🥳 Here goes THE title in our New Species Showdown!

From the kingdom of plants, welcome the all-time crowd-favourite species ever described in a Pensoft journal!

Which one is the species that springs to mind when you think about the most awesome discoveries in recent times?

In an age where we more than ever need to appreciate and preserve the magnificent biodiversity inhabiting the Earth, we decided to go for a lighter and fun take on the work of taxonomists that often goes unnoticed by the public. 

From the ocean depths surrounding Indonesia to the foliage of the native forests of Príncipe Island and into the soils of Borneo, we started with 16 species described as new to science in journals published by Pensoft over the years. 

Out of these most amazing creatures, over the past several weeks we sought to find who’s got the greatest fandom by holding a poll on Twitter (you can follow it further down here or via #NewSpeciesShowdown).

Grand Finale – here comes the champion!

Truly, we couldn’t have a more epic final!

The two competitors come from two kingdoms, two opposite sides of the globe, and the “pages” of two journals, namely PhytoKeys and Evolutionary Systematics.

While we need to admit that we ourselves expected to crown an animal as the crowd-favourite, we take the opportunity to congratulate the botanists amongst our fans for the well-deserved win of Nepenthes pudica (see the species description)!

Find more about the curious one-of-a-kind pitcher plant in this blog post, where we announced its discovery following the new species description in PhytoKeys in June 2022:

Back then, N. pudica gave a good sign about its worldwide web appeal, when it broke the all-time record for online popularity in a competition with all plant species described in PhytoKeys over the journal’s 22-year history of taxonomic papers comrpising over 200 issues.

What’s perhaps even more curious, is that there is only one species EVER described in a Pensoft-published journal that has so far triggered more tweets than the pitcher plant, and that species is the animal that has ended up in second place in the New Species Showdown: a tiny amphibian living in Peru, commonly known as the the Amazon Tapir Frog (Synapturanus danta). Which brings us once again to the influence of botanists in taxonomic research.

Read more about its discovery in the blog post from February 2022:

Another thing that struck us during the tournament was that there was only one species described in our flagship journal in systematic journal ZooKeys: the supergiant isopod Bathynomus raksasa, that managed to fight its way to the semi-finals, where it lost against S. danta.

This makes us especially proud with our diverse and competitive journal portfolio full of titles dedicated to biodiversity and taxonomic research!

The rules

Twice a week, @Pensoft would announce a match between two competing species on Twitter using the hashtag #NewSpeciesShowdown, where everyone could vote in the poll for their favourie.

Disclaimer

This competition is for entertainment purposes only. As it was tremendously tough to narrow the list down to only sixteen species, we admit that we left out a lot of spectacular creatures.

To ensure fairness and transparency, we made the selection based on the yearly Altmetric data, which covers articles in our journals published from 2010 onwards and ranks the publications according to their online mentions from across the Web, including news media, blogs and social networks. 

We did our best to diversify the list as much as possible in terms of taxonomic groups. However, due to the visual-centric nature of social media, we gave preference to immediately attractive species.

All battles:

(in chronological order)

Round 1
The first tie of the New Species Showdown was between the olinguito: Bassaricyon neblina (see species description) and the “snow-coated” tussock moth Ivela yini (see species description).
In the second battle, we faced two marine species discovered in the Indian Ocean and described in ZooKeys. The supergiant isopod B. raksasa (see species description) won against the Rose Fariy Wrasse C. finifenmaa (see species description) with strong 75%.
In the third battle, we faced two frog species: the tapir ‘chocolate’ frog described in Evolutionary Systematics (see species description) winning against the ‘glass frog’ described in Zookeys (see species description) with 73%.
With 62% of the votes, the two-species tournament saw the Harryplax severus crab grab the win against another species named after a great wizard from the Harry Potter universe: the Salazar’s pit viper, which was described in the journal Zoosystematics and Evolution in 2020. The “unusual” crustacean was described back in 2017 in ZooKeys. As its species characters matched no genus known to date, the species also established the Harryplax genus.
With the fifth battle in the New Species Showdown taking us to the Kingdom of Plants, we enjoyed a great battle between the first pitcher plant found to grow its pitchers underground to dine (see the full study) and the Demon’s orchid, described in 2016 from a single population spread across a dwarf montane forest in southern Colombia (read the study). Both species made the headlines across the news media around the world following their descriptions in our flagship botany journal PhytoKeys.
Next, we saw the primitive dipluran Haplocampa wagnelli (read its species description in Subterranean Biology) – a likely survivor of the Ice Age thanks to the caves of Canada – win the public in a duel against Xuedytes bellus (described in ZooKeys in 2017), also known as the Most cave-adapted trechine beetle in the world!
We had a close battle between the Principe Scops-owl Otus bikegila (see species description published in our ZooKeys earlier in 2022) and the blue-tailed Monitor lizard Varanus semotus (also first ‘known’ from the pages of ZooKeys, 2016). Being adorable species, but also ‘castaways’ on isolated islands in the Atlantic, they made great sensations upon their discovery. In fact, the reptile won with a single vote!
In the last battle of Round 1, the ‘horned’ tarantula C. attonitifer claimed the victory with a strong (80%) advantage from its competitor with a rebel name: the freshwater crayfish C. snowden (species description in ZooKeys from 2015). Described in African Invertebrates in 2019, the arachnid might be one amongst many ‘horned’ baboon spiders, yet there was something quite extraordinary about its odd protuberance. Furthermore, it came to demonstrate how little we know about the fauna of Angola:  a largely underexplored country located at the intersection of several ecoregions.
Round 2 – Quarter-finals
In the first quarter-final round, in the close battle, the isopod ’emerged’ from the ocean depths of Indonesia B. raksasa (species description in Zookeys from 2020) claimed the victory with just a few votes difference (58%!) from its competitor: lovely olinguito B. neblina, also described in Zookeys but back in 2013.
In the second round of the quarter-final, the tapir ‘chocolate’ frog S. danta (described in Evolutionary Systematics this year) claimed the victory with a significant advantage (69%) over its competitor crab H. severus described in Zookeys in 2017.
The third battle in Round 2 secured a place at the semi-finals for the only plant to get this far in the New Species Showdown. If you are dedicated to the mission of proving the plant kingdom superior: keep supporting Nepenthes pudica in the semi-finals and beyond!
In the meantime, read the full description of the species, published in our PhytoKeys in June.
The last quarter-final send the Angolan ‘horned’ tarantula to the next round. Described in African Invertebrates in 2019, its discovery would have likely remained a secret had it not been for the local tribes who provided the research team with crucial information about the curious arachnid.
Round 3 – Semi-finals
Curiously enough, by winning against the ‘supergiant’ isopod B. raksasa – also known around the Internet as the ‘Darth Vader of the seas’ – the Amazonian anuran S. danta outcompetes the last species in the New Species Showdown representing our flagship taxonomy journal: ZooKeys.

The charming anuran was described in February 2022 in Evolutionary Systematics, a journal dedicated to whole-organism biology that we publish on behalf of the Leibniz Institute for the Analysis of Biodiversity Change (LIB).
In a dramatic turn of events, the tight match between the Angolan tarantula C. attonitifer , whose ‘horn’ protruding from its back surprised the scientists because of its unique structure and soft texture, and the first pitcher plant whose ‘traps’ can be found underground in Borneo, ended up with the news that the New Species Showdown will be concluding with a battle between the kingdoms Animalia and Plantae! What a denouement!

The record-breaking plant was described in June 2022 in PhytoKeys: a journal launched by Pensoft in 2010 with the mission to introduce fast, linked and open publishing to plant taxonomy.
THE FINAL
And here we were at the finish line.
But why did we hold the tournament right now?

If you have gone to the Pensoft website at any point in 2022, visited our booth at a conference, or received a newsletter from any of our journals, by this time, you must be well aware that in 2022 – more precisely, on 25 December – we turned 30. And we weren’t afraid to show it!

Pensoft’s team happy to showcase the 30-year story of the company at various events this year.
Left: Maria Kolesnikova at the annual Biodiversity Information Standards (TDWG 2022) conference, hosted by Pensoft in Sofia, Bulgaria. Right: Iva Boyadzhieva at the XXVI International Congress of Entomology (ICE 2022) in Helsinki, Finland.

Indeed, 30 is not that big of a number, as many of us adult humans can confirm. Yet, we take pride in reminiscing about what we’ve done over the last three decades. 

The truth is, 30 years ago, we wouldn’t have been able to picture this day, let alone think that we’d be sharing it with all of you: our journal readers, authors, editors and reviewers, collaborators in innovation, project partners, and advisors. 

Long story short, we wanted to do something special and fun to wrap up our anniversary year. While we have been active in various areas, including development of publishing technology concerning open and FAIR access and linkage for research outcomes and underlying data; and multiple EU-supported scientific projects, we have always been associated with our biodiversity journal portfolio.

Besides, who doesn’t like to learn about the latest curious creature that has evaded scientific discovery throughout human history up until our days? 😉

Now, follow the #NewSpeciesShowdown to join the contest!

A Needle in a Coastal Haystack

A tiny species known only from fossils is found alive in the tidepools of Santa Barbara.

Discovering a new species is always exciting, but so is finding one alive that everyone assumed had been lost to the passage of time. A small clam, previously known only from fossils, has recently been found living at Naples Point, just up the coast from UC Santa Barbara. The discovery appears in the journal ZooKeys.

“It’s not all that common to find alive a species first known from the fossil record, especially in a region as well-studied as Southern California,” said co-author Jeff Goddard, a research associate at UC Santa Barbara’s Marine Science Institute. “Ours doesn’t go back anywhere near as far as the famous Coelacanth or the deep-water mollusk Neopilina galatheae — representing an entire class of animals thought to have disappeared 400 million years ago — but it does go back to the time of all those wondrous animals captured by the La Brea Tar Pits.”

Jeff Goddard with students. Photo Credit: 
Courtesy Image

On an afternoon low tide in November 2018, Goddard was turning over rocks searching for nudibranch sea slugs at Naples Point, when a pair of small, translucent bivalves caught his eye. “Their shells were only 10 millimeters long,” he said. “But when they extended and started waving about a bright white-striped foot longer than their shell, I realized I had never seen this species before.” This surprised Goddard, who has spent decades in California’s intertidal habitats, including many years specifically at Naples Point. He immediately stopped what he was doing to take close-up photos of the intriguing animals.

“I was surprised and intrigued. This was something I’d never seen before.”

Paul Valentich-Scott

With quality images in hand, Goddard decided not to collect the animals, which appeared to be rare. After pinning down their taxonomic family, he sent the images to Paul Valentich-Scott, curator emeritus of malacology at the Santa Barbara Museum of Natural History. “I was surprised and intrigued,” Valentich-Scott recalled. “I know this family of bivalves (Galeommatidae) very well along the coast of the Americas. This was something I’d never seen before.”

He mentioned a few possibilities to Goddard, but said he’d need to see the animal in-person to make a proper assessment. So, Goddard returned to Naples Point to claim his clam. But after two hours combing just a few square meters, he still hadn’t caught sight of his prize. The species would continue to elude him many more times.

Nine trips later, in March 2019, and nearly ready to give up for good, Goddard turned over yet another rock and saw the needle in the haystack. A single specimen, next to a couple of small white nudibranchs and a large chiton. Valentich-Scott would get his specimen at last, and the pair could finally set to work on identification.

A dazzling play of colors highlights Southern California’s long lost clam. Photo Credit: 
Jeff Goddard

Valentich-Scott was even more surprised once he got his hands on the shell. He knew it belonged to a genus with one member in the Santa Barbara region, but this shell didn’t match any of them. It raised the exciting possibility that they had found a new species.

“This really started ‘the hunt’ for me,” Valentich-Scott said. “When I suspect something is a new species, I need to track back through all of the scientific literature from 1758 to the present. It can be a daunting task, but with experience it can go pretty quickly.”

The two researchers decided to check out an intriguing reference to a fossil species. They tracked down illustrations of the bivalve Bornia cooki from the paper describing the species in 1937. It appeared to match the modern specimen. If confirmed, this would mean that Goddard had found not a new species, but a sort of living fossil.

It is worth noting that the scientist who described the species, George Willett, estimated he had excavated and examined perhaps 1 million fossil specimens from the same location, the Baldwin Hills in Los Angeles. That said, he never found B. cooki himself. Rather, he named it after Edna Cook, a Baldwin Hills collector who had found the only two specimens known.

Valentich-Scott requested Willett’s original specimen (now classified as Cymatioa cooki) from the Natural History Museum of Los Angeles County. This object, called the “type specimen,” serves to define the species, so it’s the ultimate arbiter of the clam’s identification.

The type specimen that George Willett used to originally describe the species. Photo credit: VALENTICH-SCOTT ET AL.

Meanwhile, Goddard found another specimen at Naples Point — a single empty shell in the sand underneath a boulder. After carefully comparing the specimens from Naples Point with Willett’s fossil, Valentich-Scott concluded they were the same species. “It was pretty remarkable,” he recalled.

Small size and cryptic habitat notwithstanding, all of this begs the question of how the clam eluded detection for so long. “There is such a long history of shell-collecting and malacology in Southern California — including folks interested in the harder to find micro-mollusks — that it’s hard to believe no one found even the shells of our little cutie,” Goddard said.

He suspects the clams may have arrived here on currents as planktonic larvae, carried up from the south during marine heatwaves from 2014 through 2016. These enabled many marine species to extend their distributions northward, including several documented specifically at Naples Point. Depending on the animal’s growth rate and longevity, this could explain why no one had noticed C. cooki at the site prior to 2018, including Goddard, who has worked on nudibranchs at Naples Point since 2002.

“The Pacific coast of Baja California has broad intertidal boulder fields that stretch literally for miles,” Goddard said, “and I suspect that down there Cymatioa cooki is probably living in close association with animals burrowing beneath those boulders.”

Research article:

Valentich-Scott P, Goddard JHR (2022) A fossil species found living off southern California, with notes on the genus Cymatioa (Mollusca, Bivalvia, Galeommatoidea). ZooKeys 1128: 53-62. https://doi.org/10.3897/zookeys.1128.95139

Press release originally published by UC Santa Barbara. Republished with permission.

Follow ZooKeys on Facebook and Twitter.

Leaves and Spines: A new spiny-tailed leaf-toed gecko from the unexplored coastal savanna of Angola

A random survey in a poorly explored region of the southern Benguela Province of Angola, led to the discovery of a unique new spiny-tailed leaf-toed gecko.

Guest blog post by Javier Lobon-Rovira

After the long, hard days of fieldwork in the arid coastal region of southern Angola, Angolan researcher Pedro Vaz Pinto and his enthusiastic son Afonso, found the best spot to spend the night before heading back home. In the area of Carivo, every night was different: after four visits to this unique place, a different gecko species always showed up to add to the growing species list.

On a random night in August 2021, they went for a routine night walks and came across this unique gecko. In shock, Pedro immediately started sharing photos with the coauthors, Werner and Javier. “Guys, I think I found a new Kolekanos” he said.

Kolekanos is a unique and iconic gecko genus in Africa and more specifically only known from southwestern Angola. Kolekanos plumicaudus was described by one of the most recognized herpetologists in Africa, the late Wulf Haacke (1936– 2021).

Feather-tailed Kolekanos was at that point a monotypic genus (only one species in the genus), known only from ~200km south of the new discovery. Immediately, we all knew that what we were looking in that photo was something different from the known K. plumicaudus. “It is a Kolekanos… but, those are spines in the tail, not feathers…” was one of the most common reactions that night. So, we started planning our next trip to the area.

Three months later we were back at Carivo, now focusing on finding more specimens of that unique gecko. After only one hour, we spotted at least six specimens among the semi-dessert vegetations and rocks. At that moment, all doubt went away. The behavior and habitat of the new gecko was completely distinctive in comparison with K. plumicaudus.

Then, with our goal achieved and based on the big success of the first night, we planned to go back through different areas to explore some of the most remote regions in Northern Namibe and southern Benguela provinces. After two days driving on impossible roads, the team reached Ekongo. That night we were tired, so we decided to have a short walk around the camp. And… there it was…! Like a ghost, this small, cryptic, and elusive gecko started  showing up in every big rock boulder. 

This study, now published in the journal ZooKeys, also highlights how poorly explored and understood some regions of Angola remain, even as it has been considered as an important source of diversification and endemism in West Africa.

New species of owl discovered in the rainforests of Príncipe Island, Central Africa 

The Principe Scops-Owl, the eighth known bird species endemic to the island, has a unique call and lives in a restricted range in the Príncipe Obô Natural Park.

A new species of owl has just been described from Príncipe Island, part of the Democratic Republic of São Tomé and Príncipe in Central Africa. Scientists were first able to confirm its presence in 2016, although suspicions of its occurrence gained traction from 1998, and testimonies from local people suggesting its existence could be traced back as far as 1928. 

Otus bikegila. Photo by Martim Melo

The new owl species was described in the open-access journal ZooKeys based on multiple lines of evidence such as morphology, plumage colour and pattern, vocalisations, and genetics. Data was gathered and processed by an international team led by Martim Melo (CIBIO and Natural History and Science Museum of the University of Porto), Bárbara Freitas (CIBIO and the Spanish National Museum of Natural Sciences) and Angelica Crottini (CIBIO).

Bárbara Freitas, Bikegila and Martim Melo pose with an owl. Photo by Martim Melo

The bird is now officially known as the Principe Scops-Owl, or Otus bikegila.

Otus” is the generic name given to a group of small owls sharing a common history, commonly called scops-owls. They are found across Eurasia and Africa and include such widespread species as the Eurasian Scops-Owl (Otus scops) and the African Scops-Owl (Otus senegalensis). 

Bikegila. Photo by Martim Melo

The scientists behind the discovery further explain that the species epithet “bikegila” was chosen in homage of Ceciliano do Bom Jesus, nicknamed Bikegila – a former parrot harvester from Príncipe Island and now a ranger of its natural park. 

“The discovery of the Principe Scops-Owl was only possible thanks to the local knowledge shared by Bikegila and by his unflinching efforts to solve this long-time mystery,” the researchers say. “As such, the name is also meant as an acknowledgment to all locally-based field assistants who are crucial in advancing the knowledge on the biodiversity of the world.”

Martim Melo and Bikegila. Photo by Alexandre Vaz

In the wild, the easiest way to recognise one would be its unique call – in fact, it was one of the main clues leading to its discovery. 

Otus bikegila‘s unique call is a short “tuu” note repeated at a fast rate of about one note per second, reminiscent of insect calls. It is often emitted in duets, almost as soon as the night has fallen,” Martim Melo explains.

Otus bikegila’s call. Recording by Martim Melo

The entire Principe Island was extensively surveyed to determine the distribution and population size of the new species. Results, published in the journal Bird Conservation International, show that the Principe Scops-Owl is found only in the remaining old-growth native forest of Príncipe in the uninhabited southern part of the island. There, it occupies an area of about 15 km2, apparently due to a preference for lower elevations. In this small area (about four times the size of Central Park), the densities of the owl are relatively high, with the population estimated at around 1000-1500 individuals.

The difficult terrain of the uninhabited southern forests of Príncipe Island, home to the Príncipe Scops-Owl, was somewhat immortalised by José Correia, Portuguese collector for the American Museum of Natural History, when collecting there in 1928. He wrote in his diary: “I have been in very bad fields ready, but this is bad among the bad or worse among the worse”. Photo by Alexandre Vaz

Nevertheless, because all individuals of the species occur in this single and very small location (of which a part will be affected in the near future by the construction of a small hydro-electric dam), researchers have proposed that the species should be classified as ‘Critically Endangered’, the highest threat level on the IUCN Red List. This recommendation must still be evaluated by the International Union for Conservation of Nature.

Otus Bikegila. Photo by Martim Melo

Monitoring the population will be essential to get more precise estimates of its size and follow its trends. For this purpose, a survey protocol relying on the deployment of automatic recording units and AI to retrieve the data from these has been designed and successfully tested.

“The discovery of a new species that is immediately evaluated as highly threatened illustrates well the current biodiversity predicament”, the researchers say. “On a positive note, the area of occurrence of the Principe Scops-Owl is fully included within the Príncipe Obô Natural Park, which will hopefully help secure its protection.”

A view of the owl’s habitat. Photo by Martim Melo

This is the eighth known species of bird endemic to Príncipe, further highlighting the unusually high level of bird endemism for this island of only 139 km2.

Otus Bikegila. Photo by Paul van Giersbergen

Even though a new species of scops-owl was just described from Príncipe, genetic data indicated that the island was, surprisingly, likely the first in the Gulf of Guinea to be colonised by a species of scops-owl.

“Although it may seem odd for a bird species to remain undiscovered for science for so long on such a small island, this is by no means an isolated case when it comes to owls,” the researchers state. “For example, the Anjouan Scops-Owl was rediscovered in 1992, 106 years after its last observation, on Anjouan Island (also known as Ndzuani) in the Comoro Archipelago, and the Flores Scops-Owl was rediscovered in 1994, 98 years after the previous report.”

 “The discovery of a new bird species is always an occasion to celebrate and an opportunity to reach out to the general public on the subject of biodiversity,” says Martim Melo. “In this age of human-driven extinction, a major global effort should be undertaken to document what may soon not be anymore,” he and his team state in their paper.

Otus bikegila. Photo by Philippe Verbelen

“Birds are likely the best studied animal group. As such, the discovery of a new bird species in the 21st century underscores both the actuality of field-based explorations aiming at describing biodiversity, and how such curiosity-driven endeavour is more likely to succeed when coupled with local ecological knowledge, the participation of keen amateur naturalists, and persistence,” they add.

They believe that this “new wave of exploration, carried out by professionals and amateurs alike”, will help rekindle the link to the natural world, which will be essential to help revert the global biodiversity crisis.

Research article:

Melo M, Freitas B, Verbelen P, da Costa SR, Pereira H, Fuchs J, Sangster G, Correia MN, de Lima RF, Crottini A (2022) A new species of scops-owl (Aves, Strigiformes, Strigidae, Otus) from Príncipe Island (Gulf of Guinea, Africa) and novel insights into the systematic affinities within Otus. ZooKeys 1126: 1-54. https://doi.org/10.3897/zookeys.1126.87635

One Biodiversity Knowledge Hub to link them all: BiCIKL 2nd General Assembly

The FAIR Data Place – the key and final product of the partnership – is meant to provide scientists with all types of biodiversity data “at their fingertips”

The Horizon 2020 – funded project BiCIKL has reached its halfway stage and the partners gathered in Plovdiv (Bulgaria) from the 22nd to the 25th of October for the Second General Assembly, organised by Pensoft

The BiCIKL project will launch a new European community of key research infrastructures, researchers, citizen scientists and other stakeholders in the biodiversity and life sciences based on open science practices through access to data, tools and services.

BiCIKL’s goal is to create a centralised place to connect all key biodiversity data by interlinking 15 research infrastructures and their databases. The 3-year European Commission-supported initiative kicked off in 2021 and involves 14 key natural history institutions from 10 European countries.

BiCIKL is keeping pace as expected with 16 out of the 48 final deliverables already submitted, another 9 currently in progress/under review and due in a few days. Meanwhile, 21 out of the 48 milestones have been successfully achieved.

Prof. Lyubomir Penev (BiCIKL’s project coordinator Prof. Lyubomir Penev and CEO and founder of Pensoft) opens the 2nd General Assembly of BiCIKL in Plovdiv, Bulgaria.

The hybrid format of the meeting enabled a wider range of participants, which resulted in robust discussions on the next steps of the project, such as the implementation of additional technical features of the FAIR Data Place (FAIR being an abbreviation for Findable, Accessible, Interoperable and Reusable).

This FAIR Data Place online platform – the key and final product of the partnership and the BiCIKL initiative – is meant to provide scientists with all types of biodiversity data “at their fingertips”.

This data includes biodiversity information, such as detailed images, DNA, physiology and past studies concerning a specific species and its ‘relatives’, to name a few. Currently, the issue is that all those types of biodiversity data have so far been scattered across various databases, which in turn have been missing meaningful and efficient interconnectedness.

Additionally, the FAIR Data Place, developed within the BiCIKL project, is to give researchers access to plenty of training modules to guide them through the different services.

Halfway through the duration of BiCIKL, the project is at a turning point, where crucial discussions between the partners are playing a central role in the refinement of the FAIR Data Place design. Most importantly, they are tasked with ensuring that their technologies work efficiently with each other, in order to seamlessly exchange, update and share the biodiversity data every one of them is collecting and taking care of.

By Year 3 of the BiCIKL project, the partners agree, when those infrastructures and databases become efficiently interconnected to each other, scientists studying the Earth’s biodiversity across the world will be in a much better position to build on existing research and improve the way and the pace at which nature is being explored and understood. At the end of the day, knowledge is the stepping stone for the preservation of biodiversity and humankind itself.


“Needless to say, it’s an honour and a pleasure to be the coordinator of such an amazing team spanning as many as 14 partnering natural history and biodiversity research institutions from across Europe, but also involving many global long-year collaborators and their infrastructures, such as Wikidata, GBIF, TDWG, Catalogue of Life to name a few,”

said BiCIKL’s project coordinator Prof. Lyubomir Penev, CEO and founder of Pensoft.

“I see our meeting in Plovdiv as a practical demonstration of our eagerness and commitment to tackle the long-standing and technically complex challenge of breaking down the silos in the biodiversity data domain. It is time to start building freeways between all biodiversity data, across (digital) space, time and data types. After the last three days that we spent together in inspirational and productive discussions, I am as confident as ever that we are close to providing scientists with much more straightforward routes to not only generate more biodiversity data, but also build on the already existing knowledge to form new hypotheses and information ready to use by decision- and policy-makers. One cannot stress enough how important the role of biodiversity data is in preserving life on Earth. These data are indeed the groundwork for all that we know about the natural world”  

Prof. Lyubomir Penev added.
Christos Arvanitidis (CEO of LifeWatch ERIC) at the 2nd General Assembly of the BiCIKL project.

Christos Arvanitidis, CEO of LifeWatch ERIC, added:

“The point is: do we want an integrated structure or do we prefer federated structures? What are the pros and cons of the two options? It’s essential to keep the community united and allied because we can’t afford any information loss and the stakeholders should feel at home with the Project and the Biodiversity Knowledge Hub.”


Joe Miller, Executive Secretary and Director at GBIF, commented:

“We are a brand new community, and we are in the middle of the growth process. We would like to already have answers, but it’s good to have this kind of robust discussion to build on a good basis. We must find the best solution to have linkages between infrastructures and be able to maintain them in the future because the Biodiversity Knowledge Hub is the location to gather the community around best practices, data and guidelines on how to use the BiCIKL services… In order to engage even more partners to fill the eventual gaps in our knowledge.”


Joana Pauperio (biodiversity curator at EMBL-EBI) at the 2nd General Assembly of the BiCIKL project.

“BiCIKL is leading data infrastructure communities through some exciting and important developments”  

said Dr Guy Cochrane, Team Leader for Data Coordination and Archiving and Head of the European Nucleotide Archive at EMBL’s European Bioinformatics Institute (EMBL-EBI).

“In an era of biodiversity change and loss, leveraging scientific data fully will allow the world to catalogue what we have now, to track and understand how things are changing and to build the tools that we will use to conserve or remediate. The challenge is that the data come from many streams – molecular biology, taxonomy, natural history collections, biodiversity observation – that need to be connected and intersected to allow scientists and others to ask real questions about the data. In its first year, BiCIKL has made some key advances to rise to this challenge,”

he added.

Deborah Paul, Chair of the Biodiversity Information Standards – TDWG said:

“As a partner, we, at the Biodiversity Information Standards – TDWG, are very enthusiastic that our standards are implemented in BiCIKL and serve to link biodiversity data. We know that joining forces and working together is crucial to building efficient infrastructures and sharing knowledge.”


The project will go on with the first Round Table of experts in December and the publications of the projects who participated in the Open Call and will be founded at the beginning of the next year.

***

Learn more about BiCIKL on the project’s website at: bicikl-project.eu

Follow BiCIKL Project on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

***

All BiCIKL project partners:

#TDWG2022 recap: TDWG and Pensoft welcomed 400 biodiversity information experts from 41 countries in Sofia

For the 37th time, experts from across the world to share and discuss the latest developments surrounding biodiversity data and how they are being gathered, used, shared and integrated across time, space and disciplines.

Between 17th and 21st October, about 400 scientists and experts took part in a hybrid meeting dedicated to the development, use and maintenance of biodiversity data, technologies, and standards across the world.

This year, the conference was hosted by Pensoft in collaboration with the National Museum of Natural History (Bulgaria) and the Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Science. It ran under the theme “Stronger Together: Standards for linking biodiversity data”.

For the 37th time, the global scientific and educational association Biodiversity Information Standards (TDWG) brought together experts from all over the globe to share and discuss the latest developments surrounding biodiversity data and how they are being gathered, used, shared and integrated across time, space and disciplines.

This was the first time the event happened in a hybrid format. It was attended by 160 people on-site, while another 235 people joined online. 

The TDWG 2022 conference saw plenty of networking and engaging discussions with as many as 160 on-site attendees and another 235 people, who joined the event remotely.

The conference abstracts, submitted by the event’s speakers ahead of the meeting, provide a sneak peek into their presentations and are all publicly available in the TDWG journal Biodiversity Information Science and Standards (BISS).

“It’s wonderful to be in the Balkans and Bulgaria for our Biodiversity Information and Standards (TDWG) 2022 conference! Everyone’s been so welcoming and thoughtfully engaged in conversations about biodiversity information and how we can all collaborate, contribute and benefit,”

said Deborah Paul, Chair of TDWG, a biodiversity informatics specialist and community liaison at the University of Illinois, Prairie Research Institute‘s Illinois Natural History Survey and also an active participant in the Society for the Preservation of Natural History Collections (SPNHC), the Entomological Collections Network (ECN), ICEDIG, the Research Data Alliance (RDA), and The Carpentries.

“Our TDWG mission is to create, maintain and promote the use of open, community-driven standards to enable sharing and use of biodiversity data for all,”

she added.
Prof Lyubomir Penev (Pensoft) and Deborah Paul (TDWG) at TDWG 2022.

“We are proud to have been selected to be the hosts of this year’s TDWG annual conference and are definitely happy to have joined and observed so many active experts network and share their know-how and future plans with each other, so that they can collaborate and make further progress in the way scientists and informaticians work with biodiversity information,”  

said Pensoft’s founder and CEO Prof. Lyubomir Penev.

“As a publisher of multiple globally renowned scientific journals and books in the field of biodiversity and ecology, at Pensoft we assume it to be our responsibility to be amongst the first to implement those standards and good practices, and serve as an example in the scholarly publishing world. Let me remind you that it is the scientific publications that present the most reliable knowledge the world and science has, due to the scrutiny and rigour in the review process they undergo before seeing the light of day,”

he added.

***

In a nutshell, the main task and dedication of the TDWG association is to develop and maintain standards and data-sharing protocols that support the infrastructures (e.g., The Global Biodiversity Information Facility – GBIF), which aggregate and facilitate use of these data, in order to inform and expand humanity’s knowledge about life on Earth.

It is the goal of everyone at TDWG to let scientists interested in the world’s biodiversity to do their work efficiently and in a manner that can be understood, shared and reused.

It is the goal of everyone volunteering their time and expertise to TDWG to enable the scientists interested in the world’s biodiversity to do their work efficiently and in a manner that can be understood, shared and reused by others. After all, biodiversity data underlie everything we know about the natural world.

If there are optimised and universal standards in the way researchers store and disseminate biodiversity data, all those biodiversity scientists will be able to find, access and use the knowledge in their own work much more easily. As a result, they will be much better positioned to contribute new knowledge that will later be used in nature and ecosystem conservation by key decision-makers.

On Monday, the event opened with welcoming speeches by Deborah Paul and Prof. Lyubomir Penev in their roles of the Chair of TDWG and the main host of this year’s conference, respectively.

The opening ceremony continued with a keynote speech by Prof. Pavel Stoev, Director of the Natural History Museum of Sofia and co-host of TDWG 2022. 

Prof. Pavel Stoev (Natural History Museum of Sofia) with a presentation about the known and unknown biodiversity of Bulgaria during the opening plenary session of TDWG 2022.

He walked the participants through the fascinating biodiversity of Bulgaria, but also the worrying trends in the country associated with declining taxonomic expertise. 

He finished his talk with a beam of hope by sharing about the recently established national unit of DiSSCo, whose aim – even if a tad too optimistic – is to digitise one million natural history items in four years, of which 250,000 with photographs. So far, one year into the project, the Bulgarian team has managed to digitise more than 32,000 specimens and provide images to 10,000 specimens.

The plenary session concluded with a keynote presentation by renowned ichthyologist and biodiversity data manager Dr. Richard L. Pyle, who is also a manager of ZooBank – the key international database for newly described species.

Keynote presentation by Dr Richard L. Pyle (Bishop Museum, USA) at the opening plenary session of TDWG 2022.

In his talk, he highlighted the gaps in the ways taxonomy is being used, thereby impeding biodiversity research and cutting off a lot of opportunities for timely scientific progress.

“There are simple things we can do to change how we use taxonomy as a tool that would dramatically improve our ability to conduct science and understand biodiversity. There is enormous value and utility within existing databases around the world to understand biodiversity, how threatened it is, what impacts human activity has (especially climate change), and how to optimise the protection and preservation of biodiversity,”

he said in an interview for a joint interview by the Bulgarian News Agency and Pensoft.

“But we do not have easy access to much of this information because the different databases are not well integrated. Taxonomy offers us the best opportunity to connect this information together, to answer important questions about biodiversity that we have never been able to answer before. The reason meetings like this are so important is that they bring people together to discuss ways of using modern informatics to greatly increase the power of the data we already have, and prioritise how we fill the gaps in data that exist. Taxonomy, and especially taxonomic data integration, is a very important part of the solution.”

Pyle also commented on the work in progress at ZooBank ten years into the platform’s existence and its role in the next (fifth) edition of the International Code of Zoological Nomenclature, which is currently being developed by the International Commission of Zoological Nomenclature (ICZN). 

“We already know that ZooBank will play a more important role in the next edition of the Code than it has for these past ten years, so this is exactly the right time to be planning new services for ZooBank. Improvements at ZooBank will include things like better user-interfaces on the web to make it easier and faster to use ZooBank, better data services to make it easier for publishers to add content to ZooBank as part of their publication workflow, additional information about nomenclature and taxonomy that will both support the next edition of the Code, and also help taxonomists get their jobs done more efficiently and effectively. Conferences like the TDWG one are critical for helping to define what the next version of ZooBank will look like, and what it will do.”

***

During the week, the conference participants had the opportunity to enjoy a total of 140 presentations; as well as multiple social activities, including a field trip to Rila Monastery and a traditional Bulgarian dinner.

TDWG 2022 conference participants document their species observations on their way to Rila Monastery.

While going about the conference venue and field trip localities, the attendees were also actively uploading their species observations made during their stay in Bulgaria on iNaturalist in a TDWG2022-dedicated BioBlitz. The challenge concluded with a total of 635 observations and 228 successfully identified species.

Amongst the social activities going on during TDWG 2022 was a BioBlitz, where the conference participants could uploade their observations made in Bulgaria on iNaturalist and help each other successfully identify the specimens.

***

In his interview for the Bulgarian News Agency and Pensoft, Dr Vincent Smith, Head of the Informatics Division at the Natural History Museum, London (United Kingdom), co-founder of DiSSCo, the Distributed System of Scientific Collections, and the Editor-in-Chief of Biodiversity Data Journal, commented: 

“Biodiversity provides the support systems for all life on Earth. Yet the natural world is in peril, and we face biodiversity and climate emergencies. The consequences of these include accelerating extinction, increased risk from zoonotic disease, degradation of natural capital, loss of sustainable livelihoods in many of the poorest yet most biodiverse countries of the world, challenges with food security, water scarcity and natural disasters, and the associated challenges of mass migration and social conflicts.

Solutions to these problems can be found in the data associated with natural science collections. DiSSCo is a partnership of the institutions that digitise their collections to harness their potential. By bringing them together in a distributed, interoperable research infrastructure, we are making them physically and digitally open, accessible, and usable for all forms of research and innovation. 

At present rates, digitising all of the UK collection – which holds more than 130 million specimens collected from across the globe and is being taken care of by over 90 institutions – is likely to take many decades, but new technologies like machine learning and computer vision are dramatically reducing the time it will take, and we are presently exploring how robotics can be applied to accelerate our work.”

Dr Vincent Smith, Head of the Informatics Division at the Natural History Museum, London, co-founder of DiSSCo, and Editor-in-Chief of Biodiversity Data Journal at the TDWG 2022 conference.

In his turn, Dr Donat Agosti, CEO and Managing director at Plazi – a not-for-profit organisation supporting and promoting the development of persistent and openly accessible digital taxonomic literature – said:

“All the data about biodiversity is in our libraries, that include over 500 million pages, and everyday new publications are being added. No person can read all this, but machines allow us to mine this huge, very rich source of data. We do not know how many species we know, because we cannot analyse with all the scientists in this library, nor can we follow new publications. Thus, we do not have the best possible information to explore and protect our biological environment.”

Dr Donat Agosti demonstrating the importance of publishing biodiversity data in a structured and semantically enhanced format in one of his presentations at TDWG 2022.

***

At the closing plenary session, Gail Kampmeier – TDWG Executive member and one of the first zoologists to join TDWG in 1996 – joined via Zoom to walk the conference attendees through the 37-year history of the association, originally named the Taxonomic Databases Working Group, but later transformed to Biodiversity Information Standards, as it expanded its activities to the whole range of biodiversity data. 

“While this presentation is about TDWG’s history as an organisation, its focus will be on the heart of TDWG: its people. We would like to show how the organisation has evolved in terms of gender balance, inclusivity actions, and our engagement to promote and enhance diversity at all levels. But more importantly, where do we—as a community—want to go in the future?”,

reads the conference abstract of her colleague at TDWG Dr Visotheary Ung (CNRS-MNHN) and herself.

Then, in the final talk of the session, Deborah Paul took to the stage to present the progress and key achievements by the association from 2022.

She gave a special shout-out to the TDWG journal: Biodiversity Information Science and Standards (BISS), where for the 6th consecutive year, the participants of the annual conference submitted and published their conference abstracts ahead of the event. 

Deborah Paul reminds that – apart from the conference abstracts – the TDWG journal: Biodiversity Information Science and Standards (BISS) also welcomes full-lenght articles that demonstrate the development or application of new methods and approaches in biodiversity informatics.

Launched in 2017 on the Pensoft’s publishing platform ARPHA, the journal provides the quite unique and innovative opportunity to have both abstracts and full-length research papers published in a modern, technologically-advanced scholarly journal. In her speech, Deborah Paul reminded that BISS journal welcomes research articles that demonstrate the development or application of new methods and approaches in biodiversity informatics in the form of case studies.

Amongst the achievements of TDWG and its community, a special place was reserved for the Horizon 2020-funded BiCIKL project (abbreviation for Biodiversity Community Integrated Knowledge Library), involving many of the association’s members. 

Having started in 2021, the 3-year project, coordinated by Pensoft, brings together 14 partnering institutions from 10 countries, and 15 biodiversity under the common goal to create a centralised place to connect all key biodiversity data by interlinking a total of 15 research infrastructures and their databases.

Deborah Paul also reported on the progress of the Horizon 2020-funded project BiCIKL, which involves many of the TDWG members. BiCIKL’s goal is to create a centralised place to connect all key biodiversity data by interlinking 15 key research infrastructures and their databases.

In fact, following the week-long TDWG 2022 conference in Sofia, a good many of the participants set off straight for another Bulgarian city and another event hosted by Pensoft. The Second General Assembly of BiCIKL took place between 22nd and 24th October in Plovdiv.

***

You can also explore highlights and live tweets from TDWG 2022 on Twitter via #TDWG2022.
The Pensoft team at TDWG 2022 were happy to become the hosts of the 37th TDWG conference.

Pensoft’s ARPHA Publishing Platform integrates with OA Switchboard to streamline reporting to funders of open research

By the time authors open their inboxes to the message their work is online, a similar notification will have also reached their research funder.

Image credit: OA Switchboard.

By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.

This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.

All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.

“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”

comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

 

“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”

adds Yvonne Campfens, Executive Director of the OA Switchboard.

***

About the OA Switchboard:

A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.

About Pensoft:

Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.

All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.

***

Follow Pensoft on Twitter, Facebook and Linkedin.
Follow OA Switchboard on Twitter and Linkedin.

Interview: description of two African shovel-snout snakes from Angola

The small number of collected samples, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades.

Recently, our journal ZooKeys published a paper describing two new species of African Shovel-snout snakes: Prosymna confusa, endemic to dry habitats in southwestern Angola, and P. lisima, associated with the Kalahari sands.

We interviewed the authors of the study to find out how they made this discovery and what it means for biodiversity. Werner Conradie (South Africa), the leader of the project, collected most of the specimens and did all the morphological examinations and taxonomy work. Chad Keates (South Africa) conducted the molecular analysis, Javier Lobon-Roviara (Spain) did the CT-scanning skull reconstruction, and Ninda Baptista (Angola) performed fieldwork.

Interview with Werner Conradie, Chad Keates, Ninda L. Baptista, and Javier Lobón-Rovira

Why has the taxonomy of African Shovel-snout snakes been so complicated?

While widespread, the group is infrequently encountered, resulting in a relatively low number of samples being collected through time. This, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades. While we finally seem to have a grip on the higher-level taxonomy (their relatedness to other snakes), their relations among each other remain incomplete. One thing is for sure, the next few years will likely result in the discovery and description of many more.

Live P. confusa. Photo by Bill Branch

Please walk us through your research process.

Similar to solving a puzzle, the process starts off by acquiring the pieces. The pieces come in the form of samples, collected by us and by scientists, accessioned in museums all over the world. Once all the pieces are in one place, it becomes our job to piece them all together and build a picture of the taxonomy of the group. We start in the corners, ironing out our hypotheses. Once we have the outline, a theory of the species composition of the group, we get to work building the puzzle using evidence from multiple different species concepts.

We use genetics, morphology, ecology, and skull osteology and through fitting these concepts together we start to see our species and the boundaries between them. Large chunks of the puzzle begin to take shape, revealing our picture with ever-increasing clarity. As we find, orientate, and fit the last pieces of our puzzle through the creation and completion of the manuscript, we finish the puzzle and in doing so provide you with the complete picture: the updated taxonomy of Angolan shovel-snout snakes.

When did you realize you were dealing with new-to-science species?

It’s hard to pinpoint exactly, but the idea grew from the moment Werner Conradie picked up the first snake whilst on the first expedition with the Okavango Wilderness Project, back in 2016. Funded by National Geographic and managed by the Wild Bird Trust, this paper would not be possible without them, because without the transport and logistical support, most of our dataset would never have been found.

What makes these new species unique?

With the aid of modern nano computerised tomography scanning technology, we observed that one of the new species has a well-developed postorbital bone. We still don’t know the purpose of this postorbital bone and why it is absent in the others. We believe it might serve as additional muscle attachment points that aids them on feeding on different kinds of lizard eggs than the others.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

This is also the first new species of Shovel-snouted snake described in nearly 30 years.

In the late 1980’s Zimbabwean herpetologist, Donald Broadley noted that eastern populations of the Angolan Shovel-snouted snake may be a different species. It took nearly 50 years before more material was collected and with the aid of modern technology, like genetic analysis and CT-scanning, we could show he was correct and described it as a new species.  

What can you tell us about their appearance and behavior?

The Shovel-snouted snakes are unique snakes with a beak-like snout that allow them to dig into sandier soils. Thus most of the time they are below the surface and only come out after heavy rains. They also possess unique backward pointed lancet-shaped teeth that they use for cutting open lizard eggs. These snakes specialize in feeding mostly on soft-shell lizard eggs. They find a freshly laid clutch of eggs and one by one, they swallow them whole. They cut them laterally so that the yolk can be released.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

Do they interact with people?

These snakes may be encountered by people tending to their lands or crossing the road, but, for the most part, they are incredibly secretive. Because of their ability to burrow in soft soils, these animals are infrequently encountered, only forced to the surface during heavy rain and by the urge to breed and to feed. If encountered, however, these snakes pose absolutely no harm, as they possess no venom. When threatened, these animals may wind themselves into a tight coil to protect their heads.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

What is the ecological role of these snakes?

Much like most small vertebrates, these animals form an important component of the food web. They consume lizard eggs, exerting a regulatory force on newborn lizards, and serve as food for larger snakes, rodents, and birds. Animals like these form the bedrock of any healthy ecosystem as they contribute to energy exchanges and the flow of nutrients down and up and down again.

Bonus question: how did you get involved in herpetology?

Everyone in the group has a soft spot for reptiles and amphibians’. Irrespective of our contrasting upbringing and our nation of origin, we all came to herpetology independently. While it is hard to unpack the moment that we all fell in love with these weird and wonderful creatures, one thing is for sure, it’s a lifetime commitment.

About the Authors

Werner Conradie holds a Masters in Environmental Science (M. Env. Sc.) and has 17 years of experience with southern African herpetofauna, with his main research interests focusing on the taxonomy, conservation, and ecology of amphibians and reptiles. Werner has published numerous principal and collaborative scientific papers, and has served on a number of conservation and scientific panels, including the Southern African Reptile and Amphibian Relisting Committees. He has undertaken research expeditions to many African countries including Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe. Werner is currently the Curator of Herpetology at the Port Elizabeth Museum (Bayworld), South Africa.

Chad Keates is a post-doctoral fellow at the African herpetology lab at Port Elizabeth museum (Nelson Mandela University, based in the SAIAB Genetics Platform). Having recently completed his PhD in Zoology, Chad’s research focusses are African herpetofauna and their evolutionary and ecological structuring. In Chad’s short professional career, he has published several principal and collaborative peer-reviewed scientific papers and book chapters. Chad is also a strong advocate for reptile and amphibian awareness and regularly conducts walks, talks and presentations as well as produces numerous popular scientific outputs on the subject. He has undertaken numerous expeditions to many African countries such as Angola, Zambia and South Africa with a variety of both professional and scientific organisations.

Ninda Baptista is an Angolan biologist, holds an MSc degree in Conservation Biology from the University of Lisbon, and is currently enrolled for a PhD in Biodiversity, Genetics and Evolution in the University of Porto, addressing the diversity of Angolan amphibians. Over the last 12 years she has worked on environmental consulting, research and in-situ conservation projects in Angola, including priority areas for conservation such as Kumbira, Mount Moco and the Humpata plateau. She conducted herpetological surveys throughout the country and created a herpetological collection (Colecção Herpetológica do Lubango), currently deposited in Instituto Superior de Ciências da Educação da Huíla (ISCED – Huíla). Ninda is an author of scientific papers and book chapters on Angolan herpetology and ornithology. She also works on scientific outreach, producing magazine articles, books for children and posters about the country’s biodiversity in collaboration with Fundação Kissama.

Javier Lobón-Rovira is PhD student at Cibio, Portugal, working to unveil evolutionary pattern in southern Africa gekkonids. As Biologist he has worked in different conservation projects and groups around the globe, including reptiles and amphibians at Veragua Rainforest Foundation, Costa Rica or big mammals in Utah, USA. However, as photographer, he has collaborated with different Conservation NGOs in Africa, America and Europe and manage to publish on International Journals as National Geographic, Africa Geographic or Nature’s Best Magazine. 

Read the study:

Conradie W, Keates C, Baptista NL, Lobón-Rovira J (2022) Taxonomical review of Prosymna angolensis Boulenger, 1915 (Elapoidea, Prosymnidae) with the description of two new species. ZooKeys 1121: 97-143. https://doi.org/10.3897/zookeys.1121.85693

Follow ZooKeys on Facebook and Twitter.

Three new species of ground snakes discovered under graveyards and churches in Ecuador

The new snakes, which are small and cylindrical, were named in honor of institutions or people supporting the exploration of remote cloud forests in the tropics.

A group of scientists led by Alejandro Arteaga, grantee of The Explorers Club Discovery Expeditions and researcher at Khamai Foundation, discovered three new cryptozoic (living underground) snakes hidden under graveyards and churches in remote towns in the Andes of Ecuador. The discovery was made official in a study published in the journal ZooKeys. The new snakes, which are small, cylindrical, and rather archaic-looking, were named in honor of institutions or people supporting the exploration and conservation of remote cloud forests in the tropics.

Atractus michaelsabini was found hidden besides a church in the Andean town Guanazán, El Oro province, Ecuador. Photo by Amanda Quezada

Believe or not, graveyards are also land of the living. In the Andes of Ecuador, they are inhabited by a fossorial group of snakes belonging to the genus Atractus. These ground snakes are the most species-rich snake genus in the world (there are now 150 species known globally), but few people have seen one or even heard about their existence. This is probably because these serpents are shy and generally rare, and they remain hidden throughout most of their lives. Additionally, most of them inhabit remote cloud forests and live buried underground or in deep crevices. In this particular case, however, the new ground snakes where found living among crypts.

General view of a graveyard in Amaluza, Azuay province, Ecuador. Photo by Alejandro Arteaga

The discovery of the three new species took place rather fortuitously and in places where one would probably not expect to find these animals. The Discovery Ground Snake (Atractus discovery) was found hidden underground in a small graveyard in a remote cloud forest town in southeastern Ecuador, whereas the two other new species were found besides an old church and in a small school. All of this seems to suggest that, at least in the Andes, new species of snakes might be lurking just around the corner.

Unfortunately, the coexistence of ground snakes and villagers in the same town is generally bad news for the snakes. The study by Arteaga reports that the majority of the native habitat of the new snakes has already been destroyed. As a result of the retreating forest line, the ground snakes find themselves in the need to take refuge in spaces used by humans (both dead and alive), where they are usually killed on sight.

Atractus zgap. Photo by Alejandro Artaga.

Diego Piñán, a teacher of the town where one of the new reptiles was found, says: “when I first arrived at El Chaco in 2013, I used to see many dead snakes on the road; others where hit by machetes or with stones. Now, after years of talking about the importance of snakes, both kids and their parents, while still wary of snakes, now appreciate them and protect them.” Fortunately, Diego never threw away the dead snakes he found: he preserved them in alcohol-filled jars and these were later used by Arteaga to describe the species as new to science.

A jar full of Atractus snakes. Photo by Alejandro Arteaga

In addition to teaching about the importance of snakes, the process of naming species is important to create awareness about the existence of a new animal and its risk of extinction. In this particular case, two of the new snakes are considered to be facing a high risk of extinction in the near future.

The discovery process also provides an opportunity to recognize and honor the work of the people and institutions fighting to protect wildlife.

Alejandro Arteaga examines the holotype of Atractus discovery. He had to examine hundreds museum specimens before confirming the new species as such. Photo by David Jácome

Atractus discovery was named to honor The Explorers Club Discovery Expedition Grants initiative, a program seeking to foster scientific understanding for the betterment of humanity and all life on Earth and beyond. The grant program supports researchers and explorers from around the world in their quest to mitigate climate change, prevent the extinction of species and cultures, and ensure the health of the Earth and its inhabitants.

Atractus zgap. Photo by Alejandro Arteaga

Atractus zgap was named in honor of the Zoological Society for the Conservation of Species and Populations (ZGAP), a program seeking to conserve unknown but highly endangered species and their natural habitats throughout the world. The ZGAP grant program supports the fieldwork of young scientists who are eager to implement and start conservation projects in their home countries.

Atractus discovery. Photo by Alejandro Arteaga

Atractus michaelsabini was named in honor of a young nature lover, Michael Sabin, grandson of American philanthropist and conservationist Andrew “Andy” Sabin. Through the conservation organization Re:wild, the Sabin family has supported field research of threatened reptiles and has protected thousands of acres of critical habitat throughout the world.

“Naming species is at the core of biology”, says Dr. Juan M. Guayasamin, co-author of the study and a professor at Universidad San Francisco de Quito. “Not a single study is really complete if it is not attached to the name of the species, and most species that share the planet with us are not described.”

“The discovery of these new snakes is only the first step towards a much larger conservation project,” says Arteaga. “Now, thanks to the encouragement of ZGAP, we have already started the process of establishing a nature reserve to protect the ground snakes. This action would not have been possible without first unveiling the existence of these unique and cryptic reptiles, even if it meant momentarily disturbing the peace of the dead in the graveyard where the lived.”

Research article:

Arteaga A, Quezada A, Vieira J, Guayasamin JM (2022) Leaving no stone unturned: three additional new species of Atractus ground snakes (Serpentes, Colubridae) from Ecuador discovered using a biogeographical approach. ZooKeys 1121: 175-210. https://doi.org/10.3897/zookeys.1121.89539

Follow ZooKeys on Twitter and Facebook.

Scientists reveal the true identity of a Chinese octopus

Locals and fishermen had long been familiar with the species, but they kept mistaking it for a different species.

As they were collecting cephalopod samples in Dongshan island in China’s Fujian Province, a team of researchers came across an interesting finding: a new-to-science species of octopus.

A live individual of Callistoctopus xiaohongxu.

Actually, locals and fishermen have long been familiar with the species -but they kept mistaking it for a juvenile form of the common long-arm octopus (‘Octopus minor), whose trade is widespread throughout the country.

Only when a team of scientists from the Ocean University of China collected a batch of specimens misidentified by locals from Dongshan Seafood Market Pier as ‘O’. minor to study them, did it become apparent that this was in fact a separate, new species. That’s how it got its own name, Callistoctopus xiaohongxu, and a scientific description published in the open-access journal ZooKeys.

A live individual of Callistoctopus xiaohongxu.

The scientific name xiaohongxu is a phonetic translation of the local Chinese name of this species in Zhangzhou, where it was collected. It is a reference to its smooth skin and reddish-brown colour, which are among its most distinctive features. At less than 40 g in its adult stage, C. xiaohongxu is considered a small to moderate-sized octopus.

A net-like web structure on Callistoctopus xiaohongxu.

The researchers also note that this is the first new species of the genus Callistoctopus to be found in the China Seas.

More than 130 different cephalopod species are recorded in Chinese waters. Тhe southeast waters of China, due to the influence of strong warm currents, provide ideal environmental conditions to generate abundant marine biodiversity, and the finding of C. xiaohongxu further confirms the high diversity of species in the southeast China sea, the researchers said.

Research article:

Zheng X, Xu C, Li J (2022) Morphological description and mitochondrial DNA-based phylogenetic placement of a new species of Callistoctopus Taki, 1964 (Cephalopoda, Octopodidae) from the southeast waters of China. ZooKeys 1121: 1-15. https://doi.org/10.3897/zookeys.1121.86264

Follow ZooKeys on Twitter and Facebook.