Psychedelic rock gecko among dozens of species in need of further conservation protection in Vietnam

Researchers recommend IUCN CPSG’s One Plan Approach to Conservation measures, which include both habitat conservation and increasing the number of threatened species in breeding stations and zoos. 

Endangered psychedelic rock gecko (Cnemaspis psychedelica)
Photo by Thomas Ziegler. Licence: CC-BY.

Further conservation measures are required to protect Vietnamese reptiles, such as the psychedelic rock gecko (Cnemaspis psychedelica), from habitat loss and overharvesting, concludes a new report, published in the open-access scientific journal Nature Conservation.

Having identified areas of high reptile diversity and large numbers of endangered species, the study provides a list of the 50 most threatened species as a guide for further research and conservation action in Vietnam. 

The study, based on the bachelor thesis of Lilli Stenger (University of Cologne, Germany), recommends IUCN CPSG’s One Plan Approach to Conservation measures, which, next to improved habitat conservation, also involves increasing the number of threatened species in breeding stations and zoos to maintain populations suitable for restocking. 

Co-authors of the report are Anke Große Hovest (University of Cologne, Germany), Truong Quang Nguyen (Vietnam Academy of Science and Technology), Cuong The Pham, (Vietnam Academy of Science and Technology), Anna Rauhaus (Cologne Zoo, Germany), Minh Duc Le (Vietnam National University), Dennis Rödder (Leibniz Institute for the Analysis of Biodiversity Change, Germany) and Thomas Ziegler (University of Cologne and Cologne Zoo, Germany).

“Modern zoos, as well as local facilities, can play a crucial role in not only conducting or financially supporting in situ conservation projects, that is to say in nature, but also by protecting species from extinction through maintaining ex situ assurance colonies to reinforce in situ conservation programs,”

said Prof. Dr. Thomas Ziegler, Vietnam conservation team member and coordinator from Cologne Zoo, Germany.
Endangered Truong Son pit viper or Quang Binh pit viper (Trimeresurus truongsonensis).
Photo by Thomas Ziegler. Licence: CC-BY.

The scientists identified 484 reptile species known to Vietnam, aiming to provide a baseline to authorities, conservationists, rescue centers, and zoos, so they can follow up with appropriate conservation measures for endangered species. They note that the number is likely to go up, as the country is regarded as a top biodiversity hotspot, and the rate of new reptile species discoveries remains high.

According to the IUCN Red List, 74 of the identified species are considered threatened with extinction, including 34 endemic species. For more than half of Vietnam’s endemic reptiles (85 of 159), the IUCN Red List status is either missing or outdated, and further research is imperative for these species, the researchers say.

Vietnam has a high level of reptile diversity and an outstanding number of endemic species. The species richness maps in the study revealed the Central Annamites in central Vietnam to harbor the highest endemic species diversity (32 species), which highlights it as a site of particular importance for reptile conservation. Alarmingly, a protected area analysis showed that 53 of the 159 endemic species (33.2%) including 17 threatened species, have been recorded exclusively from unprotected areas, such as the Psychedelic Rock Gecko.

The Critically Endangered Annam pond turtle (Mauremys annamensis) is one of the most endangered turtle species in Vietnam and in the world. It is not known from any protected area. Despite likely being extinct in the wild,  ex situ conservation programs have been implemented in time with a high number of individuals being kept and bred in zoos and stations and now ready for restocking actions.
Photo by Thomas Ziegler. Licence: CC-BY.

In General, Vietnam is considered a country with high conservation priority due to habitat loss and overharvesting for trade, traditional medicine and food.

Globally, reptiles are considered a group of special conservation con­cern, as they play an important role in almost all ecosystems and often have relatively small distri­bution ranges, making them especially vulnerable to human threats.

***

Original source:

Stenger L, Große Hovest A, Nguyen TQ, Pham CT, Rauhaus A, Le MD, Rödder D, Ziegler T (2023) Assessment of the threat status of reptile species from Vietnam – Implementation of the One Plan Approach to Conservation. Nature Conservation 53: 183 221. https://doi.org/10.3897/natureconservation.53.106923

***

Follow Nature Conservation on Facebook and Twitter.

Mapping our ecosystems: Pensoft joined the Horizon Europe project MAMBO

With expertise in science communication, dissemination and exploitation, Pensoft is involved in this project set to develop new technologies for monitoring species and their habitats across Europe

With expertise in science communication, dissemination and exploitation, Pensoft became part of this project dedicated to new technologies for species and habitat monitoring across Europe

Background 

The European Union puts a great value in monitoring the health of ecosystems, as comprehensive mapping can aid policy makers’ work in adopting appropriate legislation for nature conservation. It allows for understanding the impact of human activities and making informed decisions for effective management of nature’s resources. This is particularly important for the EU, as it has set ambitious goals to halt biodiversity loss and restore degraded ecosystems by 2030, as outlined in the EU Biodiversity Strategy for 2030

Effective biodiversity monitoring can help the EU track progress towards these goals, assess the effectiveness of conservation policies and initiatives, and identify emerging threats to biodiversity. 

Despite this awareness, efforts to monitor animals and plants remain spatially and temporally fragmented. This lack of integration regarding data and methods creates a gap in biodiversity monitoring, which can negatively impact policy-making. Today, modern technologies such as drones, artificial intelligence algorithms, or remote sensing are still not widely used in biodiversity monitoring. 

MAMBO project (Modern Approaches to the Monitoring of BiOdiversity) recognises this need and aims to develop, test, and implement enabling tools for monitoring conservation status and ecological requirements of species and habitats. Having started in late 2022, the project is set to run for four years until September 2026.

Pensoft – with its proven expertise in communicating scientific results – is committed to amplifying the impact of MAMBO. Pensoft supports the project through tailored approaches to communication, dissemination and exploitation so as to reach the most appropriate target audience and achieve maximum visibility of the project.

Deep-dive into the project

In order to enrich the biodiversity monitoring landscape, MAMBO will implement a multi-disciplinary approach by utilising the technical expertise in the fields of computer science, remote sensing, and social science expertise on human-technology interactions, environmental economy, and citizen science. This will be combined with knowledge on species, ecology, and conservation biology. 

More specifically, the project will develop, evaluate and integrate image and sound recognition-based AI solutions for EU biodiversity monitoring from species to habitats as well as promote the standardised calculation and automated retrieval of habitat data using deep learning and remote sensing.

“Classification algorithms have matured to an extent where it is possible to identify organisms automatically from digital data, such as images or sound,”

comments project coordinator Prof. Toke T. Høye, Aarhus University

“Technical breakthroughs in the realm of high spatial resolution remote sensing set the future of ecological monitoring and can greatly enrich traditional approaches to biodiversity monitoring.” 

In order to achieve its goals, the project will test existing tools in combination with MAMBO-developed new technologies at the project’s demonstration sites geographically spread across Europe. This will contribute to an integrated European biodiversity monitoring system with potential for dynamic adaptations.

Pensoft is part of MAMBO’s Work Package 7 (WP7): “Science-policy interface and dissemination”, led by Helmholtz Centre for Environmental Research (UFZ). The work package is dedicated to providing a distinct identity of the project and its services through branding, visualisation and elaborated dissemination and communication strategy.

Within WP7, Pensoft will also be taking care after the launch of an open-science collection of research outputs in the scholarly journal Research Ideas and Outcomes (RIO). 

Amongst the tasks of the partners in WP7 is also the development of different pathways for integrating new technologies and innovations into the EU Pollinators Monitoring Scheme (EU PoMS; SPRING). 


Full list of partners
  1. Aarhus University (AU)
  2. Naturalis Biodiversity Centre (Naturalis)
  3. Helmholtz Centre for Environmental Research (UFZ)
  4. National Institute for Research in Digital Science and Technology (INRIA)
  5. University of Amsterdam (UvA)
  6. The French Agricultural Research Centre for International Development (CIRAD)
  7. Pensoft Publishers (Pensoft)
  8. Ecostack Innovations Limited (EcoINN)
  9. University of Reading (UREAD)
  10. UK Centre For Ecology & Hydrology (UKCEH) 

You can find more about the project on the MAMBO website: mambo-project.eu. Stay up to date with the project’s progress on Twitter (@MAMBO_EU) and Linkedin (/MAMBO Project).

Citizen science data crucial to understand wildlife roadkill

In a first for science, researchers set out to analyze over 10 years of roadkill records in Flanders, Belgium, using data provided by citizen scientists.

The road is a dangerous place for animals: they can easily get run over, which can seriously affect wildlife diversity and populations in the long term. There is also a human economic cost and possible injury or even death in these accidents, while crashing into heavier animals or trying to avoid them on the road.

Making roads safer for both animals and people starts with a simple first step: understanding when, where, and how many animals get run over. This knowledge can help protect specific species, for example by using warning signs, preventing access to the roads for animals, creating overpasses and underpasses, or closing roads. Wildlife roadkill data can also help monitor other trends, such as population dynamics, species distribution, and animal behavior.

Thanks to citizen science platforms, obtaining this kind of data is no longer a task reserved for scientists. There are now dozens of free, easy-to-use online systems, where anyone can record wildlife collision accidents or roadkill, contributing to a fuller picture that might later be used to inform policy measures.

One such project is the Flemish Animals under wheels, where users can register the roadkill they saw, adding date, time and geolocation online or by using the apps. The data is stored in the online biodiversity database Waarnemingen.be, the Flemish version of the international platform Observation.org

Between 2008 and 2020, the project collected almost 90,000 roadkill records from Flanders, Belgium, registered by over 4,000 citizen scientists. Roadkill recording is just a small part of their nature recording activities – the multi-purpose platform which also allows the registration of living organisms. This is probably why the volunteers have remained engaged with the project for over 6 years now.

In a first for science, researchers from Natuurpunt Studie, the scientific institute linked to the largest Nature NGO in Flanders, with support from the Department of Environmental and Spatial Development, set out to analyze over 10 years of roadkill records in the region, using data provided by citizen scientists. In their study, published in the peer-reviewed journal Nature Conservation, they focused on 17 key species of mammals and their fate on the roads of Flanders. 

The researchers analyzed data on 145,000 km of transects monitored, which resulted in records of 1,726 mammal and 2,041 bird victims. However, the majority of the data – over 60,000 bird and mammal roadkill records – were collected opportunistically, where opportunistic data sampling favors larger or more “enigmatic” species. Hedgehogs, red foxes and red squirrels were the most frequently registered mammal roadkill victims.  

In the last decade, roadkill incidents in Flanders have diminished, the study found, even though search effort increased. This might be the result of effective road collision mitigation, such as fencing, crossing structures, or animal detection systems. On the other hand, it could be a sign of declining populations among those animals that are most prone to being killed by vehicles. More research is needed to understand the exact reason. Over the last 11 years, roadkill records of the European polecat showed a significant relative decrease, while seven species, including the roe deer and wild boar, show a relative increase in recorded incidents.

There seems to be a clear influence of the COVID-19 pandemic on roadkill patterns for some species. Restrictions in movement that followed likely led simultaneously to fewer casualties and a decrease in the search effort. 

The number of new observations submitted to Waarnemingen.be continues to increase year after year, with data for 2021 pointing to about 9 million. Even so, the scientists warn that those recorded observations “are only the tip of the iceberg.”

 “Citizen scientists are a very valuable asset in investigating wildlife roadkill. Without your contributions, roadkill in Flanders would be a black box,”

the researchers conclude.

***

Research paper:

Swinnen KRR, Jacobs A, Claus K, Ruyts S, Vercayie D, Lambrechts J, Herremans M (2022) ‘Animals under wheels’: Wildlife roadkill data collection by citizen scientists as a part of their nature recording activities. In: Santos S, Grilo C, Shilling F, Bhardwaj M, Papp CR (Eds) Linear Infrastructure Networks with Ecological Solutions. Nature Conservation 47: 121-153. https://doi.org/10.3897/natureconservation.47.72970

***

The research article is part of the Special Issue: “Linear Infrastructure Networks with Ecological Solutions“, which collates 15 research papers reporting on studies presented at the IENE2020 conference.

***

Follow Nature Conservation on Twitter and Facebook.

Nature Conservation opens “Restoration of Wetlands” collection

The permanent topical article collection aims to bring together key insights into restoration of wetlands and coastal marine systems, thereby facilitating exchange among different disciplines.

The “Restoration of Wetlands” permanent topical article collection in the open-access, peer-reviewed scholarly journal Nature Conservation is now open for submissions, with the aim to bring together a wide spectrum of knowledge necessary to inform scientists, policy-makers and practitioners about key insights into restoration of wetlands and coastal marine systems, thereby facilitating exchange among different disciplines.

Being a permanent collection means that it is to welcome contributions indefinitely, whereas papers will progress to publication as soon as they are accepted by the editors. While they will be accessible from a central point: the collection, which is also assigned with its own DOI, the articles themselves will feature in different journal volumes, depending on their publication date.

Find more about the specificity of Special issues and Topical collections on the journal’s website.

The issue is managed by an international team of scientists:

“Worldwide, the loss of biodiversity in wetlands, like rivers and their floodplains and peatland but also in deltas and estuaries is dramatic,”

the guest editors explain.
Photo by Mathias Scholz.

Due to intensive land-use, including farming, urbanisation, drainage, construction of levees or bank stabilisation or straightening of river courses and coastlines, wetlands are losing their typical functions, such as carbon storage and habitat provision. As a result, the ecosystem services they provide are declining and so is the coastal biodiversity as a whole.

However, various restoration measures have been carried out to revitalise wetlands over the last decades, on a global scale. Some of those have already proved successful, while others are still on their way to improve wetland biodiversity and related ecosystem functions and services. For all these efforts, the end goal is to implement international biodiversity actions and policies for adaptation and mitigation of climate change.

Among others, the “Restoration of Wetlands” article collection in the Nature Conservation journal seeks to attract contributions addressing issues, such as the roles of society and planning, as well as biology in restoration; indicators to monitor and measure restoration success; the synergies between wetland restoration and climate change adaptation; and hands-on expertise in restoration.

***

Find more about the “Restoration of Wetlands” collection on the Nature Conservation’s journal website. 

Follow Nature Conservation on Twitter and Facebook.

Failure to respond to a coral disease epizootic in Florida: causes and consequences

By 2020, losses of corals have been observed throughout Florida and into the greater Caribbean basin in what turned out to be likely the most lethal recorded case of Stony Coral Tissue Loss Disease. A Perspectives paper, published in the open-access peer-reviewed journal Rethinking Ecology, provides an overview of how Florida ended up in a situation, where the best that could be done is rescuing genetic material from coral species at risk of regional extinction.

Guest blog post by William F. Precht

A colony of the large grooved brain coral, Colpophyllia natans, infected by Stony Coral Tissue Loss Disease. The photo shows the progressive, rapid advance of disease, left-to-right, across the colony.
Image by William Precht.

Dredging projects conducted in association with coral reefs typically generate concern by environmental groups, resulting in careful monitoring by government agencies. Even though the aim of those dredge projects is to widen or deepen existing ship channels, while minimizing damage to coral reef resources, there are often the intuitive negative assumptions that dredging kills corals.

The recent Port Miami Dredge Project started as an uncomplicated case story. However, significant problems arose, caused by a concurrent and unprecedented coral disease epidemic that killed large numbers of corals, which was initiated following a regional thermal anomaly and coral bleaching event.

The coral disease, known as Stony Coral Tissue Loss Disease (SCTLD), was first observed in September 2014 near Virginia Key, Florida. In roughly six years, the disease has spread throughout Florida and into the greater Caribbean basin. The high prevalence of SCTLD and the resulting high mortality in coral populations, coupled with the large number of susceptible species affected, suggest that this disease outbreak is one of the most lethal ever recorded on contemporary coral reefs. The disease is still presently active and continues to ravage coral reefs throughout the region.

The initial response to this catastrophic disease by resource managers with purview over the ecosystem in Southeast Florida was slow. There is generally a noticeably short window of opportunity to intervene in disease amelioration or eradication in the marine environment. This slow response enabled the disease to spread unchecked. Why was the response to the loss of our coral reefs to a coral disease epidemic such a massive failure? This includes our failure as scientists, regulators, resource managers, local media, and policy makers alike. With this Perspectives paper, published in Rethinking Ecology, my intention was to encapsulate the numerous reasons for our failures during the first few years of the outbreak, reminiscent of the early failures in the U.S. response to the COVID-19 pandemic.

First, the Port Miami dredging project was ongoing when the coral disease epidemic began. Some managers and local environmental groups blamed dredging, rather than SCTLD for the coral losses, reported in the project’s compliance monitoring program. Second, this blame was amplified in the media, because dredging projects are intuitively assumed to be bad for coral reefs. Third, during this same time, the State of Florida prohibited government employees from acknowledging global warming in their work. This was problematic because ocean warming is a proximal cause of many coral diseases.

As a result, some managers ignored the well-known links between warming and coral disease. A consequence of this policy was that the dredging project provided an easy target to blame for the coral mortality noted in the monitoring program, despite convincing data that suggested otherwise. 

Specifically, the intensive compliance monitoring program, conducted by trained scientific divers, was statistically significant. SCTLD that was killing massive numbers of corals throughout the region was also killing corals at the dredge site. Further, this was happening in the same proportions and among the same suite of species. 

Finally, when the agencies responded to the outbreak, their efforts were too little and much too late to make a meaningful difference. While eradication of the disease was never a possibility, early control measures may have slowed its spread, or allowed for the rescue of significant numbers of large colonies of iconic species. Because of the languid management response to this outbreak, we are now sadly faced with a situation where much of our management efforts are focused on the rescue of genetic material from coral species already at risk of regional extinction.

The delayed response to this SCTLD outbreak in Southeast Florida has many similarities to the COVID-19 pandemic response in the United States and there are lessons learned from both that will improve disease response outcomes in the future, to the benefit of coral reefs and human populations.

Publication:

Precht W (2021) Failure to respond to a coral disease epizootic in Florida: causes and consequences. Rethinking Ecology 6: 1-47. https://doi.org/10.3897/rethinkingecology.6.56285

Guest Blog Post: New Area of Importance for Bat Conservation in Honduras

The recognition of the “Ceguaca, la Mujer de los Juncos” locality comes as a result of research work – published last year in Subterranean Biology – which produced the first checklist of bats for Santa Bárbara


Guest blog post by Eduardo Javier Ordoñez-Trejo and Manfredo Alejandro Turcios-Casco


Bat populations are threatened due to fragmentation and loss of their habitats. Meanwhile, dry forests are some of the least studied and most threatened ecosystems in Honduras, and similarly, so have been the caves.

We had to walk at least two hours to reach either of the caves in El Peñon or Quita Sueño, so we would take our full equipment: for camping, cooking and studying bats.
Photo by Hefer Ávila

Caves are important reservoirs of species, as they offer perks no other habitat can provide at once: a refuge from predators, inconstant weather, and a critical venue for social interactions, reproduction, hibernation, roosting and nutrients. In order to protect bat populations, the Latin American and Caribbean Web for Bat Conservation (RELCOM) supports the establishment of Areas of Importance for the Conservation of Bats, abbreviated as AICOMS (Spanish for Areas with Importance for the Conservation of Bats) .

It was at least a two-hour walk between the caves of Monte Grueso and the caves of El Peñon. The final stint, though, included a swim across Rio Ulúa, one of most extensive rivers in Honduras.
Photo by Hefer Ávila

Together with biologists of the National Autonomous University of Honduras (UNAH) and local community members, we provided the first ever checklist of bat species in the Dry Forest of Ceguaca, Santa Barbara (Honduras), and described the importance of two caves in the area for bat conservation based on species richness. We published this study last June in Subterranean Biology.

The study is openly accessible in Subterranean Biology

We found that caves in Ceguaca are inhabited by at least 23 bat species of four families, which represents approximately a fifth of all species known from Honduras. Their inhabitants include several threatened species like the hairy-legged vampire bat (Diphylla ecaudata), one of the three existing vampire bats, and rare species with few official records in the area, such as Schmidts’s big-eared bat (Micronycteris schmidtorum). These caves may also represent a critical site for roosting and nursing. During our study, we managed to record pregnant and lactating females of several species, as well as reproductive males.

The certificate issued by RELCOM recognising the caves in Ceguaca as an Area of Importance for the Conservation of Bats, dated 6th March 2020

“It feels wonderful to see that our work has had great results and that with our efforts, we established an area where bats will be protected and studied. This certification also includes the name of Roberto Castellano, an elder member of the community of Ceguaca, who helped us during the fieldwork as our guide. He was a great conservationist of this area and protector of the caves. Unfortunately, he passed away during the study, however, due to his enormous contribution, we dedicated our article to him and included him as part of this AICOM success.”

José Alejandro Soler Orellana, co-author of the study.

Using what we learned in Ceguaca’s caves, we approached the Program for Bat Conservation of Honduras (PCMH) and showed them the evidence the locality was indeed a precious place with a spectacular bat diversity. Consequently, thanks to our collaboration with the PCMH, the site was effectively declared as an Area of Importance for the Conservation of Bats by RELCOM on 6th March 2020. 

This is an enormous step for bat conservation in the country. Bat conservation efforts should focus on studying and protecting these and other important habitats. We also need to make sure that local people appreciate the important role the bats play in the ecosystem.

A close up of a spider

Description automatically generated
We captured this adult Pallas’s long-tongued bat (Glossophaga soricina) female in a cave in Monte Grueso. She must have been returning to the cave after spending the day pollinating local plants. During these surveys, we found trees with opened flowers of Mexican calabash (Crescentia alata).
Photo by Hefer Ávila

***

Research article:

Turcios-Casco MA, Mazier DIO, Orellana JAS, Ávila-Palma HD, Trejo EJO (2019) Two caves in western Honduras are important for bat conservation: first checklist of bats in Santa Bárbara. Subterranean Biology 30: 41–55. https://doi.org/10.3897/subtbiol.30.35420

Tiger geckos in Vietnam could be the next species sold into extinction, shows a new survey

The endemic reptiles are already proposed to be listed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora

While proper information about the conservation status of tiger gecko species is largely missing, these Asian lizards are already particularly vulnerable to extinction, as most of them have extremely restricted distribution. Furthermore, they have been facing severe declines over the last two decades, mostly due to overcollection for the international exotic pet market. Such is the case of the Cat Ba Tiger Gecko, whose tiny populations can only be found on Cat Ba Island and a few islands in the Ha Long Bay (Vietnam).

In their study, a Vietnamese-German research team, led by PhD candidate Hai Ngoc Ngo of the Vietnam National Museum of Nature in Hanoi, provide an overview of the evidence for domestic and international trade in tiger gecko species and update the information about the abundance and threats impacting the subpopulations of the Vietnamese Cat Ba Tiger Gecko in Ha Long Bay.

By presenting both direct and online observations, interviews and existing knowledge, the scientists point out that strict conservation measures and regulations are urgently needed for the protection and monitoring of all tiger geckos. The research article is published in the open-access journal Nature Conservation.

Cat Ba tiger gecko (Goniurosaurus catbaensis) in its natural habitat. Photo by Hai Ngoc Ngo.

Tiger geckos are a genus (Goniurosaurus) of 19 species native to Vietnam, China and Japan. Many of them can only be found within a single locality, mountain range or archipelago. They live in small, disjunct populations, where the population from Ha Long Bay is estimated at about 120 individuals. Due to demands in the international pet trade in the last two decades, as well as habitat destruction, some species are already considered extinct at the localities where they had originally been discovered.

However, it was not until very recently that some species of these geckos received attention from the regulatory institutions in their home countries, leading to the prohibition of their collection without a permit. Only eight tiger geckos have so far had their species conservation status assessed for the IUCN Red List. Not surprisingly, all of them were classified as either Vulnerable, Endangered or Critically Endangered. Nevertheless, none is currently listed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), which could be the only efficient and reliable method to monitor, regulate and police the trade of the species on a global scale.

“Tiger geckos are neither sufficiently protected by law nor part of conservation programmes, due to the lack of substantial knowledge on the species conservation status and probably due to the general lack of public as well as political interest in biodiversity conservation,” they explain. “To date, exact impacts of trade on the species cannot be identified, as data of legal trade are only recorded for species listed in the CITES Appendices”.

During their survey, the researchers tracked local traders in possession of wild-caught tiger geckos representing all five Vietnamese species en route to foreign exotic pet markets, mainly in the United States, the European Union and Japan. The species were also frequently found to be sold in local pet shops in Vietnam, as well as being offered via various online platforms and social media networks like Facebook.

Having spoken to local dealers in Vietnam, the team found the animals were traded via long and complex chains, beginning from local villagers living within the species’ distribution range, who catch the geckos and sell them to dealers for as little as US$4 – 5 per individual. Then, a lizard either ends up at a local shop with a US$7 – 25 price tag or is either transported by boat or by train to Thailand or Indonesia, from where it is flown to the major overseas markets and sold for anywhere between US$100 and 2,000, depending on its rarity. However, many of these delicate wild animals do not arrive alive at their final destination, as their travels include lengthy trips in overfilled boxes under poor conditions with no food and water.

Indeed, although the researchers reported a large quantity of tiger geckos labelled as captive-bred in Europe, it turns out that their availability is far from enough to meet the current demands.

In conclusion, the team provides a list of several recommendations intended to improve the conservation of the Asian geckos: (1) inclusion of all tiger geckos in the Appendices of CITES; (2) assessment of each species for the IUCN Red List; (3) concealment of any currently unknown localities; and (4) improvement/establishment of coordinated ex-situ breeding programmes for all species.

Signboard handed over to the Ha Long Bay Management Department to point to the threats and conservation need of the Cat Ba tiger gecko in English and Vietnamese languages.

The inclusion of all tiger gecko species from China and Vietnam in CITES Appendix II was recently proposed jointly by the European Union, China and Vietnam and is to be decided upon at the Conference of the parties (CoP18) in May-June 2019, held in Sri Lanka.

###

Original source:

Ngo HN, Nguyen TQ, Phan TQ, van Schingen M, Ziegler T (2019) A case study on trade in threatened Tiger Geckos (Goniurosaurus) in Vietnam including updated information on the abundance of the Endangered G. catbaensisNature Conservation 33: 1-19. https://doi.org/10.3897/natureconservation.32.33590

‘Insectageddon’ is ‘alarmist by bad design’: Scientists point out the study’s major flaws

Many insects species require pristine environments, including old-growth forests. Photo by Atte Komonen.

Earlier this year, a research article triggered a media frenzy by predicting that as a result of an ongoing rapid decline, nearly half of the world’s insects will be no more pretty soon

Amidst worldwide publicity and talks about ‘Insectageddon’: the extinction of 40% of the world’s insects, as estimated in a recent scientific reviewa critical response was published in the open-access journal Rethinking Ecology.

Query- and geographically-biased summaries; mismatch between objectives and cited literature; and misuse of existing conservation data have all been identified in the alarming study, according to Drs Atte Komonen, Panu Halme and Janne Kotiaho of the University of Jyväskylä (Finland). Despite the claims of the review paper’s authors that their work serves as a wake-up call for the wider community, the Finnish team explain that it could rather compromise the credibility of conservation science.

The first problem about the paper, titled “Worldwide decline of the entomofauna: A review of its drivers” and published in the journal Biological Conservation, is that its authors have queried the Web of Science database specifically using the keywords “insect”, “decline” and “survey”.

“If you search for declines, you will find declines. We are not questioning the conclusion that insects are declining,” Komonen and his team point out, “but we do question the rate and extent of declines.”

Many butterflies have declined globally. Scolitantides orion, for example, is an endangered species in Finland. Photo by Atte Komonen.

The Finnish research team also note that there are mismatches between methods and literature, and misuse of IUCN Red List categories. The review is criticised for grouping together species, whose conservation status according to the International Union for Conservation of Nature (IUCN) is Data Deficient with those deemed Vulnerable. By definition, there are no data for Data Deficient species to assess their declines.

In addition, the review paper is seen to use “unusually forceful terms for a peer-reviewed scientific paper,” as the Finnish researchers quote a recent news story published in The Guardian. Having given the words dramatic, compelling, extensive, shocking, drastic, dreadful, devastating as examples, they add that that such strong intensifiers “should not be acceptable” in research articles.

“As actively popularising conservation scientists, we are concerned that such development is eroding the importance of the biodiversity crisis, making the work of conservationists harder, and undermining the credibility of conservation science,” the researchers explain the motivation behind their response.

###

Original source:

Komonen A, Halme P, Kotiaho JS (2019) Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology 4: 17-19. https://doi.org/10.3897/rethinkingecology.4.34440

Extraordinary treefrog discovered in the Andes of Ecuador

An adult of the newly described species, Hyloscirtus hillisi. Photo by Gustavo Pazmiño, BIOWEB Ecuador.

A new treefrog species was discovered during a two-week expedition to a remote tabletop mountain at Cordillera del Cóndor, a largely unexplored range in the eastern Andes.

“To reach the tabletop, we walked two days along a steep terrain. Then, between sweat and exhaustion, we arrived to the tabletop where we found a dwarf forest. The rivers had blackwater and the frogs were sitting along them, on branches of brown shrubs similar in color to the frogs’ own. The frogs were difficult to find, because they blended with their background,” Alex Achig, one of the field biologists who discovered the new species comments on the hardships of the expedition.

Curiously, the frog has an extraordinary, enlarged claw-like structure located at the base of the thumb. Its function is unknown, but it could be that it is used either as a defence against predators or as a weapon in fights between competing males.

Having conducted analyses of genetic and morphologic data, scientists Santiago R. Ron, Marcel Caminer, Andrea Varela, and Diego Almeida from the Catholic University of Ecuador concluded that the frog represented a previously unknown species. It was recently described in the open-access journal ZooKeys.

Unlike other frogs, the new species has a claw at the base of the thumb. Photo by Gustavo Pazmiño, BIOWEB Ecuador.

The species name, Hyloscirtus hillisi, honors Dr. David Hillis, a member of the National Academy of Sciences of the United States of America, who discovered three closely related frog species in the same genus in the 1980s, while conducting a series of field trips to the Andes of southern Ecuador. Throughout his career, Dr. Hillis has made significant contributions to the knowledge of Andean amphibians and reptiles.

Despite being newly described, Hyloscirtus hillisi is already at risk of extinction. It has a small distribution range near a large-scale mining operation carried out by a Chinese company. Habitat destruction in the region has been recently documented by the NGO Amazon Conservation.

###

Original source:

Ron SR, Caminer MA, Varela-Jaramillo A, Almeida-Reinoso D (2018) A new treefrog from Cordillera del Cóndor with comments on the biogeographic affinity between Cordillera del Cóndor and the Guianan Tepuis (Anura, Hylidae, Hyloscirtus). ZooKeys 809: 97-124. https://doi.org/10.3897/zookeys.809.25207

A metamorph of the new species, Hyloscirtus hillisi. Photo by Darwin Núñez, BIOWEB Ecuador.