Digitising the Natural History Museum London’s entire collection could contribute over £2 billion to the global economy

In a world first, the Natural History Museum, London, has collaborated with economic consultants, Frontier Economics Ltd, to explore the economic and societal value of digitising natural history collections and concluded that digitisation has the potential to see a seven to tenfold return on investment. Whilst significant progress is already being made at the Museum, additional investment is needed in order to unlock the full potential of the Museum’s vast collections – more than 80 million objects. The project’s report is published in the open science scientific journal Research Ideas and Outcomes (RIO Journal).

One of the Museum’s digitisers imaging a butterfly to join the 4.93 million specimens already available online. 
© The Trustees of the Natural History Museum, London

The societal benefits of digitising natural history collections extends to global advancements in food security, biodiversity conservation, medicine discovery, minerals exploration, and beyond. Brand new, rigorous economic report predicts investing in digitising natural history museum collections could also result in a tenfold return. The Natural History Museum, London, has so far made over 4.9 million digitised specimens available freely online – over 28 billion records have been downloaded over 429,000 download events over the past six years. 

Digitisation at the Natural History Museum, London 

Digitisation is the process of creating and sharing the data associated with Museum specimens. To digitise a specimen, all its related information is added to an online database. This typically includes where and when it was collected and who found it, and can include photographs, scans and other molecular data if available. Natural history collections are a unique record of biodiversity dating back hundreds of years, and geodiversity dating back millennia. Creating and sharing data this way enables science that would have otherwise been impossible, and we accelerate the rate at which important discoveries are made from our collections.  

The Natural History Museum’s collection of 80 million items is one of the largest and most historically and geographically diverse in the world. By unlocking the collection online, the Museum provides free and open access for global researchers, scientists, artists and more. Since 2015, the Museum has made 4.9 million specimens available on the Museum’s Data Portal, which have seen more than 28 billion downloads over 427,000 download events. 

This means the Museum has digitised  about 6% of its collections to date. Because digitisation is expensive, costing tens of millions of pounds, it is difficult to make a case for further investment without better understanding the value of this digitisation and its benefits. 

In 2021, the Museum decided to explore the economic impacts of collections data in more depth, and commissioned Frontier Economics to undertake modelling, resulting in this project report, now made publicly available in the open-science journal Research Ideas and Outcomes (RIO Journal), and confirming benefits in excess of £2 billion over 30 years. While the methods in this report are relevant to collections globally, this modelling focuses on benefits to the UK, and is intended to support the Museum’s own digitisation work, as well as a current scoping study funded by the Arts & Humanities Research Council about the case for digitising all UK natural science collections as a research infrastructure.

Sharing data from our collections can transform scientific research and help find solutions for nature and from nature. Our digitised collections have helped establish the baseline plant biodiversity in the Amazon, find wheat crops that are more resilient to climate change and support research into potential zoonotic origins of Covid-19. The research that comes from sharing our specimens has immense potential to transform our world and help both people and the planet thrive,

says Helen Hardy, Science Digital Programme Manager at the Natural History Museum.

How digitisation impacts scientific research?

The data from museum collections accelerates scientific research, which in turn creates benefits for society and the economy across a wide range of sectors. Frontier Economics Ltd have looked at the impact of collections data in five of these sectors: biodiversity conservation, invasive species, medicines discovery, agricultural research and development and mineral exploration. 

The Natural History Museum’s collection is a real treasure trove which, if made easily accessible to scientists all over the world through digitisation, has the potential to unlock ground-breaking research in any number of areas. Predicting exactly how the data will be used in future is clearly very uncertain. We have looked at the potential value that new research could create in just five areas focussing on a relatively narrow set of outcomes. We find that the value at stake is extremely large, running into billions,”

says Dan Popov, Economist at Frontier Economics Ltd.

The new analyses attempt to estimate the economic value of these benefits using a range of approaches, with the results in broad agreement that the benefits of digitisation are at least ten times greater than the costs. This represents a compelling case for investment in museum digital infrastructure without which the many benefits will not be realised.

This new analysis shows that the data locked up in our collections has significant societal and economic value, but we need investment to help us release it,

adds Professor Ken Norris, Head of the Life Sciences Department at the Natural History Museum.

Other benefits could include improvements to the resilience of agricultural crops by better understanding their wild relatives, research into invasive species which can cause significant damage to ecosystems and crops, and improving the accuracy of mining.  

Finally, there are other impacts that such work could have on how science is conducted itself. The very act of digitising specimens means that researchers anywhere on the planet can access these collections, saving time and money that may have been spent as scientists travelled to see specific objects.

The value of research enabled by digitisation of natural history collections can be estimated by looking at specific areas where the Museum’s collections contribute towards scientific research and subsequently impact the wider economy. 
© Frontier Economics Ltd.

Original source: 

Popov D, Roychoudhury P, Hardy H, Livermore L, Norris K (2021) The Value of Digitising Natural History Collections. Research Ideas and Outcomes 7: e78844. https://doi.org/10.3897/rio.7.e78844

Sir Charles Lyell’s historical fossils kept at London’s Natural History Museum accessible online

The Lyell Project team: First row, seated from left to right: Martha Richter (Principal Curator in Charge of Vertebrates), Consuelo Sendino (with white coat, curator of bryozoans holding a Lyell fossil gastropod from Canaries), Noel Morris (Scientific Associate of Invertebrates), Claire Mellish (Senior Curator of arthropods), Sandra Chapman (curator of reptiles) and Emma Bernard (curator of fishes, holding the lectotype of Cephalaspis lyelli). Second row, standing on from left to right: Jill Darrell (curator of cnidarians), Zoe Hughes (curator of brachiopods) and Kevin Webb (science photographer). Photo by Nelly Perez-Larvor.

More than 1,700 animal and plant specimens from the collection of eminent British geologist Sir Charles Lyell – known as the pioneer of modern geology – were organised, digitised and made openly accessible via the NHM Data Portal in a pilot project, led by Dr Consuelo Sendino, curator at the Department of Earth Sciences (Natural History Museum, London). They are described in a data paper published in the open-access Biodiversity Data Journal.

Curator of plants Peta Hayes (left) and curator of bryozoans Consuelo Sendino (right) looking at a Lyell fossil plant from Madeira in the collection area. Photo by Mark Lewis.

The records contain the data from the specimens’ labels (species name, geographical details, geological age and collection details), alongside high-resolution photographs, most of which were ‘stacked’ with the help of specialised software to re-create a 3D model.

Sir Charles Lyell’s fossil collection comprises a total of 1,735 specimens of fossil molluscs, filter-feeding moss animals and fish, as well as 51 more recent shells, including nine specimens originally collected by Charles Darwin from Tierra del Fuego or Galapagos, and later gifted to the geologist. The first specimen of the collection was deposited in distant 1846 by Charles Lyell himself, while the last one – in 1980 by one of his heirs.

With as much as 95% of the specimens having been found at the Macaronesian archipelagos of the Canaries and Madeira and dating to the Cenozoic era, the collection provides a key insight into the volcano formation and palaeontology of Macaronesia and the North Atlantic Ocean. By digitising the collection and making it easy to find and access for researchers from around the globe, the database is to serve as a stepping stone for studies in taxonomy, stratigraphy and volcanology at once.

Sites where the Earth Sciences’ Lyell Collection specimens originate.

“The display of this data virtually eliminates the need for specimen handling by researchers and will greatly speed up response time to collection enquiries,” explains Dr Sendino.

Furthermore, the pilot project and its workflow provide an invaluable example to future digitisation initiatives. In her data paper, Dr Sendino lists the limited resources she needed to complete the task in just over a year.

In terms of staff, the curator was joined by MSc student Teresa Máñez (University of Valencia, Spain) for six weeks while locating the specimens and collecting all the information about them; volunteer Jane Barnbrook, who re-boxed 1,500 specimens working one day per week for a year; NHM’s science photographer Kevin Webb and University of Lisbon’s researcher Carlos Góis-Marques, who imaged the specimens; and a research associate, who provided broad identification of the specimens, working one day per week for two months. Each of the curators for the collections, where the Lyell specimens were kept, helped Dr Sendino for less than a day. On the other hand, the additional costs comprised consumables such as plastazote, acid-free trays, archival pens, and archival paper for new labels.

“The success of this was due to advanced planning and resource tracking,” comments Dr Sendino.
“This is a good example of reduced cost for digitisation infrastructure creation maintaining a high public profile for digitisation,” she concludes.

 

###

Original source:

Sendino C (2019) The Lyell Collection at the Earth Sciences Department, Natural History Museum, London (UK). Biodiversity Data Journal 7: e33504. https://doi.org/10.3897/BDJ.7.e33504

###

About NHM Data Portal:

Committed to open access and open science, the Natural History Museum (London, UK) has launched the Data Portal to make its research and collections datasets available online. It allows anyone to explore, download and reuse the data for their own research.

The portal’s main dataset consists of specimens from the Museum’s collection database, with 4,224,171 records from the Museum’s Palaeontology, Mineralogy, Botany, Entomology and Zoology collections.