New family of fungi threatens a UNESCO-listed 8-century-old cathedral in Portugal

The Old Cathedral of Coimbra [right], the Santa Maria chapel [left, top] and the artwork from which the scientists retrieved the studied fungi [left, bottom]. Photo by Miguel Mesquita.
To be listed as UNESCO World Heritage requires special care and protection of valuable cultural monuments and pieces of Art from threats such as biodeterioration caused by microcolonial black fungi. The culprits lodge their branch-like structures (hyphae) deep into the stone forming fissures and cracks and also produce polysaccharides that trigger corrosion.

These fungi are well known for their unique resistance to hostile environmental conditions, including extreme temperatures, high solar and UV radiation, severe droughts and low abundance of nutrients. As a result, they survive in hot and cold deserts, saltpans, acidic and hydrocarbon-contaminated sites and exposed rocks surfaces. All of this makes them a particular challenge to conservationists and biologists who care for historic monuments.

During a multi-disciplinary scientific survey at the 8-century-old cathedral Sé Velha de Coimbra (Old Cathedral of Coimbra), which is the only Romanesque cathedral in Portugal to have survived relatively intact since the Reconquista times, scientists retrieved a peculiar slow-growing microcolonial black fungus.

What João Trovão of the University of Coimbra (Portugal) and his colleagues were looking at turned out to be a species of a whole new family (Aeminiaceae) in the order of the sooty mould fungi. The new species, its new genus and the novel family are described in the open-access journal MycoKeys.

This is a colony of the newly described black fungus species Aeminium ludgeri. Photo by João Trovão.

To define the new group of fungi, the researchers first scraped off samples from a deteriorated limestone artwork in the “Santa Maria” chapel and then conducted an extensive and integrative analysis, based on morphological, physiological, ecological characters and DNA sequences.

As for the origin of the previously unknown fungus, the scientists hypothesise that the species had ‘arrived’ at the Old Cathedral of Coimbra with the limestone used during its construction. Coming from the unique nearby areas of Ançã and Portunhos, such limestone has been used on several of the “Our Ladies of the O” statues, as well as in the portal of the Royal Hospital in Santiago de Compostela (Spain). Currently, these fungi are considered endemic to the limestone quarries in the Iberian Peninsula.

“Regarding stone monuments exposed to the environment, microcolonial black fungi are considered one of the main culprits for the phenomenon of stone biodeterioration, being responsible for severe aesthetic, biochemical and biophysical alterations,” comment the scientists.

“It is, therefore, crucial to gather deeper knowledge regarding their biodiversity and their biological, ecological and physiological unique characteristics, in order to span our knowledge regarding these fungi and, at the same time, allow the development and improvement of tools to protect stone monuments from their deteriorative effects.”

###

Original source:

Trovão J, Tiago I, Soares F, Paiva DS, Mesquita N, Coelho C, Catarino L, Gil F, Portugal A (2019) Description of Aeminiaceae fam. nov., Aeminium gen. nov. and Aeminium ludgeri sp. nov. (Capnodiales), isolated from a biodeteriorated art-piece in the Old Cathedral of Coimbra, Portugal. MycoKeys 45: 57-73. https://doi.org/10.3897/mycokeys.45.31799

The first case of a Portuguese beetle living exclusively in groundwater

New to science, the species was named after Pluto, the ruler of the underworld in Greek mythology

A diving beetle demonstrating various adaptations to the life underground, including depigmentation and evolutionary loss of eyes, was discovered at the bottom of a clay pound in the cave Soprador do Carvalho, Portugal. The species turned out to be the very first in the whole order of beetles (Coleoptera) to be known exclusively from the underground waters of the country.

The Soprador do Carvalho cave (Portugal) is the type locality of the newly described species Iberoporus pluto. Photo by Ignacio Ribera.

Despite not being able to find any other specimens during their study – save for the single female, the team of Dr Ignacio Ribera, Institute of Evolutionary Biology (Spain) and Prof Ana Sofia P. S. Reboleira, University of Copenhagen (Denmark) identified the beetle as new to science, thanks to its unambiguous morphology in combination with molecular data.

Profile view of the newly described species Iberoporus pluto. Photo by Ignacio Ribera.

Aptly named Iberoporus pluto in reference to the ruler of the underworld in Greek mythology Pluto, the species was recently described in the open-access journal ZooKeys.

With a uniformly pale orange body measuring 2.8 mm in length and 1.1 mm in its widest part, the beetle is larger than the rest species known in its genus, and its appendages are longer and more slender. While blindness and depigmentation are clear adaptation to life away from sunlight, the elongated limbs and antennae reflect poor swimming abilities needed in a subterranean habitat. Going for 4 km in horizontal direction, Soprador do Carvalho is the largest in the Dueça cave system, located in the north-eastern part of the Sicó karst area in central Portugal. In recent years, the cave is being explored for tourism.

“The knowledge of the subterranean fauna from Portugal has significantly increased over the last decade, with the description of a high number of obligate subterranean species (tripling their number) and the establishment of new biogeographic patterns,” explain the authors of the study. “A high number of these species are stygobiont (i.e. confined to groundwater), mostly from wells in the north of the country, where evapotranspiration is higher.”

###

Original source:

Ribera I, Reboleira ASPS (2019) The first stygobiont species of Coleoptera from Portugal, with a molecular phylogeny of the Siettitia group of genera (Dytiscidae, Hydroporinae, Hydroporini, Siettitiina). ZooKeys 813: 21-38. https://doi.org/10.3897/zookeys.813.29765

Austrian-Danish research team discover as many as 22 new moth species from across Europe

The last time so many previously unknown moths have been discovered at once in the best-studied continent was in 1887

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

Following a long-year study of the family of twirler moths, an Austrian-Danish research team discovered a startling total of 44 new species, including as many as 22 species inhabiting various regions throughout Europe.

Given that the Old Continent is the most thoroughly researched one, their findings, published in the open access journal ZooKeys, pose fundamental questions about our knowledge of biodiversity. Such wealth of new to science European moths has not been published within a single research article since 1887.

“The scale of newly discovered moths in one of the Earth’s most studied regions is both sensational and completely unexpected,” say authors Dr Peter Huemer, Tyrolean State Museum, and Ole Karsholt of the University of Copenhagen‘s Zoological Museum. To them, the new species come as proof that, “despite dramatic declines in many insect populations, our fundamental investigations into species diversity are still far from complete”.

 

The challenge of taxonomy

Type locality of the new moth species Megacraspedus faunierensis, Cottian Alps, Italy.

For the authors, it all began when they spotted what seemed like an unclassifiable species of twirler moth in the South Tyrolean Alps. In order to confirm it as a new species, the team conducted a 5-year study into the type specimens of all related species spread across the museum collections of Paris, London, Budapest and many in between.

To confirm the status of all new species, the scientists did not only look for characteristic colouration, markings and anatomical features, but also used the latest DNA methods to create unique genetic fingerprints for most of the species in the form of DNA barcodes.

 

What’s in a name?

A particular challenge for the researchers was to choose as many as 44 names for the new species. Eventually, they named one of the species after the daughter of one of the authors, others – after colleagues and many others – after the regions associated with the particular species. Megacraspedus teriolensis, for example, is translated to “Tyrolean twirler moth”.

Amongst the others, there is one which the scientists named Megacraspedus feminensisbecause they could only find the female, while another – Megacraspedus pacificus, discovered in Afghanistan – was dubbed “an ambassador of peace”.

 

Mysterious large twirler moths

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

All new moths belong to the genus of the large twirler moths (Megacraspedus) placed in the family of twirler moths (Gelechiidae), where the common name refers to their protruding modified mouthparts (labial palps).

The genus of the large twirler moths presents an especially interesting group because of their relatively short wings, where their wingspan ranges between 8 and 26 millimetres and the females are often flightless. While it remains unknown why exactly their wings are so reduced, the scientists assume that it is most likely an adaptation to the turbulent winds at their high-elevation habitats, since the species prefer mountain areas at up to 3,000 metres above sea level.

Out of the 85 documented species, however, both sexes are known in only 35 cases.

The scientists suspect that many of the flightless females are hard to spot on the ground. Similarly, caterpillars of only three species have been observed to date.

While one of the few things we currently know about the large twirler moths is that all species live on different grasses, Huemer and Karsholt believe that it is of urgent importance to conduct further research into the biology of these insects, in order to identify their conservation status and take adequate measures towards their preservation.

###

Original source:

Huemer P, Karsholt O (2018) Revision of the genus Megacraspedus Zeller, 1839, a challenging taxonomic tightrope of species delimitation (Lepidoptera, Gelechiidae). ZooKeys 800: 1-278. https://doi.org/10.3897/zookeys.800.26292

Advanced computer technology & software turn species identification interactive

Important group of biocontrol wasps from Central Europe are used to demonstrate the perks and advantages of modern, free-to-use software

Representing a group of successful biocontrol agents for various pest fruit flies, a parasitic wasp genus remains largely overlooked. While its most recent identification key dates back to 1969, many new species have been added since then. As if to make matters worse, this group of visually identical species most likely contains many species yet to be described as new to science.

Having recently studied a species group of these wasps in Central Europe, scientists Fabian Klimmek and Hannes Baur of the Natural History Museum Bern, Switzerland, not only demonstrate the need for a knowledge update, but also showcase the advantages of modern taxonomic software able to analyse large amounts of descriptive and quantitative data.

Published in the open access Biodiversity Data Journal, the team’s taxonomic paper describes a new species – Pteromalus capito – and presents a discussion on the free-to-use Xper3, developed by the Laboratory of Informatics and Systematics of Pierre-and-Marie-Curie University. The software was used to create an openly available updated key for the species group Pteromalus albipennis.

The fully illustrated interactive database covers 27 species in the group and 18 related species, in addition to a complete diagnosis, a large set of body measurements and a total of 585 images, displaying most of the characteristic features for each species.

“Nowadays, advanced computer technology, measurement procedures and equipment allow more sophisticated ways to include quantitative characters, which greatly enhance the delimitation of cryptic species,” explain the scientists.

“Recently developed software for the creation of biological identification keys like Xper3, Lucid or Delta could have the potential to replace traditional paper-based keys.”

To put the statement into context, the authors give an example with one of the studied wasp species, whose identification would take 16 steps if the previously available identification key were used, whereas only 6 steps were needed with the interactive alternative.

One of the reasons tools like Xper3 are so fast and efficient is that the key’s author can list all descriptive characters in a specific order and give them different weight in species delimitation. Thus, whenever an entomologist tries to identify a wasp specimen, the software will first run a check against the descriptors at the top, so that it can exclude non-matching taxons and provide a list of the remaining names. Whenever multiple names remain, a check further down the list is performed, until there is a single one left, which ought to be the one corresponding to the specimen. At any point, the researcher can access the chronology, in order to check for any potential mismatches without interrupting the process.

Being the product of digitally available software, interactive identification keys are not only easy, quick and inexpensive to publish, but they are also simple to edit and build on in a collaborative manner. Experts from all around the world could update the key, as long as the author grants them specific user rights. However, regardless of how many times the database is updated, a permanent URL link will continue to provide access to the latest version at all times.

To future-proof their key and its underlying data, the scientists have deposited all raw data files, R-scripts, photographs, files listing and prepared specimens at the research data Zenodo, created by OpenAIRE and CERN.

###

Original source:

Klimmek F, Baur H (2018) An interactive key to Central European species of the Pteromalus albipennis species group and other species of the genus (Hymenoptera: Chalcidoidea: Pteromalidae), with the description of a new species. Biodiversity Data Journal 6: e27722. https://doi.org/10.3897/BDJ.6.e27722

The first cave-dwelling centipede from southern China

Chinese scientists recorded the first cave-dwelling centipede known so far from southern China. To the amazement of the team, the specimens collected during a survey in the Gaofeng village, Guizhou Province, did not only represent a species that had been successfully hiding away from biologists in the subterranean darkness, but it also turned out to be the very first amongst the order of stone centipedes to be discovered underground in the country.

Found by the team of Qing Li, Xuan Guo and Dr Hui-ming Chen of the Guizhou Institute of Biology, and Su-jian Pei and Dr Hui-qin Ma of Hengshui University, the new cavedweller is described under the name of Australobius tracheoperspicuus in the open-access journal ZooKeys.

The new centipede is quite tiny, measuring less than 20 mm in total body length. It is also characterised with pale yellow-brownish colour and antennae comprised of 26 segments each. Similar to other cave-dwelling organisms which have evolved to survive away from sunlight, it has no eyes.

In their paper, the authors point out that Chinese centipedes and millipedes remain poorly known, where the statement holds particularly true for the fauna of stone centipedes: the members of the order Lithobiomorpha. As of today, there are only 80 species and subspecies of lithobiomorphs known from the country. However, none of them lives underground.

In addition, the study provides an identification key for all six species of the genus Australobius recorded in China.

###

Original source:

Li Q, Pei S-j, Guo X, Ma H-q, Chen H-m (2018) Australobius tracheoperspicuus sp. n., the first subterranean species of centipede from southern China (Lithobiomorpha, Lithobiidae). ZooKeys 795: 83-91. https://doi.org/10.3897/zookeys.795.28036

Tiny thorn snail discovered in Panama’s backyard

Close-up view of live individuals of the new species crawling on a leaf.

Discoveries of biodiversity at the Lilliputian scale are more tedious than it is for larger animals like elephants, for example. Furthermore, an analysis producing a DNA barcode – a taxonomic method using a short snippet of an organism’s DNA – is not enough to adequately identify it to the species level.

In the case of tiny thorn snails – appearing as minute white flecks grazing in moist, decomposing leaf litter – it is the shell that provides additional and reliable information needed to verify or question molecular assessment of these otherwise, nondescript critters.

Broadleaf forest litter with white arrows indicating the newly described species on the leaves.

However, at 2 mm, thorn snails are too small and fragile to handle and the few, if any, tangible details on the outside of the shells can only be seen using a high-powered microscope and computed tomographic (CT) images.

This is exactly how the interdisciplinary team of Dr Adrienne Jochum, Naturhistorisches Museum der Burgergemeinde Bern (NMBE) and University of Bern, Dr. Bernhard Ruthensteiner, Zoologische Staatssammlung Muenchen, Germany, Dr. Marian Kampschulte, University Hospital of Giessen and Marburg, Gunhild Martels, Justus-Liebig University Giessen, Jeannette Kneubühler, NMBE and University of Bern, and Dr. Adrien Favre, Senckenberg Research Institute and Natural History Museum Frankfurt, managed to clarify the identity of a new Panamanian species. Their study is published in the open-access journal ZooKeys.

Even though the molecular analysis flagged what it was later to be named as the new to science species, Carychium panamaense, the examination left no shell for the description of the new snail to be completed, let alone to serve as tangible, voucher material in a museum collection available to future researchers. The mini forest compost-grazer had to wait for another five years and Dr. A. Favre, who collected fresh material while traveling in Panama.

The new snail is currently the second member of the family Carychiidae to be discovered in Panama. The first Panamanian, and southern-most member of its kind in the Western Hemisphere, is C. zarzaae, which was also described by Dr. A. Jochum and her team along with two sister species from North and Central America. The study was published in ZooKeys last year.

Much like X-rays showing the degree of damage in a broken bone, CT images visualise the degree of sinuosity of the potato chip-like wedge (lamella) along the spindle-like mast (columella) inside the thorn snail’s shell. These structures provide stability and surface area on which the snail exerts muscular traction while manoeuvring the unwieldy and pointed, signature thorn-like shell into tight nooks and crannies. The alignment and degree of waviness of the lamella on the columella is also used by malacologists (mollusc specialists) to differentiate the species.

These are computed tomographic (CT) images of the new thorn snail species.

Normally, a study of a thorn snail’s shell would require drilling out minute ‘windows’ in the shell by using a fine needle under a high microscope magnification.

“This miserable method requires much patience and dexterity and all too often, the shell springs open into oblivion or disintegrates into dust under pressure,” explains Dr. A. Jochum. “By exposing the delicate lamella using non-manipulative CT imaging, valuable shell material is conserved and unknown diversity in thorn snails becomes widely accessible for further study and subsequent conservation measures.”

The authors are hopeful that C. panamaense and C. zarzaae, which both inhabit the La Amistad International Park, Chiriquí, will remain a conservation priority along with other animalian treasures including the Resplendent Quetzal, Three-Wattled Bellbird and the Crested Eagles.

The park is considered the 1st bi-national biosphere reserve, as it occupies land in both Costa Rica and Panama, and constitutes a UNESCO World Heritage Site since 1990.

###

Original Source:

Jochum A, Ruthensteiner B, Kampschulte M, Martels G, Kneubühler J, Favre A (2018) Fulfilling the taxonomic consequence after DNA Barcoding: Carychium panamaense sp. n. (Eupulmonata, Ellobioidea, Carychiidae) from Panama is described using computed tomographic (CT) imaging. ZooKeys 795: 1-12. https://doi.org/10.3897/zookeys.795.29339

World’s largest campodeid dipluran named after the mythological giant Daidarabotchi

The giant newly described species Pacificampa daidarabotchi, discovered in the Mejiro-do cave, Kyushu, Japan. Photo by Rodrigo Lopes Ferreira.

The insect-like animal is also the first subterranean representative of its family in Japan

Amongst the fauna thriving in the subterranean spaces below the surface of the earth’s crust, the insect-like diplurans and, precisely, those in the campodeid family are one of the best-known groups, currently comprising almost 150 species. However, not a single subterranean member of the family had been known from Japan until very recently.

As part of a project at the National Council of Technological and Scientific Development, the research team of Dr. Rodrigo Lopes Ferreira, Universidade Federal de Lavras, Brasil, and Dr. Kazunori Yoshizawa, Hokkaido University, Japan, conducted an expedition to a total of 11 carbonate caves in the southern Japanese islands of Kyushu and Shikoku. Out of these, they managed to collect dipluran specimens from three touristic sites and sent them to Dr. Alberto Sendra from the Research group in Soil Biology and Subterranean Ecosystems at Alcala University, Spain, for identification.

The Mejiro-do cave, Kyushu Island, Japan: the type locality of the newly discovered record-breaking species Pacificampa daidarabotchi. Photo by Rodrigo Lopes Ferreira.

To the amazement of the scientists, it turned out that they had collected specimens of two previously unrecognised species of well-adapted subterranean campodeid diplurans.

Moreover, one of the new species (Pacificampa daidarabotchi), identified exclusively from the Mejiro-do cave located near an active quarry in Kyushu, proved to be the largest known dipluran in the family Campodeidae. Measuring about 10 mm in length, the creature looks gigantic next to any other campodeid, which, most often, are only half as big.

Inspired by the peculiar size of the former, the researchers decided to name it after the giant yökai creature Daidarabotchi, known from Japanese mythology. According to one of the legends, Daidarabotchi once lifted up the mountains of Fuji and Tsukuba in order to weigh them. By accident, he split the peak of Tsukuba in the process.

Another remarkable finding from the same study is that the genus, where both new species were assigned – Pacificampa – serves as yet another example of the former physical connection between Asia and America some millennia ago. In their paper, the scientists note that the genus demonstrates close affinities with a genus known from North America.

“We hope that this discovery could stop the destruction of the land nearby and preserve for the future the subterranean habitat of these remarkable gigantic species,” say the researchers in conclusion.

###

Last year, lead author Dr. Alberto Sendra and his colleagues Prof. Boris Sket, University of Ljubljana, and Prof. Pavel Stoev, National Museum of Natural History, Bulgaria, described another cave-dwelling campodeid dipluran to the world’s amazement.

Discovered in Eastern Turkmenistan, the species, whose name (Turkmenocampa mirabilis) refers to its wondrous peculiarity, was the first of in the order Diplura found in Central Asia. Further, it was the first strictly subterranean terrestrial creature recorded in the country.

###

Original source:

Sendra A, Yoshizawa K, Ferreira RL (2018) New oversize troglobitic species of Campodeidae in Japan (Diplura). Subterranean Biology 27: 53-73. https://doi.org/10.3897/subtbiol.27.28575

Large-sized fossilised lacewings prove remarkable species diversity during Middle Jurassic

Middle Jurassic has always been considered as a mysterious ancient period full of ‘magical’ dinosaurs, pterosaurs and plants. However, when we think about the Jurassic landscape, we should take insects into consideration as well.

The lacewings, for example, are a graceful group famous for the lovely net-like veins on their wings, beautiful enough to stand the test of time, preserved as fossils. In addition, the wing spots on their wings form various patterns, which serve to tell us more about their adaptation to the particular environment.

Having carefully studied several pieces of compressed fossils of the large and distinct insects they found in Dohugou village, Inner Mongolia, Chinese scientists Hui Fang, Dong Ren, Jiaxi Liu and Yongjie Wang, College of Life Science, Capital Normal University, Beijing, discovered two species new to science.

Due to their complex, one-of-a-kind wing venations, all three of them were placed in the same genus (Laccosmylus) in the family Saucrosmylidae. Their descriptions, along with the redescription of another previously known species, are published in the open access journal ZooKeys.

“Fossil lacewing insects are much more abundant compared to living ones,” comment the authors.

“These large-sized fossil lacewing species reflect a high lacewing diversity in Middle Jurassic. Soon, they will help us reconstruct the wonderful environment of the Jurassic world.”

***

Original source:

Fang H, Ren D, Liu J, Wang Y (2018) Revision of the lacewing genus Laccosmylus with two new species from the Middle Jurassic of China (Insecta, Neuroptera, Saucrosmylidae). ZooKeys 790: 115-126. https://doi.org/10.3897/zookeys.790.28286

Newly discovered moth named Icarus sports a flame-shaped mark and prefers high elevations

The paper describing the new species is part of a special issue dedicated to macro moths of the New World published in the open-access journal ZooKeys

Newly-recognized species of owlet moth recently discovered to inhabit high-elevation mountains in western North America was named after the Greek mythological character Icarus. From now on, scientists will be referring to the new insect as Admetovis icarus.

In their paper, Dr Lars Crabo, Washington State University, USA, and Dr Christian Schmidt, Agriculture and Agri-Food Canada, explain that the combination of the distinct flame-shaped mark on the moth’s forewing and its high-elevation habitat were quick to remind them of Icarus, who is said to have died after flying so close to the sun that his wings made of wax and feathers caught fire.

The study is part of the seventh volume of the “Contributions to the systematics of New World macro-moths” series, where all previous volumes have also been published as special issues in ZooKeys.

Found in the town of Nederland, Colorado, the moth was collected at an elevation of 2,896 m above sea level. The species has also been recorded all the way from central Utah and central Colorado to the Selkirk Mountains of southeastern British Columbia, including a record from northeastern Oregon. It can be spotted between June and August at night.

In fact, it turns out that the moth has been collected during surveys in the past on multiple occasions, but has been misidentified with another closely related species: Admetovis oxymorus.

While the flame mark is a characteristic feature in all three species known in the genus (Admetovis), in the newly described species it is darker. When compared, the wings of the Icarus moth are also more mottled.

Despite the biology of the larvae being currently unknown, the scientists believe they are climbing cutworms and feed on woody shrubs, similarly to the species Admetovis oxymorus.

“Finding undiscovered moths is not that unusual, even though scientists have been naming insects since the eighteenth century,” says lead author Dr Lars Crabo.

“The Contributions series, edited by Don Lafontaine and Chris Schmidt, in which this discovery is published, really encourages professional and citizen scientists alike to go through the steps necessary to properly name the species that they have discovered. This series of seven volumes also includes a new check list for the United States and Canada, which has led to a re-kindling of interest in moths during the last decade.”

###

Original source:

Crabo LG, Schmidt BC (2018) A revision of Admetovis Grote, with the description of a new species from western North America (Noctuidae, Noctuinae, Hadenini). In: Schmidt BC, Lafontaine JD (Eds) Contributions to the systematics of New World macro-moths VIIZooKeys788: 167-181. https://doi.org/10.3897/zookeys.788.26480

The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195