Not Your Typical Conference Abstract #TDWG2021

TDWG 2021, the virtual conference of Biodiversity Information Standards (TDWG) being held 18–22 October, issued a call for abstracts representing presentations in fifteen symposia, as well as posters (including infographics), and contributed oral presentations appropriate to the conference theme Connecting the world of biodiversity data: uniting people, processes, and tools. Registration is now open, with the deadline for abstract submission set to 2 August 2021.

Joint blog post by #TDWG2021 Program Committee and Pensoft Editorial Team

TDWG 2021, the virtual conference of Biodiversity Information Standards (TDWG) being held 18–22 October, issued a call for abstracts representing presentations in fifteen symposia, as well as posters (including infographics), and contributed oral presentations appropriate to the conference theme Connecting the world of biodiversity data: uniting people, processes, and tools. Registration is now open, with the deadline for abstract submission set to 2 August 2021

Detailed instructions have also been made available to guide authors through the process. Abstract publication costs are included in the conference registration. All presenters must be fully registered before their abstracts can be published. 

Why are these not your typical conference abstracts? 

In short, each published abstract is a mini-paper designed to entice conference participants to attend your presentation, but, even more importantly, to let you provide something more enduring, a snapshot of your research progress the size of a written elevator pitch.

Using Pensoft’s ARPHA writing tool, you can enhance your abstract, so that it includes figures, keywords, references, and supplementary materials. Slides, posters, and video links can also be added to the abstract’s media tab after the conference, to build a well-rounded understanding of your work. TDWG’s open access Pensoft journal, Biodiversity Information Science and Standards (BISS), will even provide metrics about views, downloads, citations, or even online mentions of your abstract. 

Benefits of publishing your TDWG conference abstract: 

  • Free and open access to your abstract ahead of the conference via the society’s open access Pensoft journal, Biodiversity Information Science and Standards (BISS) 
  • A Digital Object Identifier (DOI), a unique, persistent, and citable reference assigned to each abstract 
  • Distribution of abstracts under the terms of Creative Commons attribution licenses, either CC BY 4.0 (default) or CC0 (by request).
  • Review provided by at least two editors for each abstract.
  • Readers can comment or ask questions within the Comment tab in the publication. Authors may also use the Comment tab for updates or errata.
  • Automatic linking of your abstract to your author record via ORCID and/or Web of Science (Publons) ResearcherID.
  • To prompt discoverability, all articles, including abstracts, are automatically harvested upon publication by a range of indexers, from AGRIS to ZDB.
  • Technical editors are cited as part of the article metadata. 
  • Abstracts are associated with the conference session in which they were presented.
  • Easy to create buzz around your presentation by sharing your abstract on Twitter, Facebook, Mendeley, Reddit, or via email with a single click thanks to share buttons.

While BISS is currently known as (just) a place to publish conference proceedings, this is a misconception. Authors are encouraged to publish full articles of methods, standards, guidelines, case studies, software descriptions, forum papers, editorials, correspondence, data or software reviews. BISS provides a discount on the article processing charges (APCs) for TDWG members.

***

Join the conversation around this year’s Biodiversity Information Standards (TDWG) conference on Twitter via #TDWG2021.

***

Visit BISS Journal website at: https://biss.pensoft.net/ and follow on Twitter and Facebook.

Dolichomitus meii Wasp Discovered in Amazonia Is Like a Flying Jewel

“The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous.”

Parasitoid wasps (Hymenoptera) are one of the most species rich animal taxa on Earth, but their tropical diversity is still poorly known. Now, scientists have discovered the Dolichomitus meii and Polysphincta parasitoid wasp species previously unknown to science in South America. The new species found in the rainforests entice with their colours and exciting habits. Researchers at the University of Turku have already described 53 new animal species this year.

Researchers at the Biodiversity Unit of the University of Turku, Finland, study insect biodiversity particularly in Amazonia and Africa. In their studies, they have discovered hundreds of species previously unknown to science. Many of them are exciting in their size, appearance, or living habits.

“The species we have discovered show what magnificent surprises the Earth’s rainforests can contain. The newly discovered Dolichomitus meii wasp is particularly interesting for its large size and unique colouring. With a quick glance, its body looks black but glitters electric blue in light. Moreover, its wings are golden yellow. Therefore, you could say it’s like a flying jewel,” says Postdoctoral Researcher Diego Pádua from the Instituto Nacional de Pesquisas da Amazônia (INPA) in Brazil, who has also worked at the Biodiversity Unit of the University of Turku.

Dolichomitus parasitoid wasps are parasitic on insect larvae living deep in tree trunks. They lay a single egg on the insect larva and the wasp hatchling eats the host larva as it develops.  

Dolichomitus meii
The Dolichomitus meii wasp was discovered in western Amazonia. Its body looks black but glitters electric blue in light. The wasp lays its eggs on insect larvae living deep in wood. It reaches the host larvae with a long ovipositor. Picture: Filippo De Giovanni and Rodrigo Araújo

“The ovipositor of the Dolichomitus meii wasp is immensely long. It sticks the ovipositor into holes in the wood and tries to find host larvae inside. The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku.

Polysphincta Parasitoid Wasps Manipulate the Behaviour of the Host Spider

At the same time as the publication on the Dolichomitus meii species, the researchers published another research article on South American wasp species. The article describes altogether seven new wasp species belonging to the Polysphincta genus.

Polysphincta bonita refers to the species’ beautiful appearance. The species is parasitic on spiders. Picture: Diego Padúa and Ilari E. Sääksjärvi

The Polysphincta parasitoid wasps are parasitic on spiders. The female attacks a spider in its web and temporarily paralyses it with a venomous sting. After this, the wasp lays a single egg on the spider, and a larva hatches from the egg. The larva gradually consumes the spider and eventually pupates.

“The wasps that are parasitic on spiders are extremely interesting as many of them can manipulate the behaviour of the host spider. They can change the way a spider spins its web, so that before its death, the spider does not spin a normal web to catch prey. Instead, they spin a safe nest for the parasitoid wasp pupa,” describes Professor Sääksjärvi.

Researchers at University of Turku Have Already Discovered 53 New Species This Year

The new species are often discovered through extensive international collaboration. This was also the case with the newly published studies.

“For example, the discovery of the Dolichomitus meii species was an effort of six researchers. Moreover, these researchers all come from different countries,” says Professor Sääksjärvi.

The work to map out biodiversity previously unknown to science continues at the University of Turku and there are interesting species discoveries ahead.

“I just counted that, in 2021, the researchers of the Biodiversity Unit at the University of Turku have described already 53 new species from different parts of the globe – and we’re only halfway through the year,” Sääksjärvi announces cheerfully.

The discoveries of the research group were published in the Biodiversity Data Journal and ZooKeys.

Research articles:

Di Giovanni F, Pádua DG, Araujo RO, Santos AD, Sääksjärvi IE (2021) A striking new species of Dolichomitus Smith, 1877 (Hymenoptera: Ichneumonidae; Pimplinae) from South America. Biodiversity Data Journal 9: e67438. https://doi.org/10.3897/BDJ.9.e67438

Pádua DG, Sääksjärvi IE, Spasojevic T, Kaunisto KM, Monteiro RF, Oliveira ML (2021) A review of the spider-attacking Polysphincta dizardi species-group (Hymenoptera, Ichneumonidae, Pimplinae), with descriptions of seven new species from South America. ZooKeys 1041: 137-165. https://doi.org/10.3897/zookeys.1041.65407

Trapdoor spiders named after Neil Gaiman, Peter Gabriel and Brandi Carlile among 33 new to science species

New species named after famous novelist Neil Gaiman, musician and human rights activist Peter Gabriel and singer-songwriter Brandi Carlile are among thirty-three new trapdoor spiders described from across North and South America. Following the discovery, published in the openly accessible, peer-reviewed scholarly journal ZooKeys, the known species in the genus Ummidia increased more than twice.

In a recent revision of the trapdoor spider genus Ummidia completed at the University of California, Davis, co-authors Dr. Rebecca Godwin (Piedmont University, GA) and Dr. Jason Bond (University of California, Davis, CA) described 33 new species found throughout North and South America. Their study is published in the openly accessible, peer-reviewed scholarly journal ZooKeys. A number of these species were named after popular artists, including Neil Gaiman, Peter Gabriel and Brandi Carlile.

“I think anything we can do to increase people’s interest in the diversity around them is worthwhile and giving species names that people recognize but that still have relevant meaning is one way to do that,” says Dr. Godwin.

A male Ummidia brandicarlileae from Yucatán, Mexico

The newly described trapdoor spider Ummidia brandicarlileae is named after singer-songwriter and activist Brandi Carlile, and occurs in Yucatán, Mexico, where Carlile’s annual Girls Just Wanna Weekend Festival is held. The event was created to counter the lack of female representation at mainstream music festivals. 

A male Ummidia neilgaimani from Roanoke Co., Virginia, U.S.

Similarly, Ummidia neilgaimani is named after fantasy and horror writer, Neil Gaiman, author of a number of fantasy and horror books with spider-based characters, and a particular favorite of Dr. Godwin.

A male Ummidia gabrieli from Baja California Sur, Mexico

In addition to these pop culture references, Godwin and Bond named several species in honor of various people and places. The Pine Rockland trapdoor spider, found in southern Florida, is named after the critically endangered pine rockland habitat in which it is found. Ummidia paulacushingae is named for Dr. Paula Cushing, long-time collaborator and friend of Bond and friend, and mentor to Godwin. 

With the names of the new to science species, the authors were also able to shed light on lesser-known historical figures. Ummidia bessiecolemanae is named for Bessie Coleman (1892–1926), the first African American and Native American woman to obtain her pilot’s license. 

Trapdoor spiders are unique compared to most of the spiders that we are familiar with in that they don’t use silk to make a web. Instead, they live in burrows lined with silk and covered with a “trapdoor”. 

Trapdoor spiders in the genus Ummidia are actually very widespread—they can be found from Maryland west to Colorado through Mexico and Caribbean as far south as Brazil. However, because they spend most of their lives underground, people rarely ever encounter a trapdoor spider.  When trapdoor spiders are young, they leave their mother’s burrow and make one of their own. Females will spend their entire lives (which can be decades) in those burrows if they aren’t disturbed, but when a male spider matures (5 to 7 years of age), they emerge in search of females. This is when people are most likely to see them. 

“I am continually blown away by how little we know about what is out there living on this planet with us. Most people don’t even realize they are sharing their space with these creatures literally right under their feet”

Dr. Rebecca Godwin

“Given the fact that these spiders tend to have very limited ranges and have very low dispersal, entire species can be winked out of existence without us ever knowing they were here, and I find that kind of heartbreaking. Documenting the diversity of groups like Ummidia gives us knowledge we need to appreciate and conserve the rich and diverse life that surrounds us.” 

Research article:

Godwin RL, Bond JE (2021) Taxonomic revision of the New World members of the trapdoor spider genus Ummidia Thorell (Araneae, Mygalomorphae, Halonoproctidae). ZooKeys 1027: 1-165. https://doi.org/10.3897/zookeys.1027.54888

ARPHA expands to computer science with International Journal of Universal Computer Science

The scholarly publisher and technology provider Pensoft and its self-developed publishing platform ARPHA welcome The International Journal of Universal Computer Science (J.UCS) to their portfolio. With this addition, the publisher, best known for a wide range of biodiversity-themed journals, steps into the field of computer science.

Since 1995, J.UCS has been publishing, digitally and in print, research articles and editorials on all aspects of computer science. With a free-of-charge policy for both authors and readers, and a review process usually taking between 6 and 10 weeks, its volumes have been documenting, connecting and reflecting novel aspects of computer science. J.UCS’ peer-reviewed monthly issues, as well as special issues on selected topics, continuously serve as one of the major knowledge bases for the research community in computer science. Currently, its Impact Factor stands at 1.139 (2020), and its CiteScore is at 2.0 (2020).

By moving to ARPHA, J.UCS now enjoys a long list of high-tech perks, which dramatically enhance the entire publishing process, from submission to publication, distribution and archiving.

The journal is already publishing on a brand-new, user-friendly website under Pensoft’s scholarly publishing platform ARPHA. Its latest issue features a model for forecasting air travel demand with machine learning; an analysis of the effect of different stimuli, such as video and sound on a user’s sense of presence in a virtual environment; and a new approach for solving the 15-puzzle problem using the artificial bee colony algorithm.

By moving to ARPHA, J.UCS now enjoys a long list of high-tech perks, which dramatically enhance the entire publishing process, from submission to publication, distribution and archiving. All users of the journal’s system – authors, editors, and reviewers, can benefit from ARPHA’s integrated approach, which ensures that once submitted, each manuscript goes through the whole cycle: from manuscript submission, review and copy/layout editing to publication, dissemination and archiving, without ever leaving ARPHA’s collaboration-focused online environment.

The easy-to-use platform offers features such as papers available in a machine-readable XML format, automated data export to aggregators, automated notifications and reminders, usage metrics and web-service integrations with major global indexing databases, which ensure that published articles are easy to discover, access, cite and reuse by both humans and machines all over the world.

“Since its foundation, J.UCS has built on and even created innovative features for digital libraries. By moving to the ARPHA platform, the J.UCS community can take advantage of the latest publishing features and technologies, including long-time archiving and review acknowledgement. Thus, the J.UCS team can concentrate on the journal’s core business and content quality, and can rely on professional service and support. Moving to the new platform was only possible due to the financial support of our consortium partners Graz University of Technology, ZBW, American University and California Polytechnic State University, and by in-kind support from Internet Studio Isser and photographer Christian Trummer for their graphical design contribution.”

Christian Gütl, Managing Editor-in-Chief.

Beetles, biodiversity and ‘Battlestar Galactica’

Michigan State entomologists have discovered dozens of new beetle species — and named some after iconic sci-fi heroines

The original Star Trek television series took place in a future when space is the final frontier, but humanity hasn’t reached that point quite yet. As researchers like Michigan State University entomologists Sarah Smith and Anthony Cognato are reminding us, there’s still plenty to discover right here on Earth.

Working in Central and South America, the duo discovered more than three dozen species of ambrosia beetles — beetles that eat ambrosia fungus — previously unknown to science. Smith and Cognato described these new species on June 16  in the journal ZooKeys.

The Spartans also selected an unusual naming theme named in deference to the female beetles who have helped their species survive and thrive by boldly going where they hadn’t before.

Many of the new species are named for iconic female science fiction characters, including Nyota Uhura of “Star Trek”; Kara “Starbuck” Thrace from the 2000s “Battlestar Galactica” TV series; and Katniss Everdeen from “The Hunger Games” books and movies.

The wing coverings of the C. katniss come to an arrowhead-like point, which reminded the researchers of Katniss Everdeen from “The Hunger Games,” shown below. “The Hunger Games” image courtesy of Lions Gate Entertainment Inc.

“One of our colleagues from London asked if it’s good to name a species after popular characters, if the popularity would backfire and make people think this is frivolous,” said Cognato, director of the Albert. J. Cook Arthropod Research Collection. He’s also an entomology professor with appointments in the College of Agriculture and Natural Resources and the College of Natural Science.

“But overall, our colleagues think it’s a good thing,” Cognato said. “It gives us a chance to talk about taxonomy — the science of classifying organisms — and about diversity.”

Understanding the world’s biodiversity is one of the major drivers of this and related research. Scientists estimate that there are 10 million nonbacterial species in the world and that humans have classified only about 20% of those.

“And some are lost before they’re ever discovered,” said Smith, who is the curator of the A. J. Cook Arthropod Research Collection. When people disrupt native ecosystems with farming and mining, for example, undiscovered species can face extinction before researchers know about them.

For this project, the team did some of its field work in Peru, where illegal gold miners can be particularly devastating to forests. “They’re turning the forest into a wasteland” Smith said. “It may never recover.”

Working in such threatened areas, Smith and Cognato are helping identify beetle species before it’s too late, as well as characterizing a rich variety of physical traits and behaviors.

To be clear, they did this field work long before the pandemic struck, starting around 2008. But it takes time to perform the thorough investigations required to ensure that a species is indeed distinct from its closely related cousins.

“With South America, it can be really hard to know whether a species is new or not, just because the fauna is so poorly studied,” Smith said.

With the stay-at-home orders in effect, she and Cognato had time to focus on projects that had been simmering on the backburner, such as this one that details ambrosia beetles they had collected belonging to the genus Coptoborus.

These tiny beetles make their homes by boring into trees. Once inside, they sustain their nests by cultivating fungus that serves as food. There, a mother produces many female offspring and one or two dwarfed males. The main job of those males is to mate with their sisters, creating a new generation of females prepared to disperse and produce a new brood. This all leads to another reason for studying these beetles: they can become pests.

These females arrive at trees ready to bore inside, start a fungus farm and reproduce. Though most prefer to nest in dead or dying parts of trees, some can attack fully healthy trees that are ecologically and economically important. For example, there are species within the genus known to attack balsa trees in Ecuador, the world’s leading exporter of balsa wood.

And if tree-dwelling beetles find their way into nonnative habitats, they can pose large threats to trees that have no natural defenses against the insects. Michiganders are all too familiar with the emerald ash borer, which has claimed millions of ash trees in the state. Another nonnative species of fungus-farming beetle devastated redbay laurels and avocado trees in the Southern U.S.

By identifying species abroad, in their native habitats, researchers including Smith and Cognato are helping the U.S. better prepare for if and when a new pest shows up here. And, historically speaking, Coptoborus beetles are hardy travelers.

The researchers thought the C. starbuck‘s appearance gave it a tough persona, leading them to name it for Kara “Starbuck” Thrace from “Battlestar Galactica,” shown on the right. “Battlestar Galactica” image courtesy of NBC Universal.

Their ancestors originated about 20 million years ago, likely in Southeast Asia, before emigrating and making homes across much of the tropics.

“That’s one of the reasons we chose to name them after female sci-fi characters. Not to anthropomorphize too much, but you have these adventurous females that were blown off their log or had their wood-encased home thrown into the ocean by a mudslide,” Cognato said. If these mated females made it to a new land, they could start a new population, allowing the species to proliferate.

“Along the way, there were so many ways to die, but they ended up colonizing an entire continent.”

Fast forward to now and there are thousands of ambrosia beetle species, including more than 70 of the Coptoborus genus — and counting. In christening the new beetles, Smith and Cognato got some inspiration by finding similarities between the beetle and its namesake.

For instance, the C. uhura was given its name because its reddish color, reminiscent of the uniform worn by Nichelle Nichols’s Uhura character in the original “Star Trek” TV series.

The C. uhura’s reddish hue reminded the researchers of the uniform worn by Lt. Uhura in the original “Star Trek” television series, shown below. “Star Trek” image courtesy of CBS Studios Inc.

And Sigourney Weaver’s Ellen Ripley character in the “Alien” film franchise had a shaved head in the movie “Alien 3.” One of the beetles, now named C. ripley, was also glabrous, or without hair.

The C. ripley is glabrous, which means hairless, reminding the researchers of Ellen Ripley and her shaved head in “Alien 3,” shown on the right. “Alien 3” image courtesy of Twentieth Century Fox.

Other names were selected because the duo just liked the characters and found them inspiring. For example, the C. scully beetle was named after Dana Scully, Gillian Anderson’s character on “The X-Files.”

The character is also behind what’s known as the “Scully Effect.” By showing a successful female scientist on TV, the show helped raise awareness of science, technology, engineering and mathematics — or STEM — professions among young women.

In their paper, Smith and Cognato wrote, “We believe in the ‘Scully Effect’ and hope future female scientists, real and fictional, continue to inspire children and young adults to pursue STEM careers.”

Smith and Cognato also took the opportunity to name some beetles in honor of real-life people who have made an impact on their work and their lives.

For example, the C. erwini, is named after a renowned entomologist and friend Terry Erwin, who passed away in 2020. Erwin helped popularize a technique called canopy fogging to collect beetle specimens living in treetops.

Coptoborus erwini

“Without his dedication to canopy fogging, this species and most of those described in this publication may never have been discovered,” Smith and Cognato wrote in their study, which is part of a special issue in memory of Erwin, who was also editor-in-chief of ZooKeys.

Also, the C. bettysmithae is named after Smith’s grandmother, Catherine “Betty” Smith. Sarah remembers Betty’s incredible strength in battling cancer and her help fostering her granddaughter’s scientific interest.

Some of the beetles were named for real-life inspirations, like the C. bettysmithae, named for Sarah Smith’s grandmother, Catherine “Betty” Smith.

“My grandmother supported me a lot with entomology,” Smith said. “I used to spend many weekends with her, and she’d take me out to catch dragonflies.”

Now, she and Cognato are out catching and characterizing insects that are new to science. In doing so, they’re helping protect native ecosystems, painting a more complete picture of the planet’s bountiful biodiversity and even drawing some attention to the power of naming and classifying things.

“Taxonomy was probably one of the first sciences of humans. You can find evidence of it throughout history and across cultures,” Cognato said.

This naming likely started so humans could easily share information about which plants were safe to eat and which animals were dangerous. This is still valuable information today, but naming has evolved to help us appreciate even more dimensions of life on Earth.

Think about being a kid in a park or backyard, Cognato said, and the innate desire to know and name the animals there, say, robins or squirrels. Classification builds connection.

“It helps us communicate and it helps us live better,” Cognato said. “It helps us understand the world and biodiversity.”

Original source:

Smith SM, Cognato AI (2021) A revision of the Neotropical genus Coptoborus Hopkins (Coleoptera, Curculionidae, Scolytinae, Xyleborini). In: Spence J, Casale A, Assmann T, Liebherr JК, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020). ZooKeys 1044: 609-720. https://doi.org/10.3897/zookeys.144.62246

Are zoos inadvertently complicit in wildlife trade? The case of a rare Borneo lizard

Should zoos display legally protected species that have been smuggled out of their range countries? A new study suggests that a pause and rethink may be needed, as it reports that accredited zoos have acquired a rare and legally protected reptile, the earless monitor lizard endemic to Borneo, without any evidence that the animals were legally exported.

The earless monitor lizard occurs only on the island of Borneo and has been described as a “miniature Godzilla” and “the Holy Grail of Herpetology.” Discovered by western scientists almost 150 years ago, for most of this period the species was known largely from pickled specimens in natural history collections, and wasn’t recorded from the wild for decades. In the 1970s, the three countries that make up Borneo – Indonesia, Malaysia and Brunei – added it to their protected species lists. This means that the species can neither be legally traded within these countries, nor legally exported out of them.

Earless monitor lizard. Photo by Chien C. Lee, Wild Borneo.

Despite legal protection and lack of export permissions, reptile enthusiasts and unscrupulous traders have long been smuggling small numbers of earless monitor lizards out of Indonesia and Malaysia, eventually bringing them to Europe. This greatly accelerated in 2012, when the species’ rediscovery was announced in a scientific journal. In 2016, all 183 countries that are signatory to the Convention on international trade in endangered species agreed to regulate global trade in earless monitor lizards in order to limit the negative effects of smuggling on wild populations. Agreed export numbers were set at zero.

Enforcing the laws has proven to be challenging, however, and to date only two smuggling attempts have been thwarted. In both cases, German smugglers were apprehended at Indonesian airports while attempting to move respectively eight and seventeen earless monitor lizards out of the country.

The first zoo that proudly announced it had obtained earless monitor lizards was Japan’s iZoo in 2013. This zoo is not accredited, and the ways in which the animals were obtained remain questionable. In Europe, the first zoos to openly display earless monitor lizards were located in Hungary, Austria and the Czech Republic. The animals were obtained from what zoos referred to as “private individuals” or “dedicated hobby breeders”, and, in one instance, from iZoo. Just like in Japan, how these animals ended up in Europe is questionable, but perhaps not illegal – and it is evident that no export permits were ever issued.

In recent years, more and more zoos in Europe, and since the beginning of this year also in the United States, have started displaying earless monitor lizards. Some cases were part of zoo exchanges, others were obtained from private individuals, and a handful were placed in zoos by authorities after they were seized, but it is clear that many were at one point illegally exported out of Indonesia, Malaysia or Brunei, or were illegally imported into non-range countries.

The acquisition of these protected lizards by zoos is neither in line with the intentions of national laws of their countries of origin, nor with international wildlife trade regulations. Moreover, it is diametrically opposed to the commitments the international zoo community has made to address illegal wildlife trade.

“To me, the current situation concerning the purchasing and proudly displaying of earless monitor lizards by accredited zoos can be compared with a road safety organisation posting online videos of its CEO doing wheelies on a motorbike and then adding that it was done on a private road where neither wearing a helmet nor having a driver’s licence is required,” said Vincent Nijman of the Oxford Wildlife Trade Research Group, author of the study that was published in the open-access journal Nature Conservation. “Both may be legal in a technical sense, but the optics are not good.”

“Modern, scientifically managed zoos are increasingly organising themselves with set ethical values and binding standards which go beyond national legislation on conservation and sustainability, but, unfortunately, this still only counts for a small proportion of zoos worldwide,” said Dr Chris R. Shepherd, Executive Director of Monitor Research Conservation Society. “Zoos that continue to obtain animals that have been illegally acquired, directly or indirectly, are often fuelling the illegal wildlife trade, supporting organised crime networks and possibly contributing to the decline in some species.”

Seven years ago, the price for a single earless monitor lizard was in the order of EUR 8,000 to 10,000 , so any zoo or hobbyist wanting to have one or more pairs had to make a serious financial commitment. These high prices put a restriction on the number of people that wanted to acquire them and could afford them. It probably also gave potential buyers a tacit reminder that the trade was illicit. In recent years, however, prices have come down, to less than EUR 1,000. Now that earless monitor lizards are more affordable, and with accredited zoos giving a sense of legitimacy, Nijman is concerned that it might become more and more acceptable to keep these rare animals as pets.

“When I grew up in the 1970s, it was still perfectly acceptable for what we now see as accredited zoos to regularly buy rare and globally threatened birds, mammals and reptiles from commercial animal traders. Few questions were asked about the legitimacy of this animal trade. This has dramatically changed for the better, and now many of the animals we see in zoos today have been bred in captivity, either in the zoo itself, or in partner zoos”, Nijman said. He added that in many ways zoos are a force for good in the global challenge to preserve species and conserve habitats. “It is imperative that these efforts are genuinely adopted by all in the zoo community, and, when there is doubt about the legitimacy of animals in trade, that a cautionary approach is adopted.”

Original source:

Nijman V (2021) Zoos consenting to the illegal wildlife trade – the earless monitor lizard as a case study. Nature Conservation 44: 69-79. https://doi.org/10.3897/natureconservation.44.65124

Pensoft welcomes SNSB’s paleontology and geobiology journal Zitteliana to its portfolio

The first papers of the journal of the Bavarian State Collection of Palaeontology and Geology in Munich since the move to Pensoft’s publishing platform are now online

The scholarly publisher and technology provider Pensoft welcomes the latest addition to its diverse portfolio of scientific outlets – the open-access, peer-reviewed journal Zitteliana, which publishes research in the fields of paleontology and geobiology.

Zitteliana is a journal of the Bavarian State Collection of Palaeontology and Geology Munich, which is part of the State Natural History Collection of Bavaria (SNSB), a research institution for natural history comprising five state collections.

Published both online and in print, the journal contains original articles, short contributions and reviews on all aspects of palaeontology and geobiology, welcoming research on all regions of the Earth and all periods of geologic time. The journal invites both modern and traditional research outputs, including palaeobiology, geobiology, palaeogenomics, biodiversity, stratigraphy, sedimentology, regional geology, systematics, phylogeny, and cross-disciplinary studies of these areas.

Since its launch in 1961, the journal has changed its name several times (i.e. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie, Zitteliana A (Abhandlungen) and Zitteliana B (Mitteilungen)), and has extended both scope and thematic range to  cover global research from all areas of palaeontology and geobiology.

“This year, Zittelliana is celebrating its 60th anniversary in brand new gear. The move to the innovative scholarly publisher Pensoft shows how tradition can work hand in hand with innovation and modernity. We are very excited about this relaunch and very much look forward to transforming  Zitteliana into an internationally leading journal in Paleontology and Geobiology together with Pensoft,” the journal’s Editor-in-Chief, Professor Gert Wörheide adds.

After moving to Pensoft’s scholarly publishing platform ARPHA, and with a brand-new, user-friendly website, Zitteliana now takes full advantage of ARPHA’s signature fast-track, end-to-end publishing system, which significantly improves user experience for authors, reviewers and editors alike. The collaboration-focused platform supports manuscripts in all steps of the publishing process – submission, peer review, editing, publication, dissemination and archiving, all within its online environment. To the benefit of readers, published articles are then made available in PDF, machine-readable JATS XML formats, and semantically enriched HTML, which makes them much easier to discover, access, cite and reuse.

In addition, ARPHA Platform offers a long list of high-tech features and human-provided services such as advanced data publishing, linked data tables, semantic markup and enhancements, automated export of sub-article elements and data to aggregators, sub-article-level usage metrics, and web-service integrations with more than 40 world-class indexing and archiving databases.

The journal’s first papers published with Pensoft are already publicly available. One of the studies, authored by Norbert Wannenmacher, Volker Dietze, Matthias Franz of the state office for geology, resources and mining at Freiburg’s regional council, and Günter Schweigert of the Stuttgart State Museum of Natural History, describes three new fossil species from south-western Germany.

Zitteliana is the latest in a series of biodiversity-themed journals to join the Pensoft family – earlier this year the ichthyology journal Acta Ichthyologica et Piscatoria signed with the scholarly publisher and moved on to ARPHA Platform.

Follow Zitteliana on Facebook and Twitter.

Additional information:

About Pensoft:

Pensoft is an independent academic publishing company, well-known worldwide for its innovations in the field of semantic publishing, as well as for its cutting-edge publishing tools and workflows. In 2013, Pensoft launched the first ever end to end XML-based authoring, reviewing and publishing workflow, as demonstrated by the Pensoft Writing Tool (PWT) and the Biodiversity Data Journal (BDJ), now upgraded to the ARPHA Publishing Platform. Flagship titles include: Research Ideas and Outcomes (RIO), One Ecosystem, ZooKeys, Biodiversity Data Journal, PhytoKeys, MycoKeys and many more.

About ARPHA:

ARPHA is the first end-to-end, narrative- and data-integrated publishing solution that supports the full life cycle of a manuscript, from authoring to reviewing, publishing and dissemination. ARPHA provides accomplished and streamlined production workflows that can be customized according to the journal’s needs. The platform enables a variety of publishing models through a number of options for branding, production and revenue models to choose from.

Contacts:

Prof. Dr. Gert Wörheide, Editor-in-Chief of Zitteliana
woerheide@snsb.de

Lyubomir Penev, founder and CEO at Pensoft and ARPHA
l.penev@pensoft.net

New methods needed to boost success of Classical Biological Control to fight insect pests

The success of Classical Biological Control in the Western Paleartic ecozone is rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases

A CABI-led study has revealed that the success of Classical Biological Control (CBC) in Europe, North Africa and the Middle East is only rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases.

The research – published in the journal NeoBiota – suggests that the overall success of biological control introductions of insect predators and parasitoids against herbivorous insects in the Western Paleartic ecozone is comparable to the success of CBC worldwide. However, over 100 years of CBC in this region, has resulted in no overall rise in success in the fight against insect pests – including those of crops such as citrus, olive, potato, mulberry and various other fruits.

An illustration of a case of biological control of the Comstock mealybug Pseudococcus comstocki with the parasitoid wasp Allotropa burrelli. Image by Lukas Seehausen

Lead author Dr Lukas Seehausen, together with colleagues from CABI Switzerland, the University of Lisbon and the University of Bordeaux, argue that a focus on life-history traits of the biological control agent to increase the chances of successful CBC is not fully justified and should be complemented with the consideration of traits regarding the pest and its host plant, as well as other aspects of CBC, such as climate and management – including ways in which CBC agents are released.

For example, if a CBC agent is released repeatedly against the same pest in different years and countries, the chances of successful establishment and control of the target increase. This is an indication for the importance of release strategies for the success of CBC programmes.

Dr Seehausen said, “What makes our study different from others is that we studied factors that may impact the outcome of CBC not independently of each other but using a holistic analysis, which reveals their relative importance within the complexity of CBC programmes.

“The results from this study should be understood as a first step to give the incentive for a holistic, rather than an independent consideration of factors affecting the success of CBC.”

By filtering data from the BIOCAT catalogue, the scientists found that 780 introductions of insects for biological control were undertaken in the Greater Western Palearctic ecozone between 1890 and 2010. This constituted 416 agent-target combinations.

The results showed that eight countries were responsible for more than two thirds (70.5%) of all introductions: Israel (16.3%), Italy (14.0%), Former USSR (10.1%), France (7.3%), Greece (7.1%), Spain (6.0%), Egypt (5.3%), and Cyprus (4.4%). Within these countries, the percentage of complete target control was very variable.

Overall, the study showed that while the success of agent establishment was 32%, the successful impact of single agents on their target was 18% and the success of complete control was 11%.

However, the success rates of agent establishment and target control were higher in CBC projects targeting pests of woody plants than pests of other types of plants.

A reason for this, the scientists say, might be that being perennial, trees provide a more stable and predictable environment when compared to herbaceous plants such as annual plants or crops.

In carrying out the research, Dr Seehausen and the team added 15 new explanatory variables including consideration of the biological control agent feeding strategy, host range and life-stage killed by the biological control agent.

Dr Seehausen explains, “We found that only a few CBC agent-related factors significantly influenced the success of CBC – suggesting that the reoccurring focus on agent-related traits is not justified.

“Our attention should be redirected to include lower trophic levels and other aspects of CBC – such as abiotic factors including climate and management.”

The scientists conclude by stressing that analysis of the entire BIOCAT catalogue, or an updated version including more factors, should lead to further insights and help to develop decision support tools to increase the success of CBC at all levels.

Original source:

Seehausen ML, Afonso C, Jactel H, Kenis M (2021) Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success? NeoBiota 65: 169-191. https://doi.org/10.3897/neobiota.65.66276

Call for research outcomes addressing four UN Sustainable Development Goals in RIO Journal

Eligible submissions enjoy a 50% discount off APCs in 2021

Since its launch in 2015, RIO Journal has been mapping its articles to the Sustainable Development Goals (SDGs) of the United Nations. The articles published so far span the entire research cycle, a broad range of research fields and all SDGs, which can also be used as a search filter. However, the distribution of RIO articles across SDGs is uneven, as detailed in a recent editorial: for instance, more than 100 articles addressed SDG9 (Industry, innovation & infrastructure), while only one publication has been mapped to SDG1 (No poverty) so far.

Even though there might be logical explanations for this phenomenon, including funding biases or specific scholarly communication tendencies in some research fields, RIO’s team remains dedicated to its role as a harbinger of innovative open science practices and socially engaged research, and is eager to support the open publication of research on all SDGs.

So, RIO Journal is now inviting research outcomes – early, interim or final – addressing the four least represented SDGs in RIO’s content to date (with the current number indicated in parentheses):

  • SDG1: No poverty (1)
  • SDG7: Affordable & clean energy (2)
  • SDG5: Gender equality (4)
  • SDG2: Zero hunger (4)
All publications in RIO Journal are mapped to one or more SDGs.

The call will remain open until the end of 2021, where all accepted papers will enjoy a 50% discount on their publication charges (APCs), regardless of how many contributions RIO receives in the meantime. Eligible submissions encompass all article types generally accepted in RIO, as long as the journal’s editorial team confirms that they belong to the assigned SDG category.

As also highlighted in the editorial, RIO is currently experimenting with a more fine-grained mapping of its publications to the individual targets under each SDG. This was piloted with SDG 14 (Life below water). For instance, Target 14.a (Marine Biodiversity contributes to Economic Development of small/developing nations) is currently covered by 17 RIO articles. If you would like to get involved with mapping RIO articles to the Targets under other SDGs, please get in touch.

You can find more about RIO’s rationale behind introducing the SDGs mapping in the latest editorial or in this earlier blog post.

***

Follow RIO Journal on Twitter, Facebook and LinkedIn.

***

Further reading:

Safe distance: How to make sure our outdoor activities don’t harm wildlife

Spending time outdoors is good for a person’s body and soul, but how good is it for the wildlife around us?

Outdoor recreation has become a popular activity, especially in the midst of a pandemic, where access to indoor activities might be limited. Long known to have negative behavioural and physiological effects on wildlife, outdoor recreation is one of the biggest threats to protected areas. Human disturbance to animal habitats can lower their survival and reproduction rates, and ultimately shrink populations or eradicate them from areas where they would otherwise thrive. Still, park planners and natural resource managers often can’t find clear recommendations on how to limit these impacts.

Human recreation and wildlife often overlap. Here an American black bear and hikers use the same trail hours apart in Sonoma County, California, USA. Image by the Wildlife Conservation Society

A new scholarly article in the open-access, peer-reviewed journal Nature Conservation from researchers at the Wildlife Conservation Society looked at nearly 40 years of research on recreation impacts on wildlife to try to find the point where recreation starts to impact the wildlife around us. Knowing when and to what extent a species is being disturbed can ultimately allow for more informed and effective management decisions and increase the chances of its successful conservation.

The researchers found that the impact or uncomfortable distance to humans, vehicles or trails for shorebirds and songbirds was as short as 100 meters or even less, whereas for hawks and eagles it was greater than 400 meters. For mammals, it varied even more widely, with an impact threshold of 50 meters for medium-sized rodents. Large ungulates – like elk – would rather have to stay 500 to 1,000 meters away from people.

While human disturbance thresholds can vary widely, large buffer zones around human activities and controlled visitation limits should always be considered during planning and maintenance of parks and protected areas. Based on their findings, the authors recommend that human activities should be considered to be impacting wildlife at least 250 metres away. Further, they call for future research to explicitly identify points where recreation begins or ends to impact wildlife.

Original source:

Dertien JS, Larson CL, Reed SE (2021) Recreation effects on wildlife: a review of potential quantitative thresholds. Nature Conservation 44: 51-68. https://doi.org/10.3897/natureconservation.44.63270