds, who have agreed to work collaboratively to fulfil the objectives set by the EU Mission “A Soil Deal for Europe” which aims to create a shared research and innovation vision that will accelerate Europe’s trajectory towards sustainable soil management and restoration as part of a wider, green transition in rural and urban areas.