A new study published in the open-access journal Nature Conservationassesses the threat status of bird species from Vietnam, underscoring the country’s critical conservation needs.
Vietnam is well known for its extraordinary level of biodiversity, particularly its very rich bird fauna. However, although the country is home to more than 900 species, co-author of the study Dr. Hung Le Manh stresses that no efforts had been made to assess their conservation status to better protect them from extinction risks.
Lesser fish eagle in Vietnam. Credit: Dr. Hung Le.
For this reason, the study provides a comprehensive list of bird species reported from Vietnam. It incorporates threat statuses, identifying avian richness hotspots and their coverage by the national protected area network. The implementation of the IUCN’s “One Plan Approach to Conservation” is also examined.
Prof. Dr. Truong Quang Nguyen highlights that 61 species are listed in the 2007 version of Vietnam Red Data Book, 112 species in the 2024 version, and 138 species are included under national decrees.
Streaked barwings in Vietnam. Credit: Dr. Hung Le.
Ass. Prof. Dr. Dennis Rödder from the Leibniz-Institute for the Analysis of Biodiversity Change (LIB) stresses that highest bird species richness was found in northern and central Vietnam. The Mekong Delta is an important area for non-breeding species, but it had comparatively low protected area coverage.
Zoo databases show that 308 species are represented in zoo holdings, including 20 threatened and two threatened and endemic species. One of these species, the Vietnam pheasant, listed as Critically Endangered on the IUCN Red List, has not been reported from the wild in Vietnam since 2000. It is one of the flagship species of the current VIETNAMAZING conservation campaign and network, and is set to be released back into the wild to restock the natural populations.
Vietnam pheasant at Hanoi Zoo. Credit: Thomas Ziegler.
The team led by Prof. Dr. Thomas Ziegler, Cologne Zoo and the Institute of Zoology at the University of Cologne, has contributed to identifying gaps in conservation of Vietnamese vertebrates. Three papers written by the team have already been published in Nature Conservation: amphibians (2022), reptiles (2023), and mammals (2024). These threat analyses are intended to accelerate effective conservation measures by implementing IUCN’s “One Plan Approach” and the “Reverse the Red” initiative.
“This updated avifaunal assessment underscores Vietnam’s critical conservation needs, highlighting areas for improved protection, integration of expanded ex situ conservation efforts, and alignment of legislation with global conservation priorities,” says Ass. Prof. Dr. Minh D. Le from Central Institute for Natural Resources and Environmental Studies (CRES), Vietnam National University, Hanoi, Vietnam.
Original source
Ginal P, Hackenbroch H, Le Manh H, Nguyen TQ, Le MD, Rödder D, Ziegler T (2025) Assessment of the threat status of bird species from Vietnam – Implementation of the One Plan Approach to conservation. Nature Conservation 60: 49-72. https://doi.org/10.3897/natureconservation.60.162832
COAST-SCAPES: a newly launched project, funded by the European Commission, is to propose a reconsideration of the current coastal ecosystem to enhance resilience and biodiversity protection through nature-based solutions.
Leading maritime engineering specialists, marine ecologists, and biodiversity experts, gathered in Barcelona (Spain) between 7 and 9 October to officially kick start the project’s vision on climate-resilient coastal landscapes. Hosted by the Maritime Engineering Laboratory from the Polytechnic University of Catalonia, the meeting focused on setting the strategic direction of the project, aligning the scientific, technical and communication objectives and establishing synergies between project partners across Europe and beyond.
In the span of two days, consortium partners were given the opportunity to present their missions with the COAST-SCAPES project, showcasing how each partner institution will contribute to building science-based and community-driven resilience pathways.
The project coordinator, Prof. Manel Grifoll, navigated the discussions, which centered around key deliverables and milestones, future challenges and plans on work-related activities, highlighting the crucial role of the project’s Core and Replicating Pilots for scalable resilience plans for replication and export.
A group photo of the COAST-SCAPES consortium at the project’s kick-off (Barcelona, October 2025).
Officially started on 1 September 2025, the COAST-SCAPES project has major ambitions to co-design systemic resilience solutions for coastal landscapes by developing integrated indicators, proactive climate warning systems, as well as knowledge-based strategies for business and maintenance in order to reduce the risks of climate change and improve land-sea interactions. To achieve this, COAST-SCAPES will promote the utilisation of nature-based solutions (NbS), seeking biodiversity gains and reduction of the environmental footprint under scarce natural resources.
The project brings together a diverse group of partners, including research institutions, universities and technological organisations from Europe, Africa and Latin America. Their shared goal is to restore vulnerable coastal areas and apply resilience through adaptation. Due to human intervention, which drastically altered the evolution of coastal ecosystems, the ecological role of such areas is becoming crucial. By harnessing their low-carbon adaptation potential, coastal ecosystems can mitigate climate-related risks and boost biodiversity.
COAST-SCAPES is a collective effort to rethink how we coexist with coastal systems. By integrating natural processes, technology, and community knowledge, we aim to create adaptive landscapes that safeguard biodiversity and support sustainable livelihoods. Our ambition is to build resilient coasts that can thrive, not just survive, under climate change.
says Prof. Manel Grifoll, project coordinator.
The selected project’s Core Pilots, among which the Mar Menor lagoon in the Iberian Peninsula, will serve as a starting point for leading experts to carry out large-scale resilience plans, while protecting coastal biodiversity and addressing existing infrastructure challenges.
Supported by social and technical innovation, as well as a governance shift, these plans will connect scientists, citizens, policy-makers, environmental activists, and the industry with administrations responsible for local implementations for an increased cross-sectoral engagement. Contributing to a balanced land-to-sea ecosystem and a sustainable biodiversity protection, COAST-SCAPES reminds us that coastal restoration is vital for our adaptation to climate change.
Pensoft’s contribution to COAST-SCAPES:
Pensoft will lead two tasks within the COAST-SCAPES’ Work Package dedicated to dissemination and communication for practical exploitation. The objectives of these tasks are focused on the identification of key exploitable results of the project. Together with other consortium members, Pensoft will be working on establishing the most suitable exploitation pathways for each result. The experienced communication team at the scholarly publishing and technology providing company will also be actively raising societal and technical awareness necessary to transform governance for systemic resilience through yearly newsletters and policy briefs. In addition, Pensoft takes part in Work Package 6, where it will be responsible forthe project’s visual identity and ensuring constant visibility of project results, as well as proper data management.
List of project consortium members:
Coordinated by the Polytechnic University of Catalonia, the project brings together 30 partner organisations from 15 countries to develop coastal resilience through nature-based solutions (NbS).
Funded by the European Union under grant agreement No. 101213138, COAST-SCAPES (rethinking COASTal landSCAPES with climate-resilient interventions: systemic land-to-sea solutions).
Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the EU, nor the REA can be held responsible for them.
The 13th NEOBIOTA International Conference on Biological Invasions (NEOBIOTA 2024), held in Lisbon, Portugal, brought together 421 participants from 47 countries for one of the most significant global gatherings in invasion science. Notably, this meeting featured the strongest representation of aquatic studies to date, spanning marine and freshwater systems across oral sessions, posters and workshops.
This momentum contributed to the creation of a dedicated NeoBiota Special Issue, incorporating contributions from both conference participants and other aquatic researchers.
As outlined in the editorial paper – written by the issue’s editors Pedro Anastácio, Filipe Ribeiro and Paula Chainho – the collection comprises 23 papers organised into five themes: Responses to Environmental Stressors; Ecological Interactions and Invasion Impacts; Detection and Monitoring Tools; Management and Policy; and Global and Regional Syntheses.
Biotic responses to abiotic drivers – such as warming, pollution or eutrophication – are central to predicting invasion success, as explored in the following articles:
Functional trait responses of emergent and free-floating Alternanthera philoxeroides to increasing salinity with sea level rise: stress tolerance, avoidance, and escape strategies – Grewell et al. (2025) https://doi.org/10.3897/neobiota.102.150325
Differential elemental accumulation of the signal crayfish (Pacifastacus leniusculus) along an invasion gradient – Gonçalves et al. (2025) https://doi.org/10.3897/neobiota.102.148414
Assessing the upper thermal limit constraining the physiological performance of Callinectes sapidus embryogenesis under climate warming scenarios – Rodríguez-Ruiz et al. (2025) https://doi.org/10.3897/neobiota.102.148122
Invasive potential of Phymactis papillosa: assessing environmental tolerance and ecological impact on the Portuguese intertidal ecosystems – Pereira et al. (2025) https://doi.org/10.3897/neobiota.102.148042
Nutrient enrichment and artificial light at night synergistically confer a competitive advantage to alien aquatic species over natives – Zhang et al. (2025) https://doi.org/10.3897/neobiota.102.142791
Ecological interactions and invasion impacts
Interactions between invading species, native species, and other non-native species, are critical in determining the population dynamics and ecological impacts. This group of papers includes studies dedicated to freshwater fish, crustaceans, amphibians, higher plants and algae, and estuarine bivalves:
Eating contest between native and non-indigenous bivalve species: estimating capture efficiencies and clearance rates using natural seston – Cabral et al. (2025) https://doi.org/10.3897/neobiota.102.148326
Predatory interactions between two global aquatic invaders beyond their native ranges: An experimental approach – Reshetnikov et al. (2025) https://doi.org/10.3897/neobiota.102.145644
Epiphytic algae mitigate the inhibitory effects of two aquatic invasive plants, Pontederia crassipes and Pistia stratiotes, on a submerged plant community – Shen et al. (2025) https://doi.org/10.3897/neobiota.102.144004
Detection and monitoring tools
Monitoring of non-native species has evolved beyond taxonomic surveys to incorporate the use of molecular tools, informatics and citizen science for detecting and monitoring non-native species:
Integrating social media and environmental DNA records to enhance surveillance and improve early detection of invasive species – Dias et al. (2025) https://doi.org/10.3897/neobiota.102.151710
Mapping the northernmost transnational non-native population of Xenopus laevis using pooled eDNA sampling – Everts et al. (2025) https://doi.org/10.3897/neobiota.102.150311
Seek and you shall find: Detection of alien bryozoans along the Chilean SE Pacific coast with a simple and cost-efficient methodology – Rech et al. (2025) https://doi.org/10.3897/neobiota.102.144725
Management and policy
Policy effectiveness and practical management are central concerns in invasion science:
LIFE INVASAQUA networking events from López-Cañizares et al. (2025).
Effectiveness of legislative tools to stop biological invasions: freshwater turtles’ invasion in Europe as a study case – Rato et al. (2025) https://doi.org/10.3897/neobiota.102.143330
Eradication attempt for an early detected invasive crayfish: the case of Pacifastacus leniusculus (Decapoda, Astacidae) in the Clitunno River (central Italy) – Carosi et al. (2025) https://doi.org/10.3897/neobiota.102.146951
Population dynamics, habitat use and trapping efficiency of the invasive crab Callinectes sapidus in a Mediterranean hypersaline coastal lagoon – Herrero-Reyes et al. (2025) https://doi.org/10.3897/neobiota.102.148388
Outcomes of the LIFE INVASAQUA project: An integrated approach for the prevention and awareness of aquatic invasive species in the Iberian Peninsula – López-Cañizares et al. (2025) https://doi.org/10.3897/neobiota.102.148744
Global and regional syntheses
Global and regional syntheses play a critical role in guiding invasion policy and future research. Three regional and one global syntheses are provided in this issue:
First insights into the scale of invasions in African marine protected areas: leveraging global databases and citizen science data – Ackland et al. (2025) https://doi.org/10.3897/neobiota.102.149275
Critical review of the literature on key invasive alien freshwater plants in Europe with special focus on their impact on the invaded ecosystems – Di Lernia et al. (2025) https://doi.org/10.3897/neobiota.102.146280
The special issue offers a timely and multifaceted view of aquatic invasions spanning a diversity of aquatic taxa including fishes, crustaceans, amphibians, molluscs, macrophytes, bryozoans and even parasite-host systems.
From functional trait ecology and trophic interactions to molecular diagnostics and policy assessments, the contributions demonstrate how aquatic invasion science is evolving towards greater interdisciplinarity and translational relevance.
The open-access journal NeoBiota has published its milestone 100th issue, celebrating more than fourteen years of advancing research on biological invasions and their impacts on biodiversity, ecosystems, and society. The milestone comes at a time of great achievement for the Pensoft-published journal in terms of editorial leadership, readership growth, and international recognition.
New editorial leadership
Last year, NeoBiota welcomed a new editorial leadership team, as Dr. Ana Novoa Perez, Prof. Tammy Robinson, Prof. Phil Hulme and Dr. Andrew “Sandy” Liebhold joined forces to bring a wealth of expertise to the journal.
According to the 2024 release of Web of Science metrics, NeoBiota achieved a Journal Impact Factor (JIF) of 3.0, maintaining its Q1 position in Biodiversity Conservation. At the same time, Scopus reported an impressive CiteScore of 6.8, which secures the journal a Q1 ranking across seven categories: Animal Science and Zoology; Ecology, Evolution, Behavior and Systematics; Insect Science; Aquatic Science; Plant Science; Ecology; and Ecological Modeling.
The rankings underscore the journal’s influence across ecological disciplines and its continued recognition as a leading publication in invasion science.
Growing global readership
NeoBiota has also experienced remarkable growth in readership. In just the latest quarter, articles published in the journal have attracted over 220,000 views from 90,000 unique readers worldwide.
This increase in readership, coupled with the journal’s focus on strong science communication, has attracted international media attention to NeoBiota’s research papers, such as this piece on the spread of lionfish in the Mediterranean Sea published in BBC Wildlife.
The landmark issue features a collection of articles that reflect the journal’s mission to expand both the geographical and conceptual scope of invasion science:
From Abreo et al. Map of Southeast Asia showing the number of established non-native species reported per country.
Compiling and analyzing the non-native flora of a megadiverse Neotropical country: a new catalogue for continental Ecuador (read here) by Ileana Herrera, Anahí Vargas, Kimberly Rizzo, Zhofre Aguirre, Isabella Dillon, Brunny Espinoza-Amén, Felipe Espinoza De Janon, Andrés Espinoza-Maticurena, José R. Ferrer-Paris, Efraín Freire, Carlos Gómez-Bellver, Diego Gutiérrez del Pozo, Vanessa Lozano, Alejandra Moscoso-Estrella, Nora H. Oleas, Kevin Panchana, Sebastián Pardo, Katya Romoleroux, Verónica Sandoya, Carmen Ulloa Ulloa, Isabela Vieira, Jordi López-Pujol – Also part of the above topical collection focusing on the Global South
Acacia invasion triggers cascading effects above- and belowground in fragmented forests (read here) by Raquel Juan-Ovejero, Filipa Reis, Pedro Martins da Silva, Elizabete Marchante, Fernanda Garcia, Maria Celeste Dias, Filipe Covelo, António Alves da Silva, Helena Freitas, José Paulo Sousa, Joana Alves.
From Juan-Ovejero et al. Conceptual flow chart showing the hypotheses of the study.
Transparency and reproducibility in invasion science (read here) by Fabio Mologni, Jason Pither.
Taken together, these contributions highlight both regional challenges, such as managing alien taxa in biodiversity hotspots, and broader conceptual issues, including methodological rigour in invasion science research.
–
As NeoBiota celebrates its 100th issue, it continues to push the boundaries of open, accessible, and impactful publishing in invasion science. With new leadership, growing readership, and a commitment to innovation in scholarly communication, the journal is poised for further growth in its next hundred issues. Explore the full 100th issue here.
With the Grassland Butterfly Index for Germany, UFZ scientists are providing important input for the implementation of the EU Nature Restoration Regulation.
One of the goals of the EU Nature Restoration Regulation, which came into force in 2024, is to halt species loss and preserve important ecosystem services provided by agricultural landscapes.
The results, published in the open-access journal Nature Conservation, show a negative trend, especially in recent years. For their calculations, the researchers were able to draw on 4 million observation data collected at the UFZ over the last 20 years as part of the ‘Butterfly Monitoring Germany’ programme.
Agricultural landscapes are among the most degraded habitats worldwide. Their restoration is one of the key measures for halting global biodiversity loss and preserving important ecosystem services.
“The Nature Restoration Regulation (NRR), which came into force in 2024, is an essential instrument for achieving the restoration targets set for the European Union,” says Prof. Josef Settele, agroecologist at the UFZ. The objectives also include increasing biodiversity in agricultural ecosystems (Article 11 of the NRR), taking into account climate change, the needs of rural areas and sustainable agricultural production. To implement the overall objectives, EU Member States are required to develop national restoration plans and implement concrete measures in terrestrial, freshwater, coastal and marine habitats.
The extent to which the specific measures are effective and the ecosystems develop positively will be determined using indicators. For agricultural landscapes, these are (a) the grassland butterfly index, (b) the stock of organic carbon in cropland mineral soils, and (c) the share of agricultural land with high diversity landscape features. For at least two of these three indicators, the EU regulation calls for an upward trend towards a satisfactory level by 2030. Since natural conditions vary across EU countries and there is a wide range of different land management practices, Josef Settele argues that all EU countries should start by recording all three indicators so that none of them is prematurely dropped.
With the ‘Grassland Butterfly Index’, a research team led by the UFZ has now calculated one of the three indicators for Germany for the first time and published the results in the journal Nature Conservation. The data for this analysis comes from Butterfly Monitoring Germany (Tagfalter-Monitoring Deutschland – TMD), a long-term programme coordinated by the UFZ and the Society for Butterfly Conservation (GfS). Every week during the summer, volunteers count butterflies at fixed locations using a standardised European method.
“Since the TMD was launched in 2005, this has resulted in around four million data records being collected, which provide information on the development of butterfly populations in Germany,” explains one of the co-authors of the publication, biologist Elisabeth Kühn, who coordinates the German Butterfly Monitoring programme at the UFZ.
What does the index show for Germany?
The ‘Grassland Butterfly Index’ tracks the development of populations of 15 butterfly species from 2006 to 2023 that are considered typical inhabitants of various grassland biotopes.
“Four species have increased, five species show a declining trend. For six species, the trend is uncertain, which is probably due to insufficient data and large differences between the locations where they were found,” says the study’s lead author, bioinformatician Alexander Harpke. In the first decade of the period analysed (2006 to 2016), the index for Germany as a whole shows a slightly positive trend – which does not rule out the possibility that this may vary greatly for individual species.
However, if we look only at recent years (2016 to 2023), the index shows a significant decline overall. This mainly affects specialised species such as the Small Blue (Cupido minimus) or the Dingy Skipper (Erynnis tages); generalists such as the Small Copper (Lycaena phlaeas) or the Meadow Brown (Maniola jurtina) are hardly affected.
These results show that the trend for grassland butterflies in Germany during the comparison period corresponds to the trend at European level, which was last determined by Butterfly Conservation Europe in 2025 for all 27 member states.
Butterflies are known to be sensitive to changes in their environment. Land use plays a decisive role in this. “The loss and fragmentation of habitats have a proven negative effect on the long-term survival of butterfly populations. Intensive mowing, nitrogen inputs and pesticides contribute to a deterioration in habitat quality or increased mortality. Species that depend on specific habitats, such as nutrient-poor grasslands, also suffer from a lack of use, e.g. through grazing or mowing,” explains Prof. Thomas Schmitt from the Senckenberg German Entomological Institute (SDEI) in Müncheberg, who is also co-author of the study.
In addition to land use, climate change is increasingly contributing to changes in butterfly fauna. Higher temperatures favour the spread of heat-loving or tolerant species, while species adapted to cooler conditions are in decline.
These dependencies of butterflies on land use and climate change make them excellent indicators of the state of our ecosystems. In addition, they are easy to record – especially by qualified volunteers. Together, these two factors have provided an invaluable database for butterfly monitoring in Germany, which scientists are now evaluating to calculate trends and indicators for reporting under European environmental legislation.
“The significance and representativeness of the indicator could be further increased if government programmes such as Habitats Directive monitoring or nationwide insect monitoring were integrated into the analysis,” says UFZ biologist and co-author of the publication Dr Martin Musche. The same would apply if data from neighbouring countries were included.
In 1869, the construction of the Suez Canal was completed, connecting two marine regions previously separated for 16 million years and initiating major ecological changes that continue to this day.
Now more than 100 fish species native to the Indo-West Pacific Ocean – including the ‘devil firefish’ – have crossed to become established in the Mediterranean Sea.
But how do they make the journey?
Researchers from the American University of Beirut and the American University in Dubai analysed how invasive fish from the Indo-Pacific region colonise the Mediterranean. Combining ocean current modelling, shipping data, and environmental analysis, they examined records of 136 fish species to map the natural and human-driven factors that enable these invaders to thrive.
Location of the Suez Canal.
Published in NeoBiota, the findings indicate that the primary drivers for the initial entry of invasive fish into the Mediterranean are proximity to the Suez Canal and sea currents transporting fish larvae into nearby eastern Mediterranean regions. However, while sea currents play an important role early in the invasion stage, they cannot explain how species cross into the western Mediterranean.
Indeed, cargo shipping has become increasingly influential, with focal points like Malta acting as key stepping stones for the spread of non-native fish, especially to western Mediterranean areas. Over time, the odds of a region being colonised via shipping have grown significantly.
A ship passing through the Suez Canal in Egypt.
Additionally, local conditions such as high salinity in Mediterranean waters boost the likelihood of invasive species establishing permanent populations, as these fish tend to be pre-adapted to saline environments from their native habitats.
“Scientists have long suspected that the anti-clockwise spread of invasive species in the eastern Mediterranean is due to currents and the high number of first records in Malta is due to shipping.
“Our use of sea current simulations and shipping data could confirm these conjectures and provide quantitative estimates of the effects.”
Heinrich zu Dohna, lead author of the paper.
Logistic regression models indicate that in some regions shipping leads to a sixfold increase of the odds of receiving invasive species, indicating targeted management and monitoring is needed at major shipping hubs.
Better data on ballast water release and ship movements in the Mediterranean are needed, as cargo shipping’s impact on biological invasions is now clear. Malta’s role as a major shipping hub makes it a particular hotspot for secondary introductions and warrants special attention by policymakers and marine managers.
Original source
zu Dohna H, Lakkis I, Bariche M (2025) The spread of Indo-Pacific origin fish species in the Mediterranean Sea is influenced by sea currents, habitat factors, and increasingly by shipping. NeoBiota 101: 73-89. https://doi.org/10.3897/neobiota.101.157775
A new white paper delivers a clear message: protecting biodiversity is not just an environmental issue. It is essential for food security, public health, climate stability, and the global economy.
The authors make a call for a decisive shift: from fragmented initiatives to a holistic, global approach to biodiversity research and policy, already demonstrated during a workshop at the 79th United Nations General Assembly and the Science Summit (UNGA79). A key part of this transformation concerns the role of research infrastructures in connecting science, technology, and policy: from vast biodiversity collections and genomic observatories, to ecosystem “digital twins” powered by supercomputers.
Behind the paper are a network of legal entities based in Europe and holding global interests, which includes biodiversity, ecology, and engineering communities, coordinated by the LifeWatch European Research Infrastructure Consortium (ERIC).
With their combined expertise and through European initiatives, such as Research Infrastructures, e-Infrastructures, the European Open Science Cloud (EOSC), the Digital Twin projects and academic publishers, these communities provide a basis for collaboration in strategically contributing to the implementation of the Kunming-Montreal Global Biodiversity Framework (K-M GBF) targets.
Biodiversity needs to be placed at the centre of the upcoming 2026 UN Summit of the Future and become a core pillar of the agenda after the 2030 deadline for the United Nations Sustainable Development Goals (UN SDGs).
The UN Pact for the Future should include biodiversity as a core pillar: “not only of environmental sustainability, but of equity, security, and intergenerational justice”.
urges the team.
To do this, the authors propose the establishment of a global alliance that will strategically integrate biodiversity conservation into the core priorities of the UN Summit of the Future and the post-SDG agenda.
This alliance is meant to join the voices of researchers, policymakers, indigenous knowledge holders, civil society, and industry to ensure that biodiversity underpins peace, prosperity, and justice as a universal enabler.
The white paper also demonstrates how the research infrastructures collectively contribute to the seven Strategic Considerations of the K-M GBF, outlined here in brief and further detailed in the full publication:
Contribution and rights of Indigenous Peoples and local communities: Ensuring fair recognition and sharing of benefits with indigenous peoples and local communities, thus integrating their knowledge into biodiversity science.
Collective efforts towards the targets of the K-M GBF: Coordinating biodiversity monitoring, databases, and digital infrastructures to track progress towards global conservation targets.
Fulfilment of the three principal objectives of the Convention on Biological Diversity (CBD) and its protocols: Studying or supporting the study of all aspects of biodiversity; and providing public and streamlined access to biodiversity information.
Implementation through science, technology, and innovation: Developing and offering technologically advanced and novel solutions for research, data sharing and management to various users; and promoting open science by publishing research findings and increasingly sharing more facets of the research process.
Ecosystem approach: Developing and implementing technologies that enable a cross-domain, multidisciplinary approach to studying biodiversity and ecosystems; and using holistic, cross-disciplinary methods to understand and predict biodiversity and environmental dynamics.
Cooperation synergies: Collaborating with organisations responsible for implementing the CBD, policy agents, international research projects; and participating in international forums and social, scientific and technical initiatives.
Biodiversity and health linkages: Demonstrating how healthy ecosystems support human health, food security, and resilience to pandemics by supporting interdisciplinary research through bringing together knowledge and data and uncovering links and interactions between humans and the environment.
“With the UN’s ‘Pact for the Future’ currently being shaped, we see a unique opportunity to anchor biodiversity as a unifying thread across global goals that will transform how societies respond to the intertwined crises of climate change, nature loss, and pollution,” say the authors.
The white paper is the latest contribution to the LifeWatch ERIC Strategic Working Plan Outcomes open-science collection meant to provide a one-stop access point to the most important deliverables by the European biodiversity and ecosystem research infrastructure, which is currently undergoing a significant upgrade as a response to the needs of its target communities and stakeholders.
***
Original source:
Arvanitidis C, Barov B, Gonzalez Ferreiro M, Zuquim G, Kirrane D, Huertas Olivares C, Drago F, Pade N, Basset A, Deneudt K, Koureas D, Manola N, Mietchen D, Casino A, Penev L, Ioannidis Y (2025) From Knowledge to Solutions: Science, Technology and Innovation in Support of the UN SDGs. Research Ideas and Outcomes 11: e168765. https://doi.org/10.3897/rio.11.e168765
This publication is part of a collection:
LifeWatch ERIC Strategic Working Plan Outcomes Edited by Christos Arvanitidis, Cristina Huertas, Alberto Basset, Peter van Tienderen, Cristina Di Muri, Vasilis Gerovasileiou, Ana Mellado
Europe’s biodiversity and ecosystem research infrastructure. LifeWatch ERIC provides access to biodiversity and ecosystem data, services and other research products: its virtual workbenches and digital twins for biodiversity science enable researchers worldwide to analyse biodiversity patterns, processes, and changes in ecosystems, and derive evidence-based knowledge for science and policy.
CSC hosts one of the world’s most powerful supercomputers (LUMI), pioneering biodiversity digital twins and climate models. CSC provides critical support for data-intensive projects that link computing, AI, and environmental science.
A federation of hundreds of data centres providing global-scale computing, AI, and data services. EGI enables large-scale analysis of biodiversity and environmental data from sensors and satellites, supporting international collaboration.
A hub for marine research, coordinating Europe’s Digital Twin of the Ocean and global biodiversity data systems, such as WoRMS (World Register of Marine Species). VLIZ drives blue innovation and ocean data integration.
Europe’s infrastructure for marine biology, offering access to organisms, labs, and genomic observatories. EMBRC connects over 70 institutes across 10 countries, supporting research “from genes to ecosystems.”
The largest initiative to digitise and unify Europe’s natural science collections into a single, FAIR-data-based infrastructure. DiSSCo makes museum collections globally accessible, boosting taxonomic, ecological, and environmental research.
A European e-Infrastructure dedicated to building a globally connected, interoperable, and sustainable open research ecosystem, with Open Science at its core. By offering a suite of services covering the entire research lifecycle, guidelines, and practices that support the adoption of Open Access and FAIR data principles across its network of National Open Access Desks in 34 countries, OpenAIRE supports local researchers, funders, and policymakers in aligning with European and global open science policies.
Founded in 1992 “by scientists, for scientists”, the academic open-access publishing company is well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials. Through its Research and Technical Development department, the company is involved in various research and technology projects. Pensoft coordinated the EU project BiCIKL (2021-2024), which established a new community of Research Infrastructures and users of FAIR and interlinked biodiversity data.
The world’s largest computing society, established to foster ethical and responsible innovation. ACM brings global expertise in computing and AI to biodiversity research and policy.
A leading ICT and AI research institute advancing digital infrastructures and open science platforms. Athena connects computing innovation with biodiversity, humanities, and societal challenges.
We attended the International Congress for Conservation Biology to present the REST-COAST and SELINA Horizon-funded projects, as well as our scholarly journals and books portfolio.
Over 1,200 people from more than 90 countries, including conservation and social science researchers, students, practitioners, government and NGO professionals, policy specialists and leaders from indigenous groups attended the 32nd International Congress for Conservation Biology (ICCB 2025), hosted by the SCB Oceania Region from 15th to 19th June 2025 in Brisbane/Meanjin, Australia.
The Brisbane Convention & Exhibition Centre (BCEC) welcomed over 1,200 participants for the 32nd International Congress for Conservation Biology (ICCB 2025) hosted by the SCB Oceania Region. Photo credit: BCEC.
A special focus seen across the talks and overall rhetoric of the event was on indigenous peoples, culture and knowledge, and how they can be recognised and further engaged in the study and protection of the environment in a sustainable and culturally appropriate manner. Other topics popular during the week included biocultural diversity and wildlife trade and traffic.
Throughout the week, the delegates enjoyed three sets of plenary talks, and got to choose from upwards of ten parallel sessions taking place three times each day. Multiple workshops and business meetings would also take place every day around lunch time. Then, each day of the congress would conclude with a poster session at the Exhibition hall. Additionally, multiple social events scheduled throughout the week – such as a nature documentary movie night, a science comedy night, and a closing reception, held amongst the exhibits of the Queensland Museum Kurilpa – would take care of the attendees’ entertainment after long days of talks and presentations.
Our team at Pensoft was proud to join this amazing event as one of the 14 exhibitors at ICCB 2025. At our stand, Pensoft’s Head of Journal development and PR: Iva Boyadzhieva would invite delegates to elaborate on their scientific interests and latest research endeavours, as well as wants and needs concerning the publication, communication and outreach of their work.
Pensoft’s Head of Journal development and PR: Iva Boyadzhieva at the ICCB2025 (Brisbane, Australia).
Then, visitors would leave the Pensoft stand with helpful advice concerning scholarly publishing and multiple recommended titles from the Pensoft open-access journal portfolio fitting the scope of their research. If you have met us at any event in the past couple of years, you would also know that it is next to impossible for a visitor of ours to leave without at least one of our signature stickers featuring captioned scientific illustrations of species studied in papers from across our journals.
At every event in the past two years, Pensoft has been handing out stickers featuring detailed scientific illustrations of species studied in papers published in Pensoft’s scholarly portfolio. This is our ‘thank you’ to the authors who have trusted our journals with their work.
Many would also become intrigued to know more about the latest activities and results of the two European Union-funded projects that enjoyed prominent visibility at the Pensoft stand, namely: SELINA (an acronym for Science for Evidence-based and Sustainable Decisions about Natural Capital) and REST-COAST (Large scale RESToration of COASTal ecosystems through rivers to sea connectivity). At both projects, our team takes pride in leading work packages dedicated to the communication and dissemination of the projects’ outputs.
Having started in 2022 and set to run until 2027, SELINA comprises 50 partner organisations coordinated by the Leibniz University Hannover. This transdisciplinary project provides smart, cost-effective, and nature-based solutions to historic societal challenges, such as climate change, biodiversity loss, and food security. A main objective is to identify biodiversity, ecosystem condition, and ecosystem service factors that can be successfully integrated into decision-making processes in both the public and private sectors.
Most recently, the consortium launched SELINA’s Communities of Practice initiative to promote collaborative learning and knowledge integration across Europe. This digital platform provides a forum for scientists, policymakers, practitioners, and business representatives to exchange knowledge and further engage with its real-life application. On the Communities of Practice webpage, visitors may explore how SELINA is driving change across Europe.
***
Meanwhile, the mission of the EU Horizon’s Green Deal-funded REST-COAST is to address today’s challenges to coastal ecosystems caused by a long history of environmental degradation of rivers and coasts. Bringing together 38 European institutions, led by the Catalonia University of Technology UPC-BarcelonaTech (Spain), the project is set to demonstrate to key stakeholders and decision-makers that large-scale restoration of river deltas, estuaries and coastal lagoons is necessary to sustain the delivery of vital ecosystem services.
A prominent output by the REST-COAST project is a policy brief addressing the EU Nature Restoration Regulation, and serving to provide scientifically-informed policy recommendations and targets.
At the Pensoft stand, ICCB2025 participants had the opportunity to browse through nine fact sheets produced within the project. Each provides a neat snapshot of the story of one of the pilot sites selected by REST-COAST as representatives of particularly vulnerable hotspots for the main EU regional seas (Baltic, Black, North Atlantic and the Mediterranean). On display was also a recent policy brief addressing the EU Nature Restoration Regulation. It serves to provide a concise summary of the issues and challenges at hand, in addition to scientifically-backed policy recommendations and targets.
Both the pilot site factsheets and the policy briefs produced by the consortium are made public in the Media Center on the project website. Further project outputs, including research articles, data papers and project reports, are permanently available from the REST-COAST’s open-science project collection in the Research Ideas and Outcomes (RIO) journal.
***
On the final day, the ICCB 2025 did not disappoint either. The day started with a touching plenary talk by Amy Van Nice of the Wildlife Alliance, where she shared a lot of her own experience as a wildlife rescuer, but also as a human with her own personal battles along the way. Throughout her talk she remained fully transparent about the current situation in wildlife trafficking, which remains, sadly, a crisis yet to be tackled.
The day continued with a full programme of parallel sessions before everyone gathered for the closing session and the closing ceremony, where delegates could look back at the last year in conservation, and learn about what is to come. The closing ceremony also announced and celebrated the SCB 2025 Global Service Awards and the ICCB awards.
Following the ICCB tradition, the organisers also waited until the end of the event to announce the location of the next international congress. It will take place in 2027 some 12,000 km (7,500 miles) away from Brisbane: in Mexico, where it will be jointly hosted by the North American (SCBNA) and the Latin America and Caribbean (SCB-LACA) regions of the Society for Conservation Biology.
Published in the open-access journal NeoBiota, and funded by the European Commission, a new study identifies where and how targeted action against IAS can have the highest conservation impact.
Researchers applied the IUCN Species Threat Abatement and Restoration (STAR) metric to measure opportunities for species threat abatement caused by IAS. They estimated that fully removing threats from IAS could reduce extinction risk for EU species by up to 16%.
Methodological outline for the different steps of the STAR-t analyses on Invasive Alien Species threats.
The Macaronesian Islands, namely the Canary Islands (Spain), Madeira (Portugal), and the Azores (Portugal), present the largest opportunities for reducing species extinction risk. The research calculates this at an over 40% reduction in extinction risk if IAS were eliminated, illustrating how IAS pose a significantly higher threat to islands compared to mainland ecosystems. Islands are particularly vulnerable due to their unique biodiversity, high levels of endemism, and often fragile ecosystems.
“Given the alarming impact that invasive alien species have on native biodiversity and the economy, it is essential to identify where action can have the greatest effect. In this context, our work presents the first regional application of the Species Threat Abatement and Restoration (STAR) metric, a science-based method that links conservation actions to the reduction of species extinction risk. By applying STAR with data from the EU Red List of threatened species, we highlight opportunities for addressing invasive alien species across national and subnational levels in the EU.
Randall Jiménez Q., Senior Conservation Scientist, IUCN (first author of the research).
For specific IAS, the greatest opportunities to reduce regional species extinction risk by mitigating threats from IAS come from managing feral goats (12.4%), mouflons (8.1%), rabbits (5.3%) and rats (4.6%).
Contribution of IAS threat abatement to extinction risk reduction. Relative contribution (in percentage) to the species extinction risk reduction that could be met by acting to abate IAS threats in each of the EU Member States or Outermost Regions.
Invasive alien species are a major threat to global biodiversity and the total cost of biological invasions across all European Union member states has been estimated at 129.9 billion US dollars between 1960 and 2020. In Europe, measures for IAS management are mainly established through the European Union Biodiversity Strategy 2030, which aims to halve the number of IUCN Red List of Threatened Species at risk from IAS by 2030.
“Mitigating the impacts of invasive alien species offers some of the greatest potential gains for conserving native biodiversity, while also delivering benefits for ecosystem services and local economies.
“This analysis provides decision-makers with guidance on where efforts can achieve the most significant results, supporting progress toward the EU Biodiversity Strategy target of reducing impacts on threatened species from invasive alien species by 50%.”
BorisErg, IUCN European Regional Director.
Across the EU, 3,759 species (excluding marine animals) have been assessed as Near Threatened or Threatened with extinction, of which 579 (15%) are documented to be threatened by IAS (IUCN 2024).
A 2023 report from the Intergovernmental Panel on Biodiversity and Ecosystem Services (IPBES) found that IAS have been a significant driver in 60% of documented plant and animal extinctions. The report, informed by experts from the IUCN Species Survival Commission (SSC) Invasive Species Specialist Group (ISSG), identified 3,500 invasive species that are severely harming biodiversity and human livelihood. These are increasing rapidly, with a forecast increase of 36% by 2050 – posing threats to the realisation of the Global Biodiversity Framework.
Original source:
Jiménez RR, Smith KG, Brooks TM, Scalera R, Mair L, Nunes AL, Costello KE, Macfarlane NBW (2025) Guiding action on invasive alien species towards meeting the EU’s Biodiversity Strategy for 2030. NeoBiota 99: 109–129. https://doi.org/10.3897/neobiota.99.148323
Elephants are among the largest land mammals on Earth and are often referred to as “ecosystem engineers” because they sustainably alter their surroundings through grazing, trampling, and digging. Europe, too, had an elephant: the straight-tusked elephant (Palaeoloxodon antiquus) lived on our continent for around 700,000 years. The species survived multiple ice ages before becoming extinct during the last one due to additional hunting pressure from humans. Throughout its existence, the straight-tusked elephant helped shape Europe’s landscape, maintaining open spaces and light woodlands. Many native plant species are still adapted to these conditions today.
A sculpture of Palaeoloxodon antiquus next to the paleontological museum of Ambrona (Soria, Spain). Photo credit: PePeEfe under a CC BY-SA 3.0 license.
“The German name Waldelefant (forest elephant) originates from the assumption that this species primarily lived in the wooded regions of Europe. However, fossil evidence shows that P. antiquus often inhabited open or semi-open habitats with mosaic-like vegetation, similar to modern elephants,” explains Prof. Dr. Manuel Steinbauer, Chair of Sport Ecology at the University of Bayreuth.
What for?
Our perception of nature is shaped by what we experience in our surroundings. Ecosystems without direct human influence are often perceived as “natural.” However, when considering insights gained from fossils, it becomes clear that today’s ecosystems— even without direct human intervention—differ significantly from those in which the species of our landscapes evolved thousands of years ago. Studies like the one carried out by the Bayreuth research team highlight the importance of studying past ecosystems for conservation. Understanding how climate and environmental changes have historically affected large mammals can provide valuable insights for modern conservation strategies.
To reconstruct the way of life of P. antiquus and, in particular, its actual habitat—known as the realised niche—the research team examined scientific literature and palaeontological databases for fossil finds of P. antiquus that could be assigned to specific Marine Isotope Stages. Marine Isotope Stages are periods in the earth’s history that reflect climate history, representing warm and cold stages. The Bayreuth research team assigned fossil finds from across Europe to either a warm or cold stage and used climate models from these periods to reconstruct the realised niche of the straight-tusked elephant. A comparison with modern climate data suggests that straight-tusked elephants would still be able to live in Europe today. The climate in Western and Central Europe would be particularly suitable, except for mountainous regions such as the Alps and the Caucasus.
Current potential distribution of the straight-tusked elephant (Palaeoloxodon antiquus) in Europe. The colouring represents the probability of occurrence, with grey indicating “very unlikely” and dark green “very likely”. The black dots mark the fossil finds on which the prediction is based.
“In the past, megafauna like the straight-tusked elephant and their regulatory mechanisms—such as grazing—were omnipresent. Many European species, particularly plants that thrive in open habitats, likely established in their diversity in Europe because they benefited from these ecological influences. Traditional conservation strategies in Europe primarily aim to protect biodiversity by shielding habitats from human activities. However, this strategy alone is unlikely to restore the lost ecological functions of megafauna,” says Franka Gaiser, a doctoral student in the Sport Ecology research team and lead author of the study.
Modern conservation projects actively reintroduce large herbivores to Europe. However, this comes with challenges, as the ecological processes that have shaped modern ecosystems are not yet fully understood. Additionally, today’s large herbivores cannot entirely replace the role of extinct megafauna, as both the animals themselves and the landscape structures, as well as species interactions, have changed significantly.
Original publication:
Gaiser F, Müller C, Phan P, Mathes G, Steinbauer MJ (2025) Europe’s lost landscape sculptors: Today’s potential range of the extinct elephant Palaeoloxodon antiquus. Frontiers of Biogeography 18: e135081. https://doi.org/10.21425/fob.18.135081