Imagine having access to all the two billion biological collections of the world from your desktop! Not only to browse, but to search with artificial intelligence. We recently published a paper where we envisage what might be possible, such as searching all specimen labels for a person’s signature, studying the patterns of butterflies’ wings, or reconstructing a historic expedition.
Numbers of digital images from biodiversity collections are increasing exponentially. Herbariums have led the way with tens of millions of images available, but images of pinned insects will soon overtake plants.
At one time, if you wanted access to biological collections, you had to travel. Now we are used to visiting collections online, where we can view images of specimens and their details on our desktops. Nevertheless, biological collection images are still dispersed and this limits their effective use, not just for people, but also for computers. One of the promises of making specimens digital is being able to apply machine learning to these images. Yet the real benefits of machine access to specimens can only be realised through massive access to collection images and the ability to apply these techniques to hundreds of collections and millions of specimens.
In our paper in Biodiversity Data Journal, we examined some of the numerous uses for machine learning in digital collections. These include an enormous potential to extract traits of organisms, from the size and shape of different organs, to their colours, patterns, and phenology. Imagine examining collections globally for the variation and evolution of wing coloration in butterflies, or studying the size and shape of leaves in research that transverses habitats and gradients of latitude and altitude. We would not only be able to study the intricacies of evolution, but also practical subjects, such as the mechanics of pollination in insects, adaptations to drought in plants, and adaptations to weediness in invasive species.
Machine access to these images will also provide an unparalleled view of the history of the biological sciences, the specimens used to describe species, the evidence for evolution, the people involved and institutions that contributed. Such transparency may reveal some amazing stories of scientific exploration, but will undoubtedly also shed light on some of the less exemplary actions of colonialism. Yet if we are to redress the injustices of the past we need to have a balanced view of collections, and we should do this openly.
With such unparalleled access to collections, we could travel vicariously to times and places that are hard to reach in any other way. Fieldwork is expensive and time-consuming, and can’t provide the historic perspective of collections, let alone the geographic extent. Furthermore, digital resources have the potential to democratise collections, allowing anyone the opportunity to study these collections irrespective of location.
Is such a vision of integrated digital collections possible? It certainly is! The technologies already exist, not just for machine learning, but also to create the infrastructure to provide access to millions of digital images and their metadata. Initiatives, such as DiSSCo in Europe and iDigBio in the USA are moving in this direction. Yet, we conclude that the main challenge to realising this vision of the future is a sociopolitical one. Can so many institutions and funders work together to pool their resources? Can collections in rich countries share the sovereignty of their collections with the countries where many of the specimens originated?
If you too share the dream, we encourage you to support or contribute to initiatives working in this direction, whether through funding, collaboration, or sharing knowledge. If the full potential of digital collections is to be realised, we need to think big and work together.
Research article:
Groom Q, Dillen M, Addink W, Ariño AHH, Bölling C, Bonnet P, Cecchi L, Ellwood ER, Figueira R, Gagnier P-Y, Grace OM, Güntsch A, Hardy H, Huybrechts P, Hyam R, Joly AAJ, Kommineni VK, Larridon I, Livermore L, Lopes RJ, Meeus S, Miller JA, Milleville K, Panda R, Pignal M, Poelen J, Ristevski B, Robertson T, Rufino AC, Santos J, Schermer M, Scott B, Seltmann KC, Teixeira H, Trekels M, Gaikwad J (2023) Envisaging a global infrastructure to exploit the potential of digitised collections. Biodiversity Data Journal 11: e109439. https://doi.org/10.3897/BDJ.11.e109439
Looking into biological collections, pseudoscorpion researcher Catalina Romero-Ortiz found five new species and a new genus of these interesting creatures.
Colombia is a South American country full of beautiful landscapes, indigenous cultures, delicious food, and warm people. In its territory, the country hosts an amazing diversity of birds, amphibians, vascular plants, fishes, among other biological groups, which makes it one of the biodiversity hotspots on Earth. The nation’s recent steps toward peace have allowed for the exploration of regions previously off-limits due to conflict.
Of all this diversity in Colombia, pseudoscorpions, little arachnids that resemble scorpions, are very little known. They can get mistaken for mites or fleas due to their size, but are entirely harmless to humans, with their venom glands only used for hunting and self-defense. Their cryptic behaviors make them difficult to find, which in turn makes them difficult to study. For a biodiversity hotspot like Colombia, researchers expect that there are more species out there than the 63 that are already known to science.
Looking into biological collections, pseudoscorpion researcher Catalina Romero-Ortiz found five new species and a new genus of these interesting creatures. Together with Dr. Mark Harvey from the Western Australian Museum and Dr. Carlos Sarmiento from the Instituto de Ciencias Naturales of the National University of Colombia, they recently described those findings in the scientific journal ZooKeys. They also proposed a new classification for a species that was only known by its description, contributing to the broader understanding of pseudoscorpions in Colombia. The star of their research is the newfound genus Paciwithius.
A peculiar name
To understand the meaning of the genus name, which refers to the Latin for peace, pax, we should look at the history of this beautiful country. Since the early 20th century, Colombia has grappled with an ongoing civil conflict, particularly in rural areas. Starting in 1946 with the rise of the Guerrilla, this historic period named “La Violencia” claimed millions of lives. Over the years, the dynamics of the conflict evolved, but violence persisted. The 1980s witnessed the rise of the narco-era, plunging the entire nation into a vortex of violence. With the emergence of paramilitary forces vying for control of the drug trade, violent clashes with guerrillas further escalated the bloodshed.
In 2012, peace negotiations began in Colombia, and in 2016 the Peace agreement with the biggest Guerrilla group was established. Prior to this, a process of reconciliation was initiated with paramilitary groups. With the perception that for a true peace there has to be a comprehensive understanding of past events in order to forgive, the “Comisión de la verdad” (Truth commission) was created. This Commission did incredible work gathering testimonials of the war from all sides and making them accessible to the public. Remembering is essential to healing and moving on.
In the end, peace for this country has a lot to do with people, territory, and biodiversity. Areas that were previously unexplored due to violence are now accessible, and although war is far from over, this is a good path to follow. A long one, but, we hope, full of life.
Research article:
Romero-Ortiz C, Sarmiento CE, Harvey MS (2023) A new genus and five new species of pseudoscorpions (Arachnida, Pseudoscorpiones, Withiidae) from Colombia. ZooKeys 1184: 301-326. https://doi.org/10.3897/zookeys.1184.106698
An attempt to explore the history of the spread of four non-indigenous invasive tree species in one of the most important Hungarian forest-steppe forests of high conservation value.
Guest blog post by Arnold Erdélyi, Judit Hartdégen, Ákos Malatinszky, and Csaba Vadász
Today, almost everyone is familiar with the term “biological invasion”. Countless studies have been carried out to describe the various processes, and explore the cause and effect, and several methods have been developed in order to control certain invasive species. However, one of the biggest puzzles is always the question of how it all happened. It is not always easy to answer, and, in general, the smaller the area, the more difficult or even impossible it is to answer. In the course of our work, we attempted to explore the history of the spread of four, non-indigenous invasive tree species in one of the most important Hungarian forest-steppe forests of high conservation value, the Peszér Forest (approximately 1000 ha). Last week, we published our study in the journal One Ecosystem.
The Far Eastern tree of heaven (Ailanthus altissima), as well as the North American black cherry (Prunus serotina), the box elder (Acer negundo) and the common hackberry (Celtis occidentalis) are among the worst invasive plant species in Hungary. They are also responsible for serious conservation and economic problems in the Peszér Forest.
Invasion of tree of heaven (top left) and common hackberry (top right) in poplar stands, carpet of seedlings of black cherry (bottom left), and monodominant stand of box elder, regrown from stump after cutting (bottom right)
Historical reconstructions of the spread of invasive species are most often based on only one, or sometimes a few aspects. We used six approaches simultaneously:
we reviewed the published and grey literature,
extracted tree species data from the National Forest Database since 1958,
conducted a field survey with full spatial coverage (16,000 survey units (25×25 m quadrats)) – instead of sampling,
recorded all the largest (and presumably the oldest) individuals for annual ring counts,
performed hotspot analyses on the field data
collected local knowledge.
Cutting down the oldest common hackberry trees in order to count the annual rings from trunk discs
Our results show that each approach provided some new information, and without any of them the story revealed would have been much shorter and more uncertain. We have also highlighted that at the local level, the use of one or two aspects can be not only inadequate but also misleading.
From the literature it was possible to determine the exact place and date of the first occurrence of the tree of heaven and the black cherry. However, in the case of black cherry, for example, it was only possible to piece together the circumstances of the first plantings by combining three different sources. The first occurrences of box elder were found in forestry data. Finally, in the case of the common hackberry, searching for old individuals and determining their age gave the best results.
Common hackberry in the Peszér forest according to the recent forestry data (2016) and the field survey (2017-2019). The difference is clear: in the official forestry database, the tree species is underrepresented several times over
A well-explored story of a biological invasion can go a long way in making more and more people understand that controlling these non-indigenous species can only be beneficial. On the other hand, it can also help to strengthen conservation efforts, for example by increasing the volunteer workforce, which can be a major factor in the reduction of certain species. We hope that our work and the approaches we have taken will serve as a good model for exploring other invasion stories around the world.
Winter snapshot from the Peszér Forest, a diverse forest edge habitat along an inner road.
Research article:
Erdélyi A, Hartdégen J, Malatinszky Á, Vadász C (2023) Historical reconstruction of the invasions of four non-native tree species at local scale: a detective work on Ailanthus altissima, Celtis occidentalis, Prunus serotina and Acer negundo. One Ecosystem 8: e108683. https://doi.org/10.3897/oneeco.8.e108683
Guest blog post by John Midgley and Burgert Muller
Despite centuries of study, our knowledge of the natural world is still woefully inadequate. This is especially true for inaccessible regions, but these regions often hold interesting species of communities to study. The best studied country in the Afrotropics is South Africa, but nearby countries have received much less attention.
Malaise trap over a stream at Sehlabathebe National Park.
The Kingdom of Lesotho is nestled within the borders of South Africa and this landlocked country shares many ecological similarities with its neighbour. However, Lesotho has an average altitude that is 900 m higher, leading to differences in its fauna and flora, especially in its alpine areas, as these are much more extensive than in South Africa.
View south-east from Moteng Pass in northern Lesotho.
While the insects of South Africa are well studied, in particular the True flies (Diptera), Lesotho remains largely undersampled for flies, and that in combination with its unique habitat has created an opportunity to contribute to the country’s biodiversity knowledge.
Malaise trap at Roma Trading post lodge. Even though the area is a modified garden site, Lesotho lacks basic biodiversity data and species were collected for the first time from Lesotho.
With discovery on their minds, Dipterists from four institutions (KwaZulu-Natal Museum, National Museum, Albany Museum and Royal Museum for Central Africa) planned to undertake several fieldtrips to Lesotho. The aim was not to just increase the holdings of the institutions, as this would be short-sighted. Instead, the goal was to promote conservation and to improve on the current knowledge on the Diptera of Lesotho. The rest is natural history, and the special collection on the Diptera of Lesotho in African Invertebrateswas born.
Pristine grassland at Sehlabathebe National Park. Large parts of Lesotho are modified by agriculture, but in remote areas pristine sites remain.
Even areas that have received little attention are not complete blank slates, and a handful of expeditions to Lesotho were undertaken in the mid-20th Century, most notably by the Lund Zoological Institute, The KwaZulu-Natal Museum, The Durban Natural Science Museum and the Albany Museum, but large targeted and purposeful collections are not common. The specimens from these expeditions are housed at various international and local South African institutions, which do have some limited collections of Lesotho material.
Letšeng la Letsie is the largest alpine lake in Lesotho, but despite being a protected area is heavily influenced by grazing.
We added three further expeditions to this, in December 2021, November 2022 and January 2023, adding over 7000 specimens to the National Museum, Bloemfontein and KwaZulu-Natal Museum collections. The details of these specimens can be found in our recently published introduction to the Special Collection along with photographs of the collection sites from our expeditions.
Guest blog post by Cássio Cardoso Pereira, Daniel Negreiros, and Geraldo Wilson Fernandes
A recently published study by Pereira et al. in the prestigious journal Nature Conservation says that the solution for climate warming and environmental crises is not solely about curbing temperature by planting trees or even by changing our energy matrix. It is about changing our perspective on ourselves and the way we do things. There is a long list of things we have to do if we want to be successful. One important thing is changing policy actions.
This is a reflection of increased public attention to climate change at the expense of other biodiversity issues and may have contributed to a much higher number of UNFCCC Conferences of the Parties (COPs) linked to climate change (27 COPs) compared to those about biodiversity (15 COPs) to this date. Governments should not solely focus on curbing greenhouse gas emissions into the atmosphere. This asymmetry between environmental agendas can harm not only biodiversity, but also climate change, as environmental issues are inexorably interconnected.
Web search interest for environmental topics around the world from 2004 to the present according to Google TrendsTM. Comparison of intergovernmental bodies (A), conventions (B) and terms (C) related to climate (blue) and biodiversity (red). Values represent the percentage of maximum (peak popularity). IPCC: Intergovernmental Panel on Climate Change; IPBES: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; UNFCCC: United Nations Framework Convention on Climate Change.
In a society with broad and deep environmental problems, government, private sector and non-governmental efforts should include other dimensions of nature in their agenda. Biodiversity, the unique variety of life on our planet, underpins our cultural, economic, and social well-being. The destruction of ecosystems undermines nature’s ability to regulate greenhouse gas emissions and protect us against extreme weather, thus accelerating climate change and increasing our vulnerability to it. Therefore, it is puzzling that policy-makers are still over-focused on the climate component.
We argue here that the climate change issue is important and urgent. However, this problem cannot be solved without considering the picture as a whole. In this way, changes in land use must be integrated into climate models so that we can achieve a more detailed representation that increases our ability to predict how local impacts of change in land use will affect the future of biodiversity at a global level.
We emphasise that this path is necessary, but it is still winding. There is much to pass on to society in terms of ecological awareness. The spotlight is on climate change, at least in part, because everyone already knows how to get involved in climate action in an accessible way. However, the degradation of biodiversity can be difficult to notice, especially for someone who does not get out and experience nature regularly. Therefore, a big question is how much we still have to learn about the various ecosystems across the planet, their delicate balance and interaction with their wider environment, and indeed the climate.
Reference:
Pereira CC, Negreiros D, Barbosa M, Goulart FF, Dias RL, Melillo MC, Camarota F, Pimenta MA, Cruz M, Fernandes GW (2023) Has climate change hijacked the environmental agenda? Nature Conservation 53: 157-164. https://doi.org/10.3897/natureconservation.53.110961
Guest blog post by Yu Hisasue, Kazuhiko Konishi, and Kenji Takashino
Parasitoid wasps have developed behaviors to adapt to the ecology of various hosts and overcome their means of avoiding parasitism. Host searching behavior is a crucial stage for parasitoids, not only for efficient host search, but also for competing with other parasitoids that exploit the same host as a resource. A variety of such behaviors has been reported, including utilizing chemical or sonic cues. Parasitoid wasps select their strategies based on their own morphology, their host, and the host’s habitat.
Parasitoid wasps that challenge the ant society are known to have highly specialized morphologies and behaviors.
Female of Ghilaromma orientalis hanging from the grass above the ant trail with her head facing the trail.
All members of the subfamily Hybrizontinae are ant parasitoids, and specialize to the ant society, representing the third most diverse group of ant parasitoid wasps after Eucharitidae and Neoneurini. The oviposition behavior has been reported for three species belonging to three different genera in Hybrizontinae: Ogkosoma cremieri, Neohybrizon mutus, and Hybrizon buccatus. In these species, the females hover over an ant trail, and when they come across ant larvae carried by workers, they attack and lay eggs on the ant larvae.
No reports have been made for oviposition behavior in the genus Ghilaromma. G. orientalis was suggested to be a specialist of Lasius nipponensis, but its oviposition behavior was unknown.
Female Ghilaromma orientalis using her front legs to contact an ant larva and directing her abdomen towards it, while maintaining a firm grip on the grass with her hind legs.
In our ten years of frantic observation, we were fortunate enough to observe the parasitic behavior of G. orientalis a single time. On 20 October 2015, Kenji Takashino observed the oviposition and took pictures of it on his phone.
He noticed that the female, hung on the grass growing along the ants’ trail on its hind legs with its head down, and when workers with larvae pass by, stretched its abdomen toward the larvae with its hind legs remaining on the grass.
Female Ghilaromma orientalis maintaining a firm grip on the grass with her hind legs while adjusting her body position to oviposition onto a larva being carried away by an ant.
There are different merits and demerits of the two strategies in Hybrizontinae. The active type has the advantage of covering a wider search area and enabling the movement of the parasitoid to areas where the ants carrying larvae are located. However, this strategy has the drawback that hovering of parasitoid wasps over an ant trail alerts the ants and prevents larva-carrying ants from exiting the nest entrance or covered area. In addition, ants have been observed to open their mandibles to threaten hovering wasps, which then occasionally fail to fly or get captured by worker ants.
Workers of Lasius nipponensis with their mandibles open, alerted to the hovering Ogkosoma cremieri.
The ambush type has the limitation of a narrow search area. As ant larvae are not always conveniently transported by workers close to the wasp, narrowing the search area directly leads to a decrease in parasitic opportunities. However, the ambush type strategy affords G. orientalis the advantage of laying eggs without being noticed by ants and in a narrow environment where wasps cannot fly in active type.
In addition, we report a new host ant (Lasius cf. fuliginosus) for G. orientalis. Some members of this species group are known to transport their larvae outside the nest. Therefore, it is plausible that G. orientalis may use not only a single ant species, but multiple L. fuliginosus-group species that have a habit of transporting larvae outside the nest.
Although we made only one observation of the wasp, we compared and discussed the other ecological information and parasitic behavior of closely related species using observations, literature, and studies on the parasitic behavior of other well-studied parasitoid wasps.
Research article:
Hisasue Y, Konishi K, Takashino K (2023) An alternative host searching strategy found in the subfamily Hybrizontinae (Hymenoptera, Ichneumonidae). Journal of Hymenoptera Research 96: 629-639. https://doi.org/10.3897/jhr.96.106836
Guest blog post by Cássio Cardoso Pereira, Gabriela França Fernandes, and Walisson Kenedy Siqueira
We are bombarded day and night with slot-machine invitations from journals, books, and events such as congresses and lectures. Predatory publishing has reached alarming levels in biology, which is why we published an editorial in the journal Neotropical Biology and Conservation to alert the community, show the modus operandi of these publishers, and pass on good practices so that researchers, especially beginners, can escape this trap.
Piggybacking on the open access movement, numerous predatory publishers have emerged in search of easy profits. These cybercriminals take advantage of the publish-or-perish culture without providing any information about their peer-review protocols, concerned not with the scientific, bibliographic, or ethical aspects of publishing, but with the money received from authors.
The number of predatory publishers has grown exponentially in recent years and spread across all areas of knowledge, including biology. It is a common practice of these journals, often with an equally fake editorial staff, to send electronic invitations to potential authors to publish articles. These invitations are often facilitated by initial screenings of the emails of corresponding authors available on the internet. The emailed invitations from the supposed editors often stress that the author’s work is sound and, since it has already gone through the scrutiny of the editorial board, requires only the payment of a fee to publish it, with no need for further peer review.
Invitations to join the editorial board of these journals are also frequent, mostly intended to take advantage of the scientists’ prestige. Instead of editing articles, these invited editors are used as poster boys, i.e., they have their names published on the journal’s website, thus attracting unsuspecting authors to submit their manuscripts.
These journals are generally not included in the directory of open access journals (DOAJ) and are not indexed in the main bibliometric databases, such as Google Scholar, SciELO, Scopus, and Web of Science, for the simple reason that they do not meet their inclusion criteria. The websites of these journals often have little information about the editorial board, have a fake International Standard Serial Number (ISSN), lack transparency regarding their scope, provide no indication of a policy of retraction, have no transparency regarding copyright transfer, and provide very vague contact information, often omitting the address of the journal’s office.
In addition to papers, there are also invitations to publish books and book chapters with fake International Standard Book Numbers and dubious editorial boards. There is also a flood of invitations to predatory meetings, such as online conferences, symposia, workshops, and lectures. These often have websites that are equally confusing and never linked to a university or a postgraduate program. Above all, one should consult advisors, supervisors, or senior colleagues about the invitation and the sender’s academic reputation. In any case, one must pay attention not only to the citation metrics but also, mainly, to their editorial board, ISSN, ISBN, contact information, and relationships with recognized institutions.
When we analyze the impacts of predatory publishing on the scientific community, the worst problems are:
the dissemination of erroneous information about scientific problems of interest
the facilitation of plagiarism
the waste of public resources intended for publication
the appointment of researchers at universities and research institutes based on curricula full of doubtful publications, generating negative cascading effects that undermine higher education as a whole.
The damage done to society can be even worse. Governments, large companies, and decision-makers can be misled by false information, resulting in attitudes that undermine responses to major human problems such as climate change, biodiversity, and pandemics.
Efforts to fight predatory publishers require collaboration and support at higher levels. Governments need to create regulatory agencies that carefully and systematically evaluate the activities carried out by scientific journals. Science funding agencies should require that publication fees be paid only to publishers that adhere to an internationally recognized set of transparency and ethical rules. We need to discuss our values and incentives in the academic community, so we can start prioritizing quality over quantity. This would provide a reference point for research, help design coherent interventions, and improve information and public policy in favor of society and the environment.
Reference:
Pereira CC, Mello MAR, Negreiros D, Figueiredo JCG, Kenedy-Siqueira W, Maia LR, Fernandes S, Fernandes GFC, Ponce de Leon A, Ashworth L, Oki Y, de Castro GC, Aguilar R, Fearnside PM, Fernandes GW (2023) Beware of scientific scams! Hints to avoid predatory publishing in biological journals. Neotropical Biology and Conservation 18(2): 97-105. https://doi.org/10.3897/neotropical.18.e108887
Guest blog post by Natalia Alvarado-Arias, Vinicio Moya-Almeida, Francisco Cabrera-Torres, and Andrea Medina-Enríquez
Urban rivers play a crucial role in providing ecosystem services that contribute to the social well-being and quality of life of urban inhabitants. However, rapid urbanization has led to the progressive degradation of these rivers, affecting their capacity to deliver these services and generating significant socioecological impacts. A groundbreaking study conducted in the Zamora and Malacatos Rivers in Loja, Ecuador, performed a participatory mapping of the non-monetary social values (both positive and negative) and their associated ecosystem services. This research, published in the journal One Ecosystem, aimed to understand community perceptions and preferences in the context of degraded landscapes, using a complementary analysis approach to traditional methods.
Oblique aerial photographs of the research area captured with unmanned aerial vehicles (2021). Left: Malacatos River. Right: Zamora River
The methodology employed in this study involved data collection and analysis using ArcGIS Survey123 Connect (ESRI 2020), a digital survey tool that facilitated easy data collection from participants. Additionally, The Social Values for Ecosystem Services (SolVES 4.0) tool was utilized, integrating participatory survey data and environmental data to assess and map the social values associated with ecosystem services. This combination of technological tools allowed for comprehensive analysis and visual representation of the results.
The study findings revealed that the most relevant social values encompassed learning, aesthetics, therapy, displeasure, deficient and inaccessible infrastructure, and the threat of flooding. Different spatial patterns were identified for each of these social values, with the horizontal distance to green areas emerging as a significant environmental variable contributing to these patterns.
Spatial distribution of positive social values.
These findings enhance our understanding of the social values and preferences associated with ecosystem services in urban river contexts. Furthermore, they provide valuable insights for identifying areas of opportunity and conflict, informing community planning, and enabling effective management of the urban landscape. The significance of this study lies in its novel approach, considering non-monetary social values, and its application in a city in the Global South, where previous research has predominantly focused on the Global North.
The degradation of urban rivers and the resulting socioecological impacts are a growing concern worldwide. Rivers play a vital role in providing natural resources, species habitats, freshwater supply, and flood control, while also satisfying the social, spiritual, and recreational needs of local communities. However, the processes of rapid urbanization have transformed river ecosystems into monofunctional channels and open sewers, negatively impacting the quality of life of residents.
Spatial distribution of negative social values.
This study emphasizes the importance of considering social values and community preferences when assessing and managing urban rivers. By doing so, opportunities and conflicts can be identified, and management strategies can be developed that are socially accepted and supported. Active community participation is crucial in this process as it allows for the addressing of traditional viewpoints and power asymmetries in planning.
The study employed a participatory and community-based approach, utilizing surveys and digital mapping tools such as ArcGIS Survey123 Connect (ESRI 2020) and The Social Values for Ecosystem Services (SolVES 4.0) to collect and analyze data from multiple social actors. This integration of technological tools and participatory methods allowed for a more comprehensive understanding of the social values and ecosystem services associated with urban rivers.
An urban river. Photo by alcides OTA used under a CC BY-NC 2.0 license.
In summary, this groundbreaking study highlights the importance of urban rivers as providers of ecosystem services and their role in the quality of life of urban communities. By understanding and valuing the social and cultural aspects of river ecosystems, effective management strategies can be developed to promote the restoration and conservation of these critical natural resources. Active community participation is essential in achieving sustainable management of urban rivers and ensuring a prosperous future for future generations.
Research article:
Alvarado-Arias N, Moya-Almeida V, Cabrera-Torres F, Medina-Enríquez A (2023) Evaluation and mapping of the positive and negative social values for the urban river ecosystem. One Ecosystem 8: e101122. https://doi.org/10.3897/oneeco.8.e101122
This happens more than you might think, with pet releases deemed responsible for 53% of invasive vertebrate species and one third of all aquatic invasive species. It has been shown that the more readily available a species is in the pet trade, the greater the risk of it being released, or escaping, into the wild.
Somewhat fascinatingly, this also puts the trade at the mercy of pop culture influences. 1970s animated series “Rascal the Raccoon” is commonly blamed for Japan’s invasive racoon population, and demand for Trachemys scripta pets is said to have boomed in the 1990s due to “Teenage Mutant Ninja Turtles.” Side note: the influence of movies highlighting the challenges of pet ownership, such as “Gremlins” or “Little Shop of Horrors”, warrants further study.
Hitchhikers
While invasion ecology has typically focused on these released species and the impacts that they cause, many species are sold with commensal organisms attached. These incidentally carried fauna are commonly known as “hitchhikers”.
Recent studies have found the protozoan Vorticella sp. and a species of bdelloid rotifer associated with two species of atyid shrimps, digenean larvae with the carnivorous snail Anentome helena, and an epibiont, Diceratocephala boschmai, on New Guinean ornamental Cherax crayfish.
Temnocephalid eggs located on thorax carapace (white arrow) of adult Cherax monticola. From Ložek F, Patoka J, Bláha M. 2021. Another hitchhiker exposed: Diceratocephala boschmai (Platyhelminthes: Temnocephalida) found associated with ornamental crayfish Cherax spp. Knowl. Manag. Aquat. Ecosyst., 422, 25.
A high-profile example emerged in 2021 when zebra mussels (Dreissena polymorpha) were detected in 21 US states on aquarium moss balls that had been imported from Ukraine, and subsequent searches revealed the species in 600 locations in Canada. Similar findings have since emerged from Europe. Having colonised both European and North American waters, the ease with which this Ponto-Caspian bivalve is being spread by the pet trade on both sides of the Atlantic is a major concern. Zebra mussels have been listed as one of the IUCN’s “100 of the Worst Invasive Species”, and their myriad ecological and economic impacts range from habitat alteration, to competition with native unionids, to disruption of food-web structure, to blocking industrial water intake pipes. They are also able to attach to boat hulls and other organisms, facilitating further spread.
The discovery
Zebra mussels, Dreissena polymorpha, found amongst ordered European pond snail, Viviparus viviparus
I remember the moment clearly. I had ordered seventy-five Viviparus viviparus – a common European pond snail species – for behavioural studies at GEOMAR Helmholtz Centre for Ocean Research Kiel where I was based for lab work in the group of Elizabeta Briski. After some stress over posting delays and an increasingly fraught relationship developing with the GEOMAR receptionist, the snails arrived. Over the next day, watching them go about their lives in our climate chamber in their new tanks became a favourite way to spend working breaks. With obvious dimorphism you could clearly tell males from females, which added to the developing snail soap operas. However, just before packing up to leave the lab, I noticed a huge lump on one snail. What on earth is that? Soon I noticed a second. I called Elizabeta with my suspicions, which she confirmed the next day. Photos were taken, measurements made, and our go-to ecological geneticist Reid Brennan was begged to work his DNA sequencing magic. Before long, it was all confirmed: we had zebra mussels.
Potential implications
The biggest takeaway message here is that even native species in the pet trade can facilitate the spread of non-native hitchhikers. In a parallel universe, those snails did not go to an invasion ecology lab but rather to someone keen to stock their garden pond. Escape from ponds is a major pathway for freshwater species introductions, and even if the impact of a native species escaping might be limited, its potential for the zoochorous dispersal of a non-native should not be ignored.
Zebra mussels, Dreissena polymorpha, found amongst ordered European pond snail, Viviparus viviparus.
Of course, questions surround the conditions under which the pond snails were held before selling. Were they stocked in zebra mussel infested outdoor ponds? Which other species are held in a similar way? How prevalent are these practices within the trade? One way of combating this risk of non-native species spread is via legislation. Calls have been made for white lists of low-risk species that can be sold in the trade in place of risky species, but in our study, the issue stems from the selling of a native species within its native range, which would surely be deemed low-risk.
We propose that should a white-list system be adopted, the potential for a “low-risk” species to transport invasive species must be accounted for. We also call for stricter biosecurity practices to be enforced, including regular checking and disinfecting of outdoor stock ponds where appropriate. Tools such as environmental DNA surveillance could be used to effectively detect the presence of targeted invasive species, as part of biosecurity “audits”. However, for the time being, a desperate, final line of defence is to raise awareness amongst consumers and for them to be wary of unwanted hitchhikers.
References:
Dickey JWE, Brennan RS, Chung SS, Jeschke JM, Steffen GT, Briski E (2023) More than we bargained for: Zebra mussels transported amongst European native freshwater snails. NeoBiota 10: 1–10. https://doi.org/10.3897/neobiota.83.97647
DeRoy EM, Scott R, Hussey NE, MacIsaac HJ (2020) Density dependence mediates the ecological impact of an invasive fish. Diversity and Distributions 26: 867–880. https://doi.org/10.1111/ddi.13063
Gippet JMW, Bertelsmeier C (2021) Invasiveness is linked to greater commercial success in the global pet trade. Proceedings of the National Academy of Science USA 118. https://doi.org/10.1073/pnas.2016337118
Lozek F, Patoka J, Bláha M (2021) Another hitchhiker exposed: Diceratocephala boschmai (Platyhelminthes: Temnocephalida) found associated with ornamental crayfish Cherax spp. Knowledge and Management of Aquatic Ecosystems 2020-Janua. https://doi.org/10.1051/kmae/2021023
Militz TA, Foale S (2017) The “Nemo Effect”: Perception and reality of Finding Nemo’s impact on marine aquarium fisheries. Fish and Fisheries 18: 596–606. https://doi.org/10.1111/faf.12202
Padilla DK, Williams SL (2004) Beyond ballast water: Aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in Ecology and the Environment 2: 131–138. https://doi.org/10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2
Patoka J, Patoková B (2021) Hitchhiking Exotic Clam: Dreissena polymorpha (Pallas, 1771) Transported via the Ornamental Plant Trade. Diversity 13: 1–5.
Patoka J, Magalhães ALB, Kouba A, Faulkes Z, Jerikho R, Vitule JRS (2018) Invasive aquatic pets: Failed policies increase risks of harmful invasions. Biodiversity and Conservation 27: 3037–3046. https://doi.org/10.1007/s10531-018-1581-3
Richardson MJ, Whoriskey FG, Roy LH (1995) Turbidity generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds. Journal of Fish Biology: 576–585.
Saul WC, Roy HE, Booy O, Carnevali L, Chen HJ, Genovesi P, Harrower CA, Hulme PE, Pagad S, Pergl J, Jeschke JM (2017) Assessing patterns in introduction pathways of alien species by linking major invasion data bases. Journal of Applied Ecology 54: 657–669. https://doi.org/10.1111/1365-2664.12819
Simberloff D (2006) Risk assessments, blacklists, and white lists for introduced species: Are predictions good enough to be useful? Agricultural and Resource Economics Review 35: 1–10. https://doi.org/10.1017/S1068280500010005
Stanicka A, Maciaszek R, Cichy A, Templin J, Świderek W, Żbikowska E, Labecka AM (2022) Unwanted ‘hitchhikers’ of ornamental snails: A case report of digeneans transported via the international pet trade. The European Zoological Journal 89: 601–607. https://doi.org/10.1080/24750263.2022.2065039
Zeng Y, Shakir KK, Yeo DCJ (2019) Competition between a native freshwater crab and an invasive crayfish in tropical Southeast Asia. Biological Invasions 21: 2653–2663. https://doi.org/10.1007/s10530-019-02009-6
As a South American herpetologist, it is inevitable to be absolutely buzzed every time I hear “Germán, you have to go to the Amazon jungle”. Going to the Amazon forest in Peru is perhaps the most joyful way to do your work. The chances to find so many frogs, lizards, snakes, turtles, and even caimans are really high, so one can’t help but get excited.
The Agua Blanca forest. Photo by Germán Chávez
The thing is, to someone like me who focuses their work on describing new species, the expectations shouldn’t be that high. The Amazon has always been a place full of mysteries, so many explorers, seduced by its enigmatic atmosphere, have gone deeper and deeper into the Amazonia. This has resulted in the description of so many species and very few unexplored places left.
So, when Wilmar Aznaran and I found this new species in the Amazon lowlands of central Peru, a well-visited area, we were quite surprised and kind of speechless. I have to confess that my reaction was “Bloody hell!” Externally, the frog is clearly different from any other similar species, and that was evident for us at the very moment we caught it. Indeed, the first option for the title of our new paper in Evolutionary Systematics was “Expect the unexpected: a new treefrog from the Amazon lowlands of Peru.” We could not believe that a medium-sized arboreal frog had passed in front of other researchers’ eyes, and remained unseen.
Scinax pyroinguinis. Photo by Germán Chávez
Soon we found out that it is not a common species in the area: after catching two individuals, we were unable to find more. Not ready to give up, we went once more time to that site a few months later and our efforts to find it were unsuccessful, so we suggest it is not a common frog.
At that point, we knew that we had a new species on hands, but describing it with only two specimens was challenging. Luis A. García-Ayachi went to the area and his efforts were also unsuccessful. That is when Alessandro Catenazzi joined us, so we decided to add an integrative approach to our work, basing our research on morphological and genetic differences. I can only say thanks to all our co-authors: from then on, everything started to work out.
Scinax pyroinguinis. Photo by Germán Chávez
We noticed there were wildfires in the area, are a serious threat to the frog’s habitat. So it is really curious that the orange pattern on the groins, thighs and shanks of the new species, resembles flames, like those threatening its habitat. No better name for our frog than Scinax pyroinguinis, which literally means “groins of fire”.
Scinax pyroinguinis. Photo by Germán ChávezA wildfire in the frog’s habitat. Photo by Luis A. García-Ayachi
We hope that this discovery encourages people and institutions to protect these remnant forests in central Peru, because they may yet harbour unknown species. If these forests disappear, we will probably lose a diversity that we do not even know now yet, and may never will. It is sort of a race against deforestation and habitat loss, but this doesn’t mean there’s nothing we can do. Research like ours is really important to help put the focus on this place, at least in the short term, and try to attract people to join forces in the conservation of Scinax pyroinguinis and its habitat.
Research article:
Chávez G, Aznaran W, García-Ayachi LA, Catenazzi A (2023) Rising from the ashes: A new treefrog (Anura, Hylidae, Scinax) from a wildfire-threatened area in the Amazon lowlands of central Peru. Evolutionary Systematics 7(1): 183-194. https://doi.org/10.3897/evolsyst.7.102425