Promoting sustainable agriculture for pollinators: Pensoft joins the EU project AGRI4POL

The new Horizon project is to assist the transition of agriculture to a positive force for biodiversity, crop pollination services, ecosystems and people. Pensoft will lead the communication, dissemination, exploitation and synergies with other projects.

Threats to pollinators and pollination services that support agriculture and provide benefits to people are a worldwide problem, recognized by intergovernmental scientific assessments, national or transnational initiatives as well as policies.

Intensive agriculture is among the principal threats to pollinator biodiversity and the crop pollination services that pollinators provide. Moreover, typically crop breeding has tended to overlook the benefits of pollination for sustained crop yields in favour of other crop traits.

Coordinated by Dr. Adam Vanbergen (INRAE) and funded by Horizon Europe, the AGRI4POL project takes an ambitious and achievable interdisciplinary and transdisciplinary approach to achieve a transition towards sustainable pollinator-friendly farming.

AGRI4POL kick-off meeting (February 2025, Brussels, Belgium).

The project aims to deliver an integrated state-of-the-art analysis of the crop – farming system – pollinator interplay across levels of biological organisation from the crop gene to the agroecosystem. 

AGRI4POL launched in February 2025 and will be running until the end of 2028.

To achieve its goals, AGRI4POL project has outlined six objectives:

  1. Establish and work with a multi-actor community to drive the transition towards more pollinator friendly farming systems and value chains.
  2. Evaluate genetic diversity of crop floral traits governing pollinator interactions to stimulate breeding of pollinator-smart varieties.
  3. Find out how pollinator-crop relationships are modified by intra- and interspecific crop diversification in space and time.
  4. Optimise ecological infrastructures (EI = landscape features, non-crop habitats) for crop pollination, pollinator biodiversity and multiple ecosystem benefits.
  5. Assess the social, economic and environmental opportunities and obstacles presented by pollinator friendly farming options to understand their feasibility and acceptability. 
  6. Evaluate the influence of the policy landscape and the practitioner awareness of the benefits and challenges of pollinator-friendly farming at [sub]national, European and international scales.
AGRI4POL’s coordinator Dr. Adam Vanbergen (INRAE) gave an introductory presentation during the project kick-off meeting in Brussels (February 2025, Belgium).

Pensoft’s role

Building on its experience in communication, dissemination, and exploitation of results, Pensoft will focus on maximizing the project’s impact and long-term legacy. This encompasses a wide array of activities, ranging all the way from building a project’s visual identity and online presence and creating a podcast to translating results into policy recommendations. Moreover, Pensoft will be facilitating collaboration opportunities with other projects, leveraging on its involvement in numerous EU-funded projects. As of now, Pensoft takes part in six EU Pollinator projects, which serves well to facilitate synergies.

International consortium

The AGRI4POL consortium comprises partners from fourteen European institutions along with five associated partners, including China. Consortium covers a wide diverse range of scientific disciplines spanning from pollinator ecology and agriculture to stakeholder engagement and communications. 

  1. INREA (France)
  2. INRAE Transfert (France) 
  3. Helmholtz Centre for Environmental Research – UFZ (Germany)
  4. The University of Reading (United Kingdom)
  5. Wageningen University and Research (Netherlands)
  6. Lund University (Sweden)
  7. Consejo Superior de Investigaciones Científicas (CSIC) (Spain)
  8. Albert-Ludwigs-Universität Freiburg (Germany)
  9. Pensoft Publishers (Bulgaria)
  10. Global Change Research Institute – Ustav Vyzkumu Globalni Zmeny Av Cr Vvi (CzechGlobe) (Czech Republic)
  11. Université de Mons (Belgium)
  12. University of Ljubljana – Univerza v Ljubljani (Slovenia)
  13. Università degli Studi di Padova (Italy)
  14. WCMC LBG – UNEP World Conservation Monitoring Centre (global)
  15. Associació Paisatages Vius – Living Landscapes (global)
  16. Maisadour Semences Romania SRL – MAS Seeds (Romania)
  17. Confederazione Italiana Agricoltori (Italy)
  18. Eidgenoessisches Departement fuer Wirtschaft, Bildung und Forschung (WBF-Agroscope) (Italy)
  19. Swiss Association for the Development of Agriculture and Rural Areas (Switzerland)
  20. Institute of Apicultural Research – Chinese Academy of Agricultural Sciences 
  21. China West Normal University 
  22. Gansu Agriculture University

The AGRI4POL project website is coming soon!

In the meantime, follow the project’s progress via its social media channels on BlueSky and LinkedIn.

Pensoft joins new Horizon Europe project to help tackle terrestrial invasive alien species

Pensoft will play a vital role in public awareness, engagement and promoting effective strategies for monitoring and managing IAS.

The Chinese muntjac (Muntiacus reevesi) is an invasive alien species for Europe with established populations across the western part of the continent. Photo by Mario Shimbov (Pensoft).

As one of the partners in charge of maximising the project’s impact, Pensoft will work on OneSTOP’s visual branding, communication, dissemination and exploitation, and the development of a data management plan for the project. 

Invasive alien species (IAS) pose one of the most significant threats to global biodiversity, contributing to species extinctions, ecosystem degradation, and economic losses exceeding $400 billion annually

To tackle this, the EU enforces Regulation (EU) 1143/2014 and the Biodiversity Strategy for 2030, aiming to prevent IAS introduction, enhance early detection, and manage their spread. Member States coordinate efforts with scientific support and citizen engagement to minimise their impact and protect Europe’s biodiversity. Addressing this urgent challenge, the EU Horizon project OneSTOP has officially launched as part of a coordinated European effort to combat biological invasions in terrestrial environments.

Comprehensive Approach to Tackling Invasive Alien Species

OneSTOP is one of two ambitious projects funded under the Horizon Europe programme, the other being GuardIAS, which focuses on marine and freshwater habitats. The two collaborative initiatives held their joint official kick-off meeting in January at the Joint Research Centre in Ispra, Italy. Together, these projects aim to develop innovative solutions for detecting, preventing, and managing invasive alien species across all ecosystem realms.

Coordinated by Dr Quentin Groom from Meise Botanic Garden, Belgium, and Prof Helen Roy from the UK Centre for Ecology and Hydrology, OneSTOP will integrate advanced scientific research, cutting-edge detection technologies, and policy-driven strategies to enhance biosecurity across Europe. 

The ОneSTOP project consortium at the project’s kick-off meeting held on 20-24 January 2025 in Ispra, Italy.
The project is structured around four key objectives:
  1. Improve species detection and response time by incorporating computer vision, environmental DNA (eDNA) analysis and citizen science initiatives.
  2. Facilitate swift action against invasive species threats by openly sharing data in international standards for biodiversity data with stakeholders who need it.
  3. Support policy-makers in making informed decisions about where and how to allocate resources for invasive species management by developing data-driven systems.
  4. Ensure stakeholder collaboration and knowledge exchange by implementing Living Labs at the regional level and an international policy forum, thereby encouraging socio-political action.

OneSTOP aligns with the European Alien Species Information Network (EASIN) mission to protect EU biodiversity by improving IAS management through advanced biosecurity technologies and enhanced data integration. By fostering collaboration with the Joint Research Centre (JRC) and supporting Member States with innovative tools, the project strengthens the EU’s capacity to detect, respond to, and mitigate IAS threats in line with existing regulations.

Pensoft’s role in OneSTOP

As the leader of Work Package 1, Pensoft is responsible for shaping OneSTOP’s visual identity and developing a comprehensive strategy for communication, dissemination, and impact. This includes crafting a data and knowledge management plan to ensure the project’s findings are effectively shared and utilised. By fostering collaboration with key biosecurity networks, these efforts will strengthen OneSTOP’s long-term influence.

A key part of this work is to raise awareness about invasive alien species (IAS) and their pathways, ensuring that policymakers, researchers, and the public understand their impact and the importance of prevention. Pensoft will contribute to translating complex scientific findings into accessible content—including infographics, policy briefs, and interactive visualisations—to engage policymakers, researchers, and the public. These efforts will ensure that IAS knowledge is effectively shared, fostering collaboration and informed decision-making across sectors. Knowledge transfer materials will be shared through various channels, including OneSTOP’s five Living Labs across Europe, where stakeholders will be actively engaged in outreach and citizen science initiatives.

Pensoft will play a vital role in strengthening public awareness, fostering engagement, and promoting effective strategies for monitoring and managing IAS.

International Consortium

The project brings together twenty international partners from fifteen countries operating in various sectors, ultimately contributing with diverse expertise:

  1. Meise Botanic Garden – Belgium
  2. Aarhus University – Denmark
  3. UK Centre for Ecology & Hydrology – United Kingdom
  4. Biopolis – Portugal
  5. Coventry University – United Kingdom
  6. The Cyprus Institute – Cyprus
  7. Research Institute for Nature and Forest – Belgium
  8. Institute of Botany of the Czech Academy of Sciences – Czech Republic
  9. Lincoln University – New Zealand
  10. Platform Kinetics – United Kingdom
  11. Pensoft Publishers – Bulgaria
  12. Stellenbosch University – South Africa
  13. University of Exeter – United Kingdom
  14. University of Vienna – Austria
  15. Greenformation – Hungary
  16. Helmholtz Centre for Environmental Research – Germany
  17. Ovidius University of Constanta – Romania
  18. Natural Resources Institute Finland – Finland
  19. The Binary Forest – Belgium
  20. Experimental Station of Arid Areas of the Spanish National Research Council – Spain

The OneSTOP project website is coming soon!

For more information visit the OneSTOP project website, and make sure to follow the project’s progress via our social media channels on BlueSky and LinkedIn.

One third of Vietnam’s mammals are at risk of extinction

Several iconic species face an uncertain future in the biodiversity hotspot.

One third of Vietnam’s 329 mammal species are threatened with extinction, according to a recent study published in our open-access journal Nature Conservation.

Conducted by German scientist Hanna Höffner of the University of Cologne and Cologne Zoo, alongside an international team, the research underscores Vietnam’s vital but fragile position as a biodiversity hub within the Indo-Burma Biodiversity Hotspot.

The study reveals that 112 mammal species in Vietnam face extinction, despite most being found in at least one protected area. Some micro-endemic species, such as the Da Lat tube-nosed bat (Murina harpioloides), are particularly vulnerable as they are not present in any protected sites. 

Around 40% of the threatened species lack ex situ conservation (zoo conservation breeding) programs, which increases their risk of extinction. Iconic species like the saola (Pseudoryx vuquangensis), the silver-backed chevrotain (Tragulus versicolor), and the large-antlered muntjac (Muntiacus vuquangensis) are among the Critically Endangered taxa at risk.

The study advocates for the IUCN‘s “One Plan Approach” to species conservation, which calls for combining different expertise and integrated in situ and ex situ management strategies. Establishing assurance colonies in zoos and increasing connectivity between isolated protected areas are critical recommendations for safeguarding Vietnam’s unique mammal diversity.

By building up ex situ populations for threatened taxa, zoos can help to literally “buy time” and act as modern arks that can contribute with later releases according to the IUCN’s “Reverse the Red” conservation campaign. Ex situ species holding data by Species360 are now also integrated in the IUCN Red List species’ chapters (a “One Plan” approach to species data).

Vietnam is home to a rich array of mammals, including 36 endemic species and nine micro-endemic taxa. Its primate fauna is particularly noteworthy, with 28 species, the highest number in mainland Southeast Asia. This includes the endemic tonkin snub-nosed monkey (Rhinopithecus avunculus) and Delacour’s langur (Trachypithecus delacouri). 

Northern Vietnam and the Annamite Mountain Range are biodiversity hotspots, hosting species such as the Critically Endangered Cao-vit gibbon (Nomascus nasutus), the southern white-cheeked gibbon (Nomascus siki) and the red-shanked douc (Pygathrix nemaeus).

A red-faced monkey in a tree.
A red-shanked douc (Pygathrix nemaeus).

The study calls for prioritising the “One Plan Approach” to conservation of highly threatened species, reassessing Data Deficient species, and enhancing habitat connectivity.

The conservation campaign VIETNAMAZING by EAZA (European Association of Zoos and Aquaria) currently highlights Vietnam’s biodiversity treasure and advocates for improved conservation of threatened mammal species.

Original study

Höffner H, Nguyen ST, Dang PH, Motokawa M, Oshida T, Rödder D, Nguyen TQ, Le MD, Bui HT, Ziegler T (2024) Conservation priorities for threatened mammals of Vietnam: Implementation of the IUCN´s One Plan Approach. Nature Conservation 56: 161-180. https://doi.org/10.3897/natureconservation.56.128129 

***

Follow Nature Conservation on Facebook and X.

Exploring the hidden treasures of Aziza Cave: A biodiversity hotspot in North Africa

Aziza Cave harbors a rich and diverse array of subterranean life that is only now beginning to be revealed widely.

Guest blog post by Marconi Souza-Silva

Beneath the arid pre-Saharan zone of Morocco lies Aziza Cave, also known as Kef Aziza or Tazouguert Cave. The vast subterranean system stretches over 3.5 kilometers of surveyed galleries, making it Morocco’s fifth-largest cave system and one of the top ten most extensive caves in North Africa.

A view of the Sahara desert and Aziza cave’s entrance.

Beyond its sheer size and geological significance, Aziza Cave harbors a rich and diverse array of subterranean life that is only now beginning to be revealed widely. In a recent study in the journal Subterranean Biology, researchers cataloged the subterranean fauna of Aziza Cave and provided a detailed checklist of 26 different taxa potentially representing cave-restricted species. Among these are 22 troglobitic species, organisms that have adapted to life entirely within the cave environment, and four stygobitic species, which have specially evolved to live in the cave’s groundwater.

Four of the authors of the paper.

The discovery of such a variety of species highlights the cave as a critical biodiversity hotspot, not only in Morocco but for the African continent as a whole. One alarming aspect of this discovery is the large number of species that still need to be thoroughly studied or described.

Dysdera caeca, a cave spider

Only about 34.6% of the species in Aziza Cave have been formally identified and described by scientists. Further research could lead to the identification and description of many new species. The fauna found in Aziza Cave includes a wide variety of life forms, with the richest groups being beetles (Coleoptera), spiders (Araneae), springtails (Entomobryomorpha), and woodlice (Isopoda). Some have evolved remarkable adaptations to their lightless, nutrient-scarce environment, such as reduced pigmentation, elongated appendages, and heightened sensory capabilities that help them navigate and survive in this extreme habitat.

Long-tailed bat Rhinopoma hardwickei.

Despite these discoveries, much of Aziza Cave remains unexplored. Large portions of this karstic system have yet to be surveyed, and researchers believe that the biodiversity uncovered so far is just the beginning. The cave’s unexplored depths likely hold many more secrets, including potentially new species that have yet to be seen by human eyes. This prospect has sparked great interest among speleologists and conservationists, who see Aziza Cave as an important research site for studying subterranean ecosystems.

Magnezia gardei, a cave isopod.

The biodiversity of Aziza Cave is something to celebrate, but it also sheds light on the significant conservation challenges that subterranean habitats in Morocco and across North Africa are facing. Caves are delicate ecosystems that are highly sensitive to changes in their environment. Human activities such as pollution, mining, deforestation, and unsustainable tourism pose severe threats to these ecosystems and the species that depend on them. Once these habitats are damaged or destroyed, it is often impossible to restore them, and the species that inhabit them may face extinction.

Graffiti on the cave walls.

Human-induced impacts have already begun to take their toll in Aziza Cave. Visitors can disrupt the delicate balance of the cave’s ecosystem, change water quality, or introduce pollutants and alien species. These pressures underscore the urgent need for conservation measures to protect this unique environment and its inhabitants. By highlighting the importance of Aziza Cave and similar habitats, the researchers hope to encourage further exploration and study of Africa’s subterranean ecosystems and develop effective conservation strategies to protect them. By protecting these fragile ecosystems and supporting scientific exploration, we can ensure that the incredible biodiversity of Aziza Cave and other subterranean habitats continues to thrive.

Research article:

Moutaouakil S, Souza-Silva M, Oliveira LF, Ghamizi M, Ferreira RL (2024) A cave with remarkably high subterranean diversity in Africa and its significance for biodiversity conservation. Subterranean Biology 50: 1-28. https://doi.org/10.3897/subtbiol.50.113919

Eight weird and wonderful species to celebrate World Animal Day

Happy World Animal Day! Today is all about celebrating the incredible species roaming our planet and promoting action for animal rights and welfare.

To mark this special day, we have collected some of our favourite animals published across Pensoft’s journal portfolio.

1. The ‘cute but deadly’ velvet worm

The Tiputini velvet worm (Oroperipatus tiputini). Credit: Roberto José León.

Look at those adorable little legs!

Oroperipatus tiputini is a velvet worm that researchers published as a new species in Zoosystematics and Evolution. These invertebrates are known as “living fossils” because they evolved over 500 million years ago, long before the dinosaurs.

An adult and a juvenile velvet worm on a leaf.
The Tiputini velvet worm (Oroperipatus tiputini) adult and juvenile.

Despite its friendly appearance, the Tiputini velvet worm is an accomplished hunter that shoots a sticky substance from a pair of glands near its face to trap its prey!

Learn more: https://doi.org/10.3897/zse.100.117952

2. The ancient nautilus

Nautilus samoaensis. Credit: Barord et al.

Some creatures look like they belong to an era long ago.

But this one has only just been discovered! Found near American Samoa at a depth of 300 m, Nautilus samoaensis was one of three new nautilius species published in ZooKeys in 2023.

Close up of a nautilus species.
Underwater photos of living Nautilus samoaensis.

Sadly, these enigmatic molluscs with beautiful shells are facing population decline, and even extinction, due to the activity of unregulated fisheries.

Learn more: https://doi.org/10.3897/zookeys.1143.84427

3. The moth called Trump

A close-up photo of a moth's head, with yellow scales resembling hair.
Neopalpa donaldtrumpi.

Any ideas why Neopalpa donaldtrumpi was given its name?

Found in California, Arizona, and some areas of Mexico, this species was named days before Donald J. Trump became the the 45th President of the United States of America.

Four angles of the same moth.
Neopalpa donaldtrumpi.

Researcher Dr Vazrick Nazari hoped that the fame around the blonde-haired moth would raise awareness for the importance of further conservation efforts for the species’ fragile habitat.

Learn more: https://doi.org/10.3897/zookeys.646.11411

4. The stiff-necked stargazer

Three views of a fish whose eyes and mouth point upwards, and one xray scan of the fish.
The longnosed stargazer (Ichthyscopus lebeck).

We think this fish may have taken the advice “keep your chin up” a bit too literally.

The longnosed stargazer (Ichthyscopus lebeck) looks like this for good reason – it buries itself in sand, with just its eyes visible, and leaps upwards to ambush prey.

The first Southern Hemisphere record of this species was published in our journal Acta Ichthyologica et Piscatoria in 2024. 

Learn more: https://doi.org/10.3897/aiep.54.113513

5. The electric-blue tarantula

Juvenile Chilobrachys natanicharum. Credit: Yuranan Nanthaisong.

I’m blue da ba dee da ba d-AHHHHH!

Blue is a rare colour in nature, which is a shame because this tarantula from Thailand looks spectacular. The stylish spider sports iridescent streaks of neon colour on its legs, back, and mouthparts.

A tarantula with electric-blue colouration.
Juvenile Chilobrachys natanicharum. Credit: Yuranan Nanthaisong.

Chilobrachys natanicharum was already known in the pet trade as the electric blue tarantula, but a study published ZooKeys finally confirmed it as a unique species.

Learn more: https://doi.org/10.3897/zookeys.1180.106278

6. The chocolate frog

A brown glossy frog.
Synapturanus danta. Credit: Germán Chávez.

Anything from the trolley, dears?

While it may look like a Wizarding World snack, this burrowing frog species inhabits the soft soil of Amazon peatlands.

A brown glossy frog on a leaf.
Synapturanus danta. Credit: Germán Chávez.

Long known by Peru’s Three Corners Native Community, Synapturanus danta was published as a new species in Evolutionary Systematics in 2022.

Learn more: https://doi.org/10.3897/evolsyst.6.80281

7. The tailless whip scorpion

Black arachnid species on a hand.
Tailless whip scorpion (Phrynus whitei). Credit: Fugus Guy via WikiMedia Commons.

Sorry about this one.

Phrynus whitei is an amblypygid – an order of arachnids also known as whip spiders or tailless whip scorpions. Despite its unsettling appearance, it is generally calm around humans and is non-venomous.

Black and gold arachnid species.
Tailless whip scorpion (Phrynus whitei).

This creepy critter featured in Neotropical Biology and Conservation in an overview of the poorly-know amblypygid fauna of Honduras.

Learn more: https://doi.org/10.3897/neotropical.19.e113507

8. The adorable olinguito

a young fluffy mammal.
Juvenile olinguito (Bassaricyon neblina). Credit: Juan Rendon via savingspecies.org.

Hopefully this makes up for the last entry.

Looking like a cross between a teddy bear and a house cat, the olinigto was the first carnivorous mammal discovered in the Americas for 35 years!

Two pictures of a fluffy mammal on a tree.
The olinguito (Bassaricyon neblina). Credit: Mark Gurney.

Bassaricyon neblina belongs to a group of mammals called the olingos, which are related to raccoons and coatis.

Learn more: https://doi.org/10.3897/zookeys.324.5827

While we have enjoyed collecting a few of our favourite species featured in Pensoft journals, it is important to remember the value of every animal, regardless of cuteness or weirdness.

By supporting research and action that aims to protect our planet’s species, we can continue to enjoy our planet’s bizarre biodiversity that never fails to surprise and delight. Happy World Animal Day!

Assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators: Pensoft joins WildPosh

Pensoft is amongst the participants of a new Horizon Europe project aiming to better evaluate the risk to wild pollinators of pesticide exposure, enhancing their health & pollination services.

Wild fauna and flora are facing variable and challenging environmental disturbances. One of the animal groups that is most impacted by these disturbances are pollinators, which face multiple threats, driven to a huge extent by the spread of anthropogenic chemicals, such as pesticides. 

WildPosh (Pan-european assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators) is a multi-actor, transdisciplinary project whose overarching mission and ambition are to significantly improve the evaluation of the risk to wild pollinators of pesticide exposure, and enhance the sustainable health of pollinators and pollination services in Europe.

On 25 and 26 January 2024, project partners from across Europe met for the first time in Mons, Belgium and marked the beginning of the 4-year endeavour that is WildPosh. During the two days of the meeting, the partners had the chance to discuss objectives and strategies and plan their work ahead. 

This aligns with the objectives of the European Green Deal and EU biodiversity strategy for 2030, emphasising the need to reduce pollution and safeguard pollinators. WildPosh focuses on understanding the routes of chemical exposure, evaluating toxicological effects, and developing preventive measures. By addressing knowledge gaps in pesticide risk assessment for wild pollinators, the project contributes to broader efforts in biodiversity conservation.

During the kick-off meeting in Mons, WildPosh’s project coordinator Prof. Denis Michez (University of Mons, Belgium) gave an introductory presentation.

As a leader of Work Package #7: “Communication, knowledge exchange and impact”, Pensoft is dedicated to maximising the project’s impact by employing a mix of channels in order to inform stakeholders about the results from WildPosh and raise further public awareness of wild and managed bees’ health.

Pensoft is also tasked with creating and maintaining a clear and recognisable project brand, promotional materials, website, social network profiles, internal communication platform, and online libraries. Another key responsibility is the development, implementation and regular updates of the project’s communication, dissemination and exploitation plans, that WildPosh is set to follow for the next four years.

“It is very exciting to build on the recently concluded PoshBee project, which set out to provide a holistic understanding of how chemicals affect health in honey bees, bumble bees, and solitary bees, and reveal how stressors interact to threaten bee health. WildPosh will continue this insightful work by investigating these effects on wild pollinators, such as butterflies, hoverflies and wild bee species, with the ultimate goal of protecting these small heroes who benefit the well-being of our planet,”

says Teodor Metodiev, WildPosh Principal Investigator for Pensoft.

For the next four years, WildPosh will be working towards five core objectives: 

1) Determine the real-world agrochemical exposure profile of wild pollinators at landscape level within and among sites 

2) Characterise causal relationships between pesticides and pollinator health 

3) Build open database on pollinator traits/distribution and chemicals to define exposure and toxicity scenario

4) Propose new tools for risk assessment on wild pollinators

5) Drive policy and practice.


Consortium:

The consortium consists of 17 partners coming from 10 European countries. Together, they bring extensive experience in Research and Innovation projects conducted within the Horizon programmes, as well as excellent scientific knowledge of chemistry, modelling, nutritional ecology, proteomics, environmental chemistry and nutritional biology.

  1. University of Mons
  2. Pensoft Publishers
  3. Eesti Maaülikool (Estonian University of Life Sciences)
  4. BioPark Archamps
  5. French National Agency for Food, Environmental and Occupational Health & Safety
  6. French National Centre for Scientific Research
  7. Martin Luther University Halle-Wittenburg
  8. Albert Ludwigs University Freiburg
  9. UFZ Helmholtz Centre for Environmental Research
  10. University of Turin
  11. Italian National Institute of Health
  12. National Veterinary Research Institute – State Research Institute
  13. University of Novi Sad Faculty of Sciences
  14. University of Novi Sad, BioSense Institute-Research Institute for Information Technologies in Biosystems
  15. University of Murcia
  16. Royal Holloway and Bedford New College
  17. The University of Reading

Visit can follow WildPosh on X/Twitter (@WildPoshProject), Instagram (/wildposhproject) and Linkedin (/wildposh-eu)

Spiders, snakes and pseudoscorpions: new species published in Pensoft journal

Twelve fascinating newly discovered species were published in Pensoft’s journal Zoosystematics and Evolution in January 2024.

Zoosystematics and Evolution kicked off the year with research papers introducing 12 exciting new species from around the world. The journal, published by Pensoft on behalf of Museum für Naturkunde, is known for being at the forefront of animal research and, in particular, for sharing exciting new discoveries like those below.

Four jumping spiders from India

Four new species of Phintella were discovered in India. Generally striking in appearance, the genus now has 18 recognised species in India – second only to China.

Research paper: https://doi.org/10.3897/zse.100.113049

An ethereal sea slug from British waters

Pleurobranchaea britannica, a newly discovered sea slug, is the first of its genus found in British waters. The unusual translucent creature also represents the second valid Pleurobranchaea species from European seas.

Research paper: https://doi.org/10.3897/zse.100.113707

A beautiful venomous snake from Thailand

In the Tenasserim Mountain Range of western Thailand, researchers discovered Bungarus sagittatus, a new species of venomous elapid snake. The name sagittatus is derived from sagittata meaning arrow, referencing the dark triangular shape on its subcaudal scales which resembles a barbed arrow.

Research paper: https://doi.org/10.3897/zse.100.116601

Two eels from India

Researchers described two new species, Ariosoma gracile and Ariosoma kannani, from Indian waters, based on the materials collected from the Kochi coast, Gulf of Mannar and the West Bengal coast, along the Bay of Bengal.

Research paper: https://doi.org/10.3897/zse.100.116611

An island-dwelling land snail from Australia

Xanthomelon amurndamilumila

Xanthomelon amurndamilumila was discovered on the North East Isles, offshore from Groote Eylandt, Australia. Its conservation status is of concern on North East Island because of habitat degradation caused by feral deer.

Research paper: https://doi.org/10.3897/zse.100.113243

New fish from Türkiye

A new Eurasian minnow, Phoxinus radeki, was discovered in the Ergene River (Aegean Sea Basin). Salmo brunoi, a new species of trout, was discovered in the Nilüfer River, a tributary of the Susurluk River.

Research papers: https://doi.org/10.3897/zse.100.113467 (Phoxinus radeki),
https://doi.org/10.3897/zse.100.112557 (Salmo brunoi)

An Indian pseudoscorpion

Ditha shivanparaensis

Ditha shivanparaensis may look like a scorpion, but looks can be deceiving. Rather, it is an arachnid, newly discovered from the tropical montane cloud forests or ‘sholas’ of the Western Ghats of India.

Research paper: https://doi.org/10.3897/zse.100.110020

With all these discoveries published in January, we anticipate many more exciting new species to come from Zoosystematics and Evolution in 2024!

Follow Zoosystematics and Evolution on X and Facebook for more!

Hidden biodiversity underfoot: DNA barcoding of Taiwanese forest beetles

The intricate world beneath our feet holds secrets that are only now being unveiled, as researchers embark on a groundbreaking project to explore the hidden diversity of forest leaf litter beetles in Taiwan.

Guest blog post by the research team led by Martin Fikácek and Fang-Shuo Hu, based on their paper published in Deutsche Entomologische Zeitschrift.

Forest leaf litter, often likened to terrestrial coral reefs, supports an astonishing variety of life. Among the myriad arthropods dwelling in this ecosystem, beetles emerge as the most common and speciose group. Despite their abundance, our understanding of leaf litter beetles remains limited due to the challenges posed by their sheer numbers, small sizes, and high local endemism.

Unlocking the Mystery with DNA Barcoding

To overcome these challenges, a team of researchers has initiated the Taiwanese Leaf Litter Beetles Barcoding project. Leveraging DNA barcoding, the project aims to create a comprehensive reference library for these elusive beetles. DNA barcoding, a technique using short mitochondrial fragments, accelerates the analysis of entire faunas and aids in the identification of species. The goal is to provide a valuable resource for researchers, ecologists, conservation biologists, and the public.

DNA voucher collection. Hu et al.

A Collaborative Journey with Taxonomists

The success of the Taiwanese Leaf Litter Beetles Barcoding project hinges on the invaluable contribution of taxonomists, who play a pivotal role in this groundbreaking research. Recognizing the specialized knowledge required for precise genus and species identifications, the researchers diligently consulted with specialists for each family represented in the extensive dataset.

In cases where these taxonomic experts provided crucial assistance, they were not merely acknowledged but offered co-authorship, acknowledging the significant commitment and expertise they bring to the project. Many taxonomists devote their entire lives to the meticulous study of specific beetle groups, and this collaboration underscores the importance of their dedication. The researchers emphasize the fairness of extending co-authorship to these taxonomic experts, acknowledging their indispensable role in advancing our understanding of Taiwan’s leaf litter beetle fauna.

Larva of Oodes (Lachnocrepisjaponicus. Hu et al.

Rich Beetle Diversity in Taiwan

Taiwan, nestled in the western Pacific, boasts a rich biodiversity resulting from its location at the crossroads of the Oriental and Palearctic biogeographical regions. Beetles, with over 7,700 recorded species belonging to 119 families, stand out as a particularly diverse insect order on the island. Despite this wealth of species, taxonomic research on beetles in Taiwan has been fragmented, and the study of leaf litter beetles has relied heavily on collections from past decades.

Larvae of Lagria scutellaris (OTU174) associated with adults by DNA. Hu et al.

The current dataset, based on specimens collected in the Huisun Recreation Forest Area in 2019–2021, comprises 4,629 beetles representing 334 species candidates from 36 families. The DNA barcoding approach has not only allowed for efficient species identification but has also provided a glimpse into the intricate world of beetle larvae, enhancing our understanding of their biology and ecological roles. This comprehensive dataset marks a significant step forward in unraveling the mysteries of Taiwan’s diverse beetle fauna.

Project Goals, Progress, and Future Outlook

The Taiwanese Leaf Litter Beetles Barcoding project is dedicated to a three-fold mission: conducting an extensive study of leaf litter beetles, documenting their diversity in Taiwan, and providing a reliable tool for quick identification. The researchers have published the first set of DNA barcodes, unveiling taxonomic insights such as the description of a new species and several newly recorded taxa.

Map of the samples collected in 2019–2023. Hu et al.

While the dataset is geographically limited to a single forest reserve in central Taiwan, it efficiently demonstrates the challenges of studying subtropical and tropical leaf litter beetle faunas. The integration of DNA barcoding and morphology proves instrumental in unraveling the mysteries of this species-diverse ecosystem. Looking ahead, the team plans to expand their sampling across Taiwan, covering diverse regions, altitudinal zones, and forest types.

Continuous updates to the DNA barcode dataset will serve as a valuable resource for future studies, maintaining a balanced approach that recognizes DNA barcoding as an efficient complement to traditional taxonomic methods.

Research article:

Hu F-S, Arriaga-Varela E, Biffi G, Bocák L, Bulirsch P, Damaška AF, Frisch J, Hájek J, Hlaváč P, Ho B-H, Ho Y-H, Hsiao Y, Jelínek J, Klimaszewski J, Kundrata R, Löbl I, Makranczy G, Matsumoto K, Phang G-J, Ruzzier E, Schülke M, Švec Z, Telnov D, Tseng W-Z, Yeh L-W, Le M-H, Fikáček M (2024) Forest leaf litter beetles of Taiwan: first DNA barcodes and first insight into the fauna. Deutsche Entomologische Zeitschrift 71(1): 17-47. https://doi.org/10.3897/dez.71.112278

Follow Deutsche Entomologische Zeitschrift on Facebook and X.

New species of spiny mouse discovered in rainforest

The new species was discovered in Ecuador, and is the 14th of its genus to be identified in the past five years.

A new species of spiny mouse has been discovered in Ecuador, making it the 14th of its genus to be identified in the past five years. Neacomys marci, which was previously confused with another species, is around the length of a tennis ball, with a long tail, pale suede belly fur and a white throat.

New species of spiny mouse pictured in its natural habitat.
Live specimen of new species Neacomys marci in its natural habitat.
Photo by: Jorge Brito

Discovered in the Chocó biogeographic region in northwestern Ecuador, it is the 24th formally recognised species in its genus, which has seen significant upheaval in recent years.

Researchers Nicolás Tinoco, Pontificia Universidad Católica del Ecuador (Quito), Claudia Koch, Leibniz Institute for the Analysis of Biodiversity Change (Germany), Javier E. Colmenares-Pinzón, Universidad Industrial de Santander (Colombia) and Jorge Brito, Instituto Nacional de Biodiversidad (Quito, Ecuador) published their description of the rodent in the open access journal Zookeys.

Neacomys is a widely distributed genus of small spiny or bristly rodents that occupy habitats in eastern Panama and the northern half of South America. Since 2017, studies of the genus have been remarkably dynamic, resulting in the description of several new species.

New species of spiny mouse pictured in its natural habitat.
Live specimen of new species Neacomys marci in its natural habitat.
Photo by: Jorge Brito

However, as there are still many unexplored areas in South America and adjacent Central America (Panama), some of the currently recognised species have not been studied thoroughly, and the true diversity of the genus may be underestimated.

The Chocó biogeographic region is considered one of the most diverse biodiversity hotspots in South America, but one of the least studied despite its great size (along the Pacific coasts of Panama, Colombia and Ecuador). The rainforests of northwestern Ecuador have high biodiversity and endemism due to the influence of the Chocó and the Andes Mountains.

Natural habitat of new species of spiny mouse.
Habitat where specimens of Neacomys marci were collected in the study.
Photo by: Jorge Brito

Major reviews of museum collections and increased field collection efforts have helped scientists understand Neacomys marci and other species. Molecular analysis is also being used to assist with more accurate animal group identification.

The new species was named after Marc Hoogeslag of Amsterdam, the Netherlands, who was co-founder and leader of the International Union for Conservation of Nature – Netherlands Land Acquisition Fund, which helps local groups around the world establish new ecological reserves and conserve endangered species. The EcoMinga Foundation‘s Manduriacu Reserve, home to this new species, is one of many reserves that have benefited from Hoogeslag’s program.

Original Source:

Tinoco N, Koch C, Colmenares-Pinzón JE, Castellanos FX, Brito J (2023) New species of the Spiny Mouse genus Neacomys (Cricetidae, Sigmodontinae) from northwestern Ecuador. ZooKeys 1175: 187-221. https://doi.org/10.3897/zookeys.1175.106113

Follow ZooKeys on social media:

Psychedelic rock gecko among dozens of species in need of further conservation protection in Vietnam

Researchers recommend IUCN CPSG’s One Plan Approach to Conservation measures, which include both habitat conservation and increasing the number of threatened species in breeding stations and zoos. 

Endangered psychedelic rock gecko (Cnemaspis psychedelica)
Photo by Thomas Ziegler. Licence: CC-BY.

Further conservation measures are required to protect Vietnamese reptiles, such as the psychedelic rock gecko (Cnemaspis psychedelica), from habitat loss and overharvesting, concludes a new report, published in the open-access scientific journal Nature Conservation.

Having identified areas of high reptile diversity and large numbers of endangered species, the study provides a list of the 50 most threatened species as a guide for further research and conservation action in Vietnam. 

The study, based on the bachelor thesis of Lilli Stenger (University of Cologne, Germany), recommends IUCN CPSG’s One Plan Approach to Conservation measures, which, next to improved habitat conservation, also involves increasing the number of threatened species in breeding stations and zoos to maintain populations suitable for restocking. 

Co-authors of the report are Anke Große Hovest (University of Cologne, Germany), Truong Quang Nguyen (Vietnam Academy of Science and Technology), Cuong The Pham, (Vietnam Academy of Science and Technology), Anna Rauhaus (Cologne Zoo, Germany), Minh Duc Le (Vietnam National University), Dennis Rödder (Leibniz Institute for the Analysis of Biodiversity Change, Germany) and Thomas Ziegler (University of Cologne and Cologne Zoo, Germany).

“Modern zoos, as well as local facilities, can play a crucial role in not only conducting or financially supporting in situ conservation projects, that is to say in nature, but also by protecting species from extinction through maintaining ex situ assurance colonies to reinforce in situ conservation programs,”

said Prof. Dr. Thomas Ziegler, Vietnam conservation team member and coordinator from Cologne Zoo, Germany.
Endangered Truong Son pit viper or Quang Binh pit viper (Trimeresurus truongsonensis).
Photo by Thomas Ziegler. Licence: CC-BY.

The scientists identified 484 reptile species known to Vietnam, aiming to provide a baseline to authorities, conservationists, rescue centers, and zoos, so they can follow up with appropriate conservation measures for endangered species. They note that the number is likely to go up, as the country is regarded as a top biodiversity hotspot, and the rate of new reptile species discoveries remains high.

According to the IUCN Red List, 74 of the identified species are considered threatened with extinction, including 34 endemic species. For more than half of Vietnam’s endemic reptiles (85 of 159), the IUCN Red List status is either missing or outdated, and further research is imperative for these species, the researchers say.

Vietnam has a high level of reptile diversity and an outstanding number of endemic species. The species richness maps in the study revealed the Central Annamites in central Vietnam to harbor the highest endemic species diversity (32 species), which highlights it as a site of particular importance for reptile conservation. Alarmingly, a protected area analysis showed that 53 of the 159 endemic species (33.2%) including 17 threatened species, have been recorded exclusively from unprotected areas, such as the Psychedelic Rock Gecko.

The Critically Endangered Annam pond turtle (Mauremys annamensis) is one of the most endangered turtle species in Vietnam and in the world. It is not known from any protected area. Despite likely being extinct in the wild,  ex situ conservation programs have been implemented in time with a high number of individuals being kept and bred in zoos and stations and now ready for restocking actions.
Photo by Thomas Ziegler. Licence: CC-BY.

In General, Vietnam is considered a country with high conservation priority due to habitat loss and overharvesting for trade, traditional medicine and food.

Globally, reptiles are considered a group of special conservation con­cern, as they play an important role in almost all ecosystems and often have relatively small distri­bution ranges, making them especially vulnerable to human threats.

***

Original source:

Stenger L, Große Hovest A, Nguyen TQ, Pham CT, Rauhaus A, Le MD, Rödder D, Ziegler T (2023) Assessment of the threat status of reptile species from Vietnam – Implementation of the One Plan Approach to Conservation. Nature Conservation 53: 183 221. https://doi.org/10.3897/natureconservation.53.106923

***

Follow Nature Conservation on Facebook and Twitter.