Journal of Hymenoptera Research links Crocodile Dundee, Toblerone, Game of Thrones & Alien

A myriad of species and genera new to science, including economically important wasps drawing immediate attention because of their amusing names and remarkable physical characters, in addition to work set to lay the foundations for future taxonomic and conservation research, together comprise the latest 64th issue of Journal of Hymenoptera Research (JHR).

The species Qrocodiledundee outbackense

Two genera (Qrocodiledundee and Tobleronius) named after the action comedy Crocodile Dundee and the chocolate brand Toblerone are only a couple of the 14 new genera from the monograph of the microgastrine wasps of the world’s tropical regions, authored by Dr Jose Fernandez-Triana and Caroline Boudreault of the Canadian National Collection of insects in Ottawa. In their article, the team also describes a total of 29 new species, where five of them carry the names of institutions holding some of the most outstanding wasp collections.

Another curiously named species of microgastrine wasp described in the new JHR issue, is called Eadya daenerys in reference to Daenerys Targaryen, a fictional character known from the best-selling book series A Song of Ice and Fire by George R. R. Martin, and the blockbuster TV show Game of Thrones. Discovered by University of Central Florida‘s Ryan Ridenbaugh, Erin Barbeau and Dr Barbara Sharanowski as a result of a collaboration between biocontrol researchers and taxonomists, the new species might not be in control of three dragons, nor a ruler or protector of whole nations. However, by being a potential biocontrol agent against a particular group of leaf beetle pests, it could spare the lives of many eucalyptus plantations around the world.

The species Tobleronius orientalis

Furthermore, a wasp named Dolichogenidea xenomorph, which parasitises other eucalyptus pests, is also named after a character from a sought-after franchise. The scriptwriters of the horror sci-fi movie series Alien are thought to have been thinking of parasitic wasps when they came up with the character Xenomorph, remind authors Erinn Fagan-Jeffries, Dr Steven Cooper and Dr Andrew Austin. Additionally, the team from University of Adelaide and the South Australian Museum point out that the species name translates to ‘strange form’ in Greek, which perfectly suits the characteristic remarkably long ovipositor of the new wasp.

The species Eadya daenerys

In another paper of the same journal issue, Dr. Jean-Luc Boevé, Royal Belgian Institute of Natural Sciences, Diego Domínguez, Universidad Técnica Particular de Loja, Ecuador, and Dr David Smith, Smithsonian’s National Museum of Natural History, USA, publish an illustrated list of the wasp-related sawflies, which they collected from northern Ecuador a few years ago. They also provide a checklist of the country’s species.

In conclusion, the fifth paper, authored by Serbian scientists Dr Milana Mitrovic Institute for Plant Protection and Environment, and Prof Zeljko

The species Dolichogenidea xenomorph

Tomanovic, University of Belgrade, studies ways to extract DNA from dry parasitoid wasps from the natural history archives decades after their preservation. In their work, they make it clear that such projects are of great importance for future taxonomic and conservation research, as well as agriculture.

***

The open access Journal of Hymenoptera Research is published bimonthly by the scholarly publisher Pensoft on behalf of the International Society of Hymenopterists.

***

Original sources:

Boeve; J, Dominguez D, Smith D (2018) Sawflies from northern Ecuador and a checklist for the country (Hymenoptera: Argidae, Orussidae, Pergidae, Tenthredinidae, Xiphydriidae). Journal of Hymenoptera Research 64: 1-24. https://doi.org/10.3897/jhr.64.24408

Ridenbaugh RD, Barbeau E, Sharanowski BJ (2018) Description of four new species of Eadya (Hymenoptera, Braconidae), parasitoids of the Eucalyptus Tortoise Beetle (Paropsis charybdis) and other Eucalyptus defoliating leaf beetles. Journal of Hymenoptera Research 64: 141-175. https://doi.org/10.3897/jhr.64.24282

Fagan-Jeffries EP, Cooper SJB, Austin AD (2018) Three new species of Dolichogenidea Viereck (Hymenoptera, Braconidae, Microgastrinae) from Australia with exceptionally long ovipositors. Journal of Hymenoptera Research 64: 177-190. https://doi.org/10.3897/jhr.64.25219

Boeve; J, Dominguez D, Smith D (2018) Sawflies from northern Ecuador and a checklist for the country (Hymenoptera: Argidae, Orussidae, Pergidae, Tenthredinidae, Xiphydriidae). Journal of Hymenoptera Research 64: 1-24. https://doi.org/10.3897/jhr.64.24408

Mitrovic M, Tomanovic Z (2018) New internal primers targeting short fragments of the mitochondrial COI region for archival specimens from the subfamily Aphidiinae (Hymenoptera, Braconidae). Journal of Hymenoptera Research 64: 191-210. https://doi.org/10.3897/jhr.64.25399

Museum collection reveals distribution of Carolina parakeet 100 years after its extinction

While 2018 marks the centenary of the death of the last captive Carolina parakeet – North America’s only native parrot, a team of researchers have shed new light on the previously known geographical range of the species, which was officially declared extinct in 1920.

Combining observations and specimen data, the new Carolina parakeet occurrence dataset, recently published in the open access Biodiversity Data Journal by Dr Kevin Burgio, , Dr Colin Carlson, University of Maryland and Georgetown University, and Dr Alexander Bond, Natural History Museum of London, is the most comprehensive ever produced.

The new study provides unprecedented information on the birds range providing a window into the past ecology of a lost species.

“Making these data freely available to other researchers will hopefully help unlock the mysteries surrounding the extinction and ecology of this iconic species. Parrots are the most at-risk group of birds and anything we can learn about past extinctions may be useful going forward,” says the study’s lead author, Kevin Burgio.

The observational recordings included in the study have been gleaned from a wide variety of sources, including the correspondence of well-known historical figures such as Thomas Jefferson and the explorers Lewis and Clark.

The study team referenced recorded sightings spanning nearly 400 years. The oldest recorded sighting dates back to 1564, and was found in a description of the current state of Florida written by Rene Laudonniere in 1602.

Alongside the written accounts, the researchers included location data from museum specimens. These include 25 bird skins from the Natural History Museum’s Tring site, whose skin collection is the second largest of its kind in the world, with almost 750,000 specimens representing about 95 per cent of the world’s bird species. Thereby, the study proves what invaluable resources museum collections can be.

“The unique combination of historical research and museum specimens is the only way we can learn about the range of this now-extinct species. Museums are archives of the natural world and research collections like that of the Natural History Museum are incredibly important in helping to increase our understanding of biodiversity conservation and extinction,” says Alex Bond.

“By digitising museum collections, we can unlock the potential of millions of specimens, helping us to answer some of today’s big questions in biodiversity science and conservation.”

It is hoped that this research will be the beginning of a wider reaching work that will explore further into the ecology of this long lost species.

###

Original source:

Burgio KR, Carlson CJ, Bond AL (2018) Georeferenced sighting and specimen occurrence data of the extinct Carolina Parakeet (Conuropsis carolinensis) from 1564 – 1944. Biodiversity Data Journal 6: e25280. https://doi.org/10.3897/BDJ.6.e25280

Artificial neural networks could power up curation of natural history collections

Deep learning techniques manage to differentiate between similar plant families with up to 99 percent accuracy, Smithsonian researchers reveal

Millions, if not billions, of specimens reside in the world’s natural history collections, but most of these have not been carefully studied, or even looked at, in decades. While containing critical data for many scientific endeavors, most objects are quietly sitting in their own little cabinets of curiosity.

Thus, mass digitization of natural history collections has become a major goal at museums around the world. Having brought together numerous biologists, curators, volunteers and citizens scientists, such initiatives have already generated large datasets from these collections and provided unprecedented insight.

Now, a study, recently published in the open access Biodiversity Data Journal, suggests that the latest advances in both digitization and machine learning might together be able to assist museum curators in their efforts to care for and learn from this incredible global resource.

A team of researchers from the Smithsonian Department of BotanyData Science Lab, and Digitization Program Office recently collaborated with NVIDIA to carry out a pilot project using deep learning approaches to dig into digitized herbarium specimens.

Smithsonian researchers classifying digitized herbarium sheets.
Smithsonian researchers classifying digitized herbarium sheets.

Their study is among the first to describe the use of deep learning methods to enhance our understanding of digitized collection samples. It is also the first to demonstrate that a deep convolutional neural network–a computing system modelled after the neuron activity in animal brains that can basically learn on its own–can effectively differentiate between similar plants with an amazing accuracy of nearly 100%.

In the paper, the scientists describe two different neural networks that they trained to perform tasks on the digitized portion (currently 1.2 million specimens) of the United States National Herbarium.

The team first trained a net to automatically recognize herbarium sheets that had been stained with mercury crystals, since mercury was commonly used by some early collectors to protect the plant collections from insect damage. The second net was trained to discriminate between two families of plants that share a strikingly similar superficial appearance.

Sample herbarium specimen image of stained clubmoss
Sample herbarium specimen image of stained clubmoss.

The trained neural nets performed with 90% and 96% accuracy respectively (or 94% and 99% if the most challenging specimens were discarded), confirming that deep learning is a useful and important technology for the future analysis of digitized museum collections.

“The results can be leveraged both to improve curation and unlock new avenues of research,” conclude the scientists.

“This research paper is a wonderful proof of concept. We now know that we can apply machine learning to digitized natural history specimens to solve curatorial and identification problems. The future will be using these tools combined with large shared data sets to test fundamental hypotheses about the evolution and distribution of plants and animals,” says Dr. Laurence J. Dorr, Chair of the Smithsonian Department of Botany.

 

###

Original source:

Schuettpelz E, Frandsen P, Dikow R, Brown A, Orli S, Peters M, Metallo A, Funk V, Dorr L (2017) Applications of deep convolutional neural networks to digitized natural history collections. Biodiversity Data Journal 5: e21139. https://doi.org/10.3897/BDJ.5.e21139

The Western Ghats of India revealed two new primitive species of earthworm

The Western Ghats mountains lie at the southwestern continental margin of Peninsular India and extend all the way from Gujarat to Kerala. The massif has earned its place amongst the eight ‘hottest’ biodiversity hotspots in the world.

There is a great variety of vegetation types which, coupled with the high rainfall and the moderate yearly temperature in the Western Ghats, provide many different habitats. Therefore, the mountains an area rich in earthworm, as well as amphibian and reptile diversity.

The two new species, named Drawida polydiverticulata and Drawida thomasi, have been discovered in the Western Ghats mountain ranges in Kerala by scientists Dr. S. Prasanth Narayanan, Mr. S. Sathrumithra, Dr. G. Christopher, all affiliated with Mahatma Gandhi University and Dr. J.M. Julka of the Shoolini University, India. They belong to the primitive family Moniligastridae. The species are described in the open access journal ZooKeys.

The new earthworms are distinguished by a set of characters. For one of them – Drawida polydiverticulata – there were peculiar features which determined its species name (polydiverticulata). It turned out that its multiple lobes, also called diverticulums, an organ located in the front of its body, are unique amongst the members of the genus. This species was found to be widespread in the protected shola grasslands of the Munnar region, including Eravikulam National ParkPampadun Shola National Park and Chinnar Wildlife Sanctuary.

The second new earthworm, Drawida thomasi, was collected at the Kozhippara Waterfalls near Kakkadampoyil, at the border between Malappuram and Kozhikode. The species name (thomasi) is a tribute to Prof. (Dr.) A.P. Thomas, the Director of the Advanced Centre of Environmental Studies and Sustainable Development (ACESSD), Mahatma Gandhi University, “who initiated the taxonomical studies on the earthworms in Kerala after being at a standstill for almost a century.”

In addition to the new species, the scientists also report the occurrence of five species of the same genus that have not previously been recorded from the state.

To date, there are 73 species of the genus Drawida confirmed to be living in the Indian subcontinent. However, the greatest concentration (43 species) is found in the Western Ghats. The genus has an important centre of speciation in the southernmost state of Kerala.

Prior to this study, there had been sixteen Drawida species known from the state with ten of them being unique. The present discovery of two new species and five new local records further contributes to the vast species richness of the genus in the state.

At present, there are about 200 species known in the genus Drawida. Their habitats are spread across India throughout the Indochina region to southeastern Asia and up to the north in Japan.

###

Original source:

Narayanan SP, Sathrumithra S, Christopher G, Julka JM (2017) New species and new records of earthworms of the genus Drawida from Kerala part of the Western Ghats biodiversity hotspot, India (Oligochaeta, Moniligastridae). ZooKeys 691: 1-18. https://doi.org/10.3897/zookeys.691.13174

35 years of work: More than 1000 leaf-mining pygmy moths classified & catalogued

The leaf-mining pygmy moths (family Nepticulidae) and the white eyecap moths (family Opostegidae) are among the smallest moths in the world with a wingspan of just a few millimetres. Their caterpillars make characteristic patterns in leaves: leaf mines. For the first time, the evolutionary relationships of the more than 1000 species have been analysed on the basis of DNA, resulting in a new classification.

Today, a team of scientists, led by Dr Erik J. van Nieukerken and Dr. Camiel Doorenweerd, Naturalis Biodiversity Center, Leiden, The Netherlands, published three inter-linked scientific publications in the journal Systematic Entomology and the open access journal ZooKeys, together with two online databases, providing a catalogue with the names of all species involved.image-2

The evolutionary study, forming part of the PhD thesis of Doorenweerd, used DNA methods to show that the group is ancient and was already diverse in the early Cretaceous, ca. 100 million years ago, partly based on the occurrence of leaf mines in fossil leaves. The moths are all specialised on some species of flowering plants, also called angiosperms, and could therefore diversify when the angiosperms diversified and largely replaced ecologically other groups of plants in the Cretaceous. The study lead to the discovery of three new genera occurring in South and Central America, which are described in one of the two ZooKeys papers, stressing the peculiar character and vastly undescribed diversity of the Neotropic fauna.

Changing a classification requires a change in many species names, which prompted the authors to simultaneously publish a full catalogue of all 1072 valid species names that are known worldwide and the many synonymic names from the literature from the past 150 years.

Creating such a large and comprehensive overview became possible from the moths and leaf-mine collections of the world’s natural history museums, and culminates the past 35 years of research that van Nieukerken has spent on this group. However, a small, but not trivial, note in one of the publications indicates that we can expect at least another 1000 species of pygmy leafminer moths that are yet undiscovered.image-3

###

Original sources:

Doorenweerd C, Nieukerken EJ van, Hoare RJB (2016) Phylogeny, classification and divergence times of pygmy leafmining moths (Lepidoptera: Nepticulidae): the earliest lepidopteran radiation on Angiosperms? Systematic Entomology, Early View. doi: 10.1111/syen.1221.

Nieukerken EJ van, Doorenweerd C, Nishida K, Snyers C (2016) New taxa, including three new genera show uniqueness of Neotropical Nepticulidae (Lepidoptera). ZooKeys 628: 1-63. doi: 10.3897/zookeys.628.9805.

Nieukerken EJ van, Doorenweerd C, Hoare RJB, Davis DR (2016) Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera: Nepticuloidea). ZooKeys 628: 65-246. doi: 10.3897/zookeys.628.9799.

Nieukerken EJ van (ed) (2016) Nepticulidae and Opostegidae of the world, version 2.0. Scratchpads, biodiversity online.

Nieukerken EJ van (ed) (2016). Nepticuloidea: Nepticulidae and Opostegidae of the World (Oct 2016 version). In: Species 2000 & ITIS Catalogue of Life, 31st October 2016 (Roskov Y., Abucay L., Orrell T., Nicolson D., Flann C., Bailly N., Kirk P., Bourgoin T., DeWalt R.E., Decock W., De Wever A., eds). Digital resource at http://www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858. http://www.catalogueoflife.org/col/details/database/id/172

First find of its kind in more than 3 decades: The adorable Olinguito

Observed in the wild, tucked away in museum collections, and even exhibited in zoos around the world; there is one mysterious creature that has been a victim of mistaken identity for more than 100 years.

Observed in the wild, tucked away in museum collections, and even exhibited in zoos around the world; there is one mysterious creature that has been a victim of mistaken identity for more than 100 years.

A team of Smithsonian scientists, however, uncovered overlooked museum specimens of this remarkable animal, which took them on a journey from museum cabinets in Chicago to cloud forests in South America to genetics labs in Washington, D.C. The result: the olinguito (Bassaricyon neblina); the first carnivore species to be discovered in the Western Hemisphere in 35 years.

The team’s discovery is published in the Aug. 15 issue of the open-access scholarly journal ZooKeys.

The olinguito (oh-lin-GHEE-toe) looks like a cross between a house cat and a teddy bear. It is actually the latest scientifically documented member of the family Procyonidae, which it shares with raccoons, coatis, kinkajous and olingos. The 2-pound olinguito, with its large eyes and woolly orange-brown fur, is native to the cloud forests of Colombia and Ecuador, as its scientific name, “neblina” (Spanish for “fog”), hints.

In addition to being the latest described member of its family, another distinction the olinguito holds is that it is the newest species in the order Carnivora; an incredibly rare discovery in the 21st century.

“The discovery of the olinguito shows us that the world is not yet completely explored, its most basic secrets not yet revealed. If new carnivores can still be found, what other surprises await us? So many of the world’s species are not yet known to science. Documenting them is the first step toward understanding the full richness and diversity of life on Earth,”

said Kristofer Helgen, curator of mammals at the Smithsonian’s National Museum of Natural History and leader of the team reporting the new discovery.

Discovering a new species of carnivore, however, does not happen overnight. This one took a decade, and was not the project’s original goal; completing the first comprehensive study of olingos, several species of tree-living carnivores in the genus Bassaricyon, was.

Helgen’s team wanted to understand how many olingo species should be recognized and how these species are distributed; issues that had long been unclear to scientists. Unexpectedly, the team’s close examination of more than 95 percent of the world’s olingo specimens in museums, along with DNA testing and the review of historic field data, revealed existence of the olinguito, a previously undescribed species.

The first clue came to Helgen from the olinguito’s teeth and skull, which were smaller and differently shaped than those of olingos. Examining museum skins revealed that this new species was also smaller overall with a longer and denser coat; field records showed that it occurred in a unique area of the northern Andes Mountains at 5,000 to 9,000 feet above sea level; elevations much higher than the known species of olingo. This information, however, was coming from overlooked olinguito specimens collected in the early 20th century. The question Helgen and his team wanted to answer next was: Does the olinguito still exist in the wild?

To answer that question, Helgen called on Roland Kays, director of the Biodiversity and Earth Observation Lab at the North Carolina Museum of Natural Sciences, to help organize a field expedition.

The team had a lucky break that started with a camcorder video. With confirmation of the olinguito’s existence via a few seconds of grainy video shot by their colleague Miguel Pinto, a zoologist in Ecuador, Helgen and Kays set off on a three-week expedition to find the animal themselves. Working with Pinto, they found olinguitos in a forest on the western slopes of the Andes, and spent their days documenting what they could about the animal&;its characteristics and its forest home. Because the olinguito was new to science, it was imperative for the scientists to record every aspect of the animal. They learned that the olinguito is mostly active at night, is mainly a fruit eater, rarely comes out of the trees and has one baby at a time.

In addition to body features and behavior, the team made special note of the olinguito’s cloud forest Andean habitat, which is under heavy pressure of human development. The team estimated that 42 percent of historic olinguito habitat has already been converted to agriculture or urban areas.

“The cloud forests of the Andes are a world unto themselves, filled with many species found nowhere else, many of them threatened or endangered. We hope that the olinguito can serve as an ambassador species for the cloud forests of Ecuador and Colombia, to bring the world’s attention to these critical habitats,”

Helgen said.

***

Original Source:

Helgen KM, Pinto CM, Kays R, Helgen LE, Tsuchiya MTN, Quinn A, Wilson DE, Maldonado JE (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324: 1. doi: 10.3897/zookeys.324.5827

***

Follow the ZooKeys journal on Twitter and Facebook.