From field trip to first paper: the colorful arable fields of Lemnos, Greece

From fieldwork to first publication in the journal Vegetation Classification Survey, Lina Rinne reflects on her research in Lemnos, Greece. Alongside Erwin Bergmeier and Stefan Meyer, she tracks her path from a 2024 field trip to a 2025 publication, exploring the island’s unique agro-ecosystems.

Guest blog post by Lina Rinne

I was introduced to the island of Lemnos during a university field trip in 2024, while I was still a master’s student. At the time, I admittedly questioned Erwin’s and Stefan’s choice of destination—why not go to a “cool” island like Crete? However, now, after two visits to Lemnos, I have to say that this island is very special. As my very first scientific publication focuses on this island—and was selected as an Editors’ Choice paper in the last quarter of 2025—Lemnos will always have a place in my heart.

The path to that publication was anything but straightforward. Fortunately, my supervisors and co-authors, Erwin and Stefan, supported me throughout the entire process.

Erwin Bergmeier and Stefan Meyer are well known to researchers working on arable plant diversity, whether in Greece, Germany, or beyond. They have been involved in numerous projects, and only a few people know arable fields, their plant species, and communities better than they do.

Their work on Lemnos began in 2018 as part of the Terra Lemnia project , a local initiative established by the Mediterranean Institute for Nature and Anthropos (MedINA). The project aims to understand and preserve the island’s arable plant diversity and to support farmers to maintain the less intensive, “traditional” agriculture on the island.

beautiful barley field with a rich diversity of arable plants
Barley field with a rich diversity of arable plants, among others Papaver rhoeasRapistrum rugosumGlebionis segetum, and Agrostemma githago, Lemnos, May 2025. The harsh volcanic landscape of the Fakos peninsula is visible in the background (photo credit: Lina Rinne)

On Lemnos, most agricultural fields are used to grow rain-fed fodder crops for sheep and goats. As they are mainly interested in biomass, eradicating wild arable plants (“weeds”) would be more costly than simply tolerating them. This farming reality has allowed an exceptionally high diversity of arable plants to persist—a central focus of our study.

During the master’s field trip in spring 2024, Erwin and Stefan introduced us to the island, the Terra Lemnia project, and local farmers. We explored a wide range of landscapes and attractions: the medieval castle overlooking the island’s capital Myrina, the wetlands and salt lakes in eastern Lemnos, the Ammothínes—striking inland sand dunes resembling a small desert—and Poliochni, often referred to as the “oldest city in Europe”.

At the time, arable plants played only a minor role in my perception, and I certainly did not expect that my academic journey would soon lead me back to Lemnos—and specifically to its agricultural fields.

That changed when I started my PhD in July 2024 with a research focus on Greek agro-ecosystems. We decided to use Lemnos as the basis for my first publication, contributing to the VCS Special Collection Vegetation classification of islands and archipelagos. Given my familiarity with the island and the extensive vegetation survey data collected by Erwin and Stefan over several years, it was the perfect starting point.

In January 2025, Erwin and Stefan handed me their dataset, wished me “good luck,” and I began working through the data in R. It was a learning process in every sense. Many species were unfamiliar to me, and even online resources did not always provide clear answers. Gradually, however, my understanding of the data—and of the community patterns it contained—improved. This was greatly helped by accompanying Erwin and Stefan during their fieldwork on Lesvos and Lemnos in spring 2025.

Standing in the agricultural fields and seeing species I had previously known only from spreadsheets and photographs brought the data to life. It also reinforced just how unusual Lemnos is from a Central European perspective. Many people of my generation grew up surrounded by heavily managed and sprayed fields, where a single red poppy is a photo-worthy sight.

In contrast, the cereal and pulse fields of Lemnos are colorful: yellow Brassicaceae grow alongside seas of red poppies, the pink flowers of Agrostemma githago (which is basically eradicated in Germany), and so many Trifolium species that it was difficult to keep track of them all.

Erwin Bergmeier conducting a vegetation survey on a rotational fallow dominated by Anchusa hybrida in front of a small Greek chapel on Lemnos, May 2025 (photo credit: Lina Rinne)

During our fieldwork, I learned a lot from Erwin and Stefan. We sampled additional fields for our study, and Erwin pointed out the soil differences (from sandy to loamy) that translated into the vegetation patterns revealed in the data analysis. I also took many pictures and notes to remember the fields and the species.

Fieldwork in Greece, of course, also comes with its own rewards: bathing in hot springs or the Mediterranean Sea, enjoying local dishes grown on the very fields we studied, encountering rare and fascinating bird species (including flamingos!), and meeting local colleagues and friends. Some of them joined us during fieldwork or helped us talk to local farmers, which provided valuable insight into agricultural management practices on the island and their socio-ecological context.

Back in Germany, it was time for a major overhaul of the analyses and manuscript. I incorporated what I had learned during fieldwork, and together with my co-authors, we integrated their extensive knowledge of Lemnos’ agro-ecosystems and arable plant communities.

By May, the writing and revision process was in full swing. Drafting, discussing, revising, and finalizing figures and tables continued until July, when we finally submitted the manuscript to Vegetation Classification and Survey.

As my first publication, the peer-review and production process has been a steep learning experience, involving multiple rounds of revisions and corrections. In the end, however, it was immensely rewarding.

We are very happy to have drawn attention to this remarkable island and to the often-overlooked topic of arable plant biodiversity. Lemnos is well worth visiting in spring (or any other season)—whether for its colorful fields, the diversity of migrating birds, unique landscapes, historical landmarks, or great food. Just be prepared for strong winds and surprisingly cold temperatures; at times, I wore nearly all my clothes at once to stay warm.

Original source:

Rinne, L., Meyer, S. and Bergmeier, E. (2025). Soil and season shape less intensively managed agro-ecosystems of a Mediterranean island—Insights from Lemnos (Greece). Vegetation Classification and Survey, 6, pp.253–271. doi: https://doi.org/10.3897/vcs.164437

Herbarium Records Lead Bucknell Researcher to a New Plant Species in the Australian Outback

Australian botanists have newly identified Solanum nectarifolium, or the Tanami Bush Tomato, from historical specimens collected near the northern edge of the Tanami Desert.

Specialized Organs for Feeding Ants are First of Their Kind.

LEWISBURG, Pa. — A recent study led by Bucknell University Professor Chris Martine, biology, the David Burpee Professor in Plant Genetics & Research, has identified and described a new species of bush tomato with a special connection to ants — a taxonomic journey sparked by unusual specimens held in Australian herbarium collections.

The study, co-authored by a set of Australian botanists and Jason Cantley — the former Burpee Postdoctoral Fellow in Botany at Bucknell who is now Associate Professor of Biology at San Francisco State University — was published in the open-access journal PhytoKeys and underscores the critical role that natural history collections play in biodiversity science. The new species, Solanum nectarifolium, or the Tanami Bush Tomato, was named for the location of its original collection area — the northern edge of the Tanami Desert — and for the uniquely conspicuous nectar-producing organs on the undersides of its leaves.

The newly found Tanami Bush tomato from the Tanami Desert in Australia.
Solanum nectarifolium, a newly-described species of Australian bush tomato. Photo credit: Kym Brennan. 

Martine first had an inkling that something was unusual about the plants from that region of the Northern Territory while working on a project with another former Burpee Postdoc, Angela McDonnell, now an Assistant Professor at St. Cloud State University. The pair included DNA extracted from two herbarium specimens representing Solanum ossicruentum, a species known as the Blood Bone Tomato that the Martine Lab described in the same journal in 2016, in an ongoing analysis meant to build a new bush tomato evolutionary tree.

“We couldn’t understand why the two collections of the same species kept showing up in different parts of the tree,” says Martine. “I had collected one of them and was certain that it represented Solanum ossicruentum, so I reached out to the person who collected the other one, David Albrecht, and asked whether he thought the plants he saw in 1996 at a place called Jellabra Rockhole could be something else.”

Albrecht, Senior Botanist at the Northern Territory Herbarium at Alice Springs, suggested that the best way to know would be for botanists to revisit that remote region of the northwestern Tanami Desert and see for themselves. Martine, who had participated in seven collecting expeditions to northern Australia since 2004, wasn’t disappointed.

“I was kind of hoping he’d tell me that,” Martine says. “Because I was already planning some new fieldwork in the Northern Territory and this would give me a great season to visit an area I had never been to before. But to really be prepared for a trip like that, I first needed to understand what other botanists had recorded and collected there in the past – and there is only one surefire way to do that: check what is in the herbarium collections.”

So Martine started by using the Australasian Virtual Herbarium (AVH), a database of every plant specimen held in every herbarium in Australia. He searched for collections made of Solanum ossicruentum and a similar species called Solanum dioicum in the northern Tanami, finding 15 records for specimens gathered as far back as 1971.

Map showing distribution of Solanum nectarifolium sp. nov. and S. ossicruentum based on accessions held at the Northern Territory Herbarium, Palmerston (DNA), the Western Australian Herbarium (PERTH), and the National Herbarium of New South Wales (NSW). Credit: Martine et al., 2025

“It was a really interesting distribution of points on the map, too,” Martine says. “These were far south of the other records for Solanum ossicruentum, with hundreds of miles of ‘empty’ country between the two clusters. I couldn’t wait to get to Australia to see what those Tanami plants looked like.”

In May 2025 Martine headed to Australia to meet his team for the trip: Cantley and paper coauthors Kym Brennan, Aiden Webb, and Geoff Newton, all associated with the Northern Territory Herbarium at Palmerston. But, first, Martine made a stop in another plant collection in the southwestern city of Perth.

“The visit to the Western Australian Herbarium was my first chance to spend a bunch of time with some of the actual specimens that I had earmarked based on the data in AVH,” Martine explains. “And what I saw there legit blew my mind.”

Every specimen looked similar to Solanum ossicruentum, except for a few subtle characteristics – and one thing that Martine had never seen in more than two decades of Outback botanizing.

Leaf of Solanum nectraifolium.
The veins on the leaf of Solanum nectarifolium, showing the extrafloral nectaries (EFNs). Phtoo credit: Kym Brennan.

“On the backs of the leaves, along the veins, were these visible round disks,” Martine notes. “They were each around a half-millimeter wide, really obvious, and the only bush tomato specimens that had them – we’re talking hundreds and hundreds of collections – were the ones from the northern Tanami.”

Martine thought they could be extrafloral nectaries (EFNs), non-flower organs on a plant that exude sweet liquid, typically as a means to attract ants that might protect the plants from herbivores. These were known to exist in a few Australian bush tomatoes, but those are tiny and have only been confirmed with microscopes. EFNs that could be seen without magnification would be something truly novel.

A few days later, Martine was in the herbarium at Palmerston and found the same pattern: more visible disks and only on plants from that same geographic area. Then he noticed that the most recent collection, from 2021, had been made by Kym Brennan – a renowned field biologist with an expertise in photography who was preparing for their trip in the next room.

“I ran in there and asked whether he remembered anything unusual about that collection – and before I could finish my explanation for why, he was already showing me an incredible photo of the leaves of that same plant. They were positively oozing with shiny, round droplets of nectar. And all from those disks on the veins.” 

Oozing nectar from underneath the leaf of the newly found Tanami Bush Tomato.
The oozing extrafloral nectaries (EFNs) on the underside of the Solanum nectarifolium leaf. Photo credit: Kym Brennan

Eight days and more than 1000 kilometers of driving later the team arrived near Brennan’s collection site 50 kilometers southwest of the community of Lajamanu, right along the edge of the unpaved Lajamanu Road.

“This was more-or-less the same place where others had collected it in the early 1970s, so we were cautiously optimistic that we’d not only find it there again, but that the plants would have the flowers and fruits on them that we needed to describe this as a new species,” explains Martine. “But it’s a harsh environment and the abundance of bush tomatoes is often dependent on fire occurrence. Sometimes you get to a place and there is nothing but old gray stems. Other times there are more happy plants than you can count. In this case, it was the latter situation!”

Habitat of the Australian Tanami Bush Tomato.
Habitat of Solanum nectarifolium at the type locality. Photo credit: Aiden Webb.

The team got to work taking notes, making measurements, and shooting photographs. And then Cantley called for Martine to come over to the plant he was examining. There were ants all over the leaf undersides, avidly moving from disk to disk and probing them for nectar. Hypothesis confirmed.

The collaborators decided on the scientific name “nectarifolium” – which translates to “nectar leaf,” for obvious reasons – and the English-language name Tanami Bush Tomato. Martine then contacted a few experts about the conspicuous nature of the EFNs and whether that has been seen anywhere else in the genus Solanum, a group of around 1200 species that includes the tomato, potato, and eggplant.

“As far as we know, this is the first Solanum species to be described as having extrafloral nectaries that you can see with your naked eye. That’s a pretty cool finding – and it all started with the examination of specimens that have been waiting in herbaria for as long as a half-century for someone to come along and take a closer look.”

Bucknell’s own Wayne E. Manning Herbarium, which holds approximately 25,000 plant specimens, now includes new samples of the Tanami Bush Tomato. But the official holotype remains at the Northern Territory Herbarium in Palmerston — almost 10,000 miles away from Bucknell’s campus.

Five different pictures of the newly discovered plant Solanum nectarifolium.
Habit and morphology of Solanum nectarifolium. Photo credit: Kym Brennan and Chris Martine.

“The Manning Herbarium may be small, but every specimen is a snapshot of biodiversity,” Martine says. “These collections allow us to study where species occur, how they’ve changed over time, and — in cases like this — even help discover new ones.

The publication of the new species comes amid broader concern over the fate of natural history collections, such as Duke University’s recently announced closure of its herbarium housing more than 800,000 specimens. Martine and his colleagues agree that such closures could hinder future discoveries and conservation efforts.

Martine, a leading expert on Australian bush tomatoes, was recently elected president-elect of the Botanical Society of America. He will begin his term as president following the organization’s annual meeting in August 2026.

“It still doesn’t feel real and probably won’t until I start my term just after Botany 2026,” Martine says. “But I promise to do my best because plants are awesome and so are botanists.”

Original study:

Martine, C.T., Brennan, K., Cantley, J.T., Webb, A.T. and Newton, G. (2025). A new dioecious bush tomato, Solanum nectarifolium (Solanaceae), from the northern Tanami Desert, Northern Territory, Australia, with reassessment of S. ossicruentum and a change in the circumscription of S. dioicum. PhytoKeys, 268, pp.183–199. doi: https://doi.org/10.3897/phytokeys.268.169893

Pensoft joins the FORSAID project in the next chapter for forest health

With its extensive experience in science communication and dissemination, Pensoft will help maximise FORSAID’s impact and ensure its long-term legacy.

As the dedicated communication partner of the project, Pensoft will lead efforts to popularise a new early detection paradigm targeting forest pests in Europe

The issue of pest proliferation is felt more acutely than ever in the wake of globalisation and climate change. As pests and pathogens spread across biomes, the threat to forests and the health of the plants within is only increasing. Cognisant of this worrying trend, the European Union has actively pursued mitigation and prevention measures over the last few years. Grassroots efforts are also on the rise as insights from academia and citizen science alike improve monitoring capabilities on the ground.

To address the core of the problem in its entirety, greater coordination and innovation across the board are required.

It is with this tenet in mind that FORSAID: FORest Surveillance with Artificial Intelligence and Digital Technologies first emerged on the scene as a Horizon Europе-funded project. 

The goal of FORSAID is the inception and deployment of a technology-based early detection system for EU-regulated forest pests. 

The pursuit of that very goal brought together 17 partner organisations from 10 countries. FORSAID is funded by the European Union’s Horizon Europe research and innovation programme. Having officially started in September 2024, it is set to continue until February 2028.

Within the team, Pensoft has taken the lead in the domains of Communication, Dissemination and Exploitation. Its long-standing expertise vis-a-vis public campaigns for science initiatives will be harnessed in an attempt to show the benefits and solutions that the latest digital innovations can bring to plant health monitoring. Thus, Pensoft is to help maximise FORSAID’s impact and ensure its long-term legacy

The project will be presented across the public domain by following a tailored communication plan. Examples of its implementation include social media campaigns, regular updates of a dedicated FORSAID website and synergies with various stakeholder groups.

Foresight in FORSAID

The project consortium firmly believes that digital innovation is the key to a truly effective pest detection framework. This signifies the central role of technology at all stages of this paradigm’s development process. 

More specifically, the employment of digital tools will proceed on several levels: 

  • Satellite and drone surveillance will be employed to remotely map out forested areas of interest and assess the extent of plant damage caused by pests and pathogens.
  • Smart traps and DNA barcoding will serve to identify and sort out different species of pests.
  • Artificial intelligence (AI) models will assist throughout this process as it helps to automate the procedure, thereby increasing efficiency. 

Building on the technology-based research and experimentation, insights from a variety of stakeholders will also be gathered to crystalise FORSAID’s approach.

 The consortium’s intent here is the consolidation of a network of interested and involved actors who would ensure the long-term application of the project’s results. A special focus is also placed on citizen scientists, whose practical needs will be considered in the design of the digital tools developed within FORSAID. Finally, a detailed economic analysis will assess the early detection framework and its associated technological instruments, in order to ensure its usability in the long run.

The FORSAID project consortium at the project’s kick-off meeting held on 26 September 2024 in Padua, Italy.

Full list of project partners:

  1. The University of Padua (Italy)
  2. The National Research Council of Italy (Italy)
  3. EFOS Information Solutions D.O.O. (Slovenia)
  4. European and Mediterranean Plant Protection Organisation (international)
  5. European Institute of Planted Forest (international)
  6. National Institute of Agricultural and Veterinary Research – INRAE (France)
  7. National Research Institute for Agriculture, Food and Environment (Portugal)
  8. Forest Research Centre (Portugal)
  9. Karlsruhe Institute of Technology (Germany)
  10. Linnaeus University (Sweden)
  11. Museum für Naturkunde – Leibniz Institute for Evolutionand Biodiversity Science (Germany)
  12. Pensoft Publishers (Bulgaria)
  13. Slovenian Forestry Institute (Slovenia)
  14. Telespazio France SAS (France)
  15. University of Copenhagen (Denmark)
  16. Ukrainian National Forestry University (Ukraine)
  17. Swiss Federal Institute for Forest, Snow and Landscape Research WSL (Switzerland)

You can follow the project’s progress and achievements on the dedicated LinkedIn and BlueSky pages and FORSAID’S brand new official website.

Top 10 new species of 2024

A countdown of our top 10 favourite species described as new to science in our journals this year.

2024 is almost over—can you believe it?

If you follow any of Pensoft’s social media accounts, you will know that we have been counting down our top 10 favourite species described as new-to-science in our journals this year.

The list is—of course—entirely arbitrary, but it is also a fun way to look back on a year in which several weird and wonderful animals, plants and fungi were discovered.

In this blog post, we will tell you more about each species, share some honourable mentions, and reveal our number 1 spot!

Honourable mentions

The league of legends crab

When it was time to name a tiny, ‘furry’ new species of gorilla crab from China, researchers drew unlikely inspiration from the video game League of Legends.

Gothus teemo was named after the character Teemo thanks to its distinctive appearance and has drawn a lot of attention from fans of the franchise.

Published in Zoosystematics and Evolution.

the ancient shark

The new species is thought to have resembled a modern sandtiger shark (pictured).

Calling anything on this list a ‘new species’ is not accurate—rather, they are just new to published science. Nothing exemplifies this more than Palaeohypotodus bizzocoi, a long-extinct shark species that lived 65 million years ago, shortly after the fall of the dinosaurs.

What makes this discovery remarkable is that it was partially accidental. Find out how a 100-year-old box of teeth in Alabama led to the discovery of this ancient shark below.

Published in Fossil Record.

the drone-discovered plant

Sometimes, it is the way in which a new species is discovered that makes it so special.

Such is the case for Schiedea waiahuluensis, a carnation species from Hawaii that is likely the first plant to be identified and collected using drone technology. Learn all about it below!

Published in PhytoKeys.

Top 10 new species of 2024

10: the crocodile newt

Tylototriton gaowangjienensis.

With its all-black colouration, Tylototriton gaowangjienensis, a crocodile newt from China, has drawn comparisons to Toothless from How to Train Your Dragon.

However, this alluring amphibian hides flashes of orange beneath its tail and toes! Find more pictures and information below.

Published in Herpetozoa.

9: the border-hopping bee

New bee species.
Male Hoplitis onosmaevae with unfolded proboscis.

Besides its adorable appearance, Hoplitis onosmaevae is remarkable due to its distribution. It is currently only known from a small region of the French Alps, and areas >2,000 km away in the mountains of Turkey and Iraq.

Another interesting aspect of Hoplitis onosmaevae is its specialised ecological niche: it is thought to only collect pollen from Onosma species. This narrow ecological niche makes it vulnerable to factors like climate change and changes in agricultural practices.

Published in Alpine Entomology.

8: the dung fungus

Metacampanella coprophila

Metacampanella coprophila is one of two new species described in a recent MycoKeys paper! Known from Mongolia, it grows in sheep dung in the summer.

Metacampanella is an important, recently defined genus in the Marasmiaceae family, expected to expand with future studies.

Published in MycoKeys.

7: the miracle plant

John L. Clark with Amalophyllon miraculum. Credit @phinaea on Instagram.

The discovery of Amalophyllon miraculum—in an area assumed to be a barren agricultural landscape of plant extinctions—represents an inspiration for biodiversity conservation. This “miracle” plant, as its name suggests, was found surviving in one of the small, isolated forest fragments that remain in the Centinela region of western Ecuador.

Published in PhytoKeys.

6: the spiky frog

Pristimantis normaewingae.

This spiky amphibian was discovered on Cerro Candelaria, a mountain in the Tungurahua province. The discovery of this new species in the upper Rio Pastaza watershed suggests this area might be a centre of rapid evolution for these fascinating frogs.

Published in Evolutionary Systematics.

5: the giant tiny beetle

Clavicornaltica mataikanensis.

Entomologists and citizen scientists teamed up to discover this new species of flea beetle in the lush rainforests of Borneo. The discovery was made during a Taxon Expeditions trip, where non-scientist people got the chance to work alongside scientists to identify and describe new species.

What makes this discovery particularly exciting is the beetle’s size—it’s actually one of the largest among its relatives! Flea beetles that live in the leaf litter of tropical forests are typically much smaller, and as a result, we know very little about their ecology and diversity.

Published in Biodiversity Data Journal.

4: the grumpy dwarf goby

A photograph of a red grumpy-looking fish on a black background.
The grumpy dwarf goby, Sueviota aethon.

Discovered in the Red Sea, the ‘grumpy dwarf goby’ (Sueviota aethon) was published as a new species in ZooKeys. You can probably guess how it earned its name! This tiny fish, measuring less than 2 centimetres long, sports a permanent frown thanks to its large canines and fierce expression. Despite its small size, the grumpy dwarfgoby is thought to be a fearsome predator in its coral reef habitat.

Published in ZooKeys.

3: the sun-shunning plant

Thismia malayana.

Thismia malayana is a mycoheterotrophic plant, meaning it doesn’t photosynthesise. Instead, it acts as a parasite, stealing carbon resources from the fungi on its roots!

By stealing nutrients from fungi, it can thrive in the low-light conditions of dense forest understories where its highly specialised flowers are pollinated by fungus gnats and other small insects.

Published in PhytoKeys.

2: the ‘cute but deadly’ velvet worm

While the Tiputini velvet worm—Oroperipatus tiputini—may look friendly, it is an accomplished hunter that shoots a sticky substance from a pair of glands to trap its prey. This “living fossil” is a rare and unique invertebrate that evolved over 500 million years ago. The new species was discovered in the Ecuadorian Amazon at the Tiputini Biodiversity Station, which is part of the Yasuní Biosphere Reserve.

Published in Zoosystematics and Evolution.

1: the starry night gecko

Here it is, our number 1 spot!

They say that life imitates art, and this new gecko species proves that to be true! Researchers in India have discovered a gecko with such a unique and beautiful colouration that they named it after painter Vincent van Gogh. The “Starry Night” gecko, or Cnemaspis vangoghi, was discovered in the Southern Western Ghats and stands out due to the male’s yellow head and forebody with light blue spots on the back, a striking combination reminiscent of the famous painting.

Published in ZooKeys.

Exploring arctic plants and lichens: An important conservation baseline for Nunavut’s newest and largest territorial park

A comprehensive study of the floristic diversity of Agguttinni Territorial Park has documented 141 vascular plant, 69 bryophyte, and 93 lichen species from this unique protected area.

Encompassing over 16 000 km2 of towering mountains, long fiords, lush valleys, and massive ice caps, Agguttinni Territorial Park is a protected area on northern Baffin Island, Nunavut, Canada. This park, and all of Nunavut, is Inuit Nunangat – Inuit homeland in Canada – and the park protects sites and biodiversity stewarded by Inuit since time immemorial.

Lapland Diapensia (Diapensia lapponica). Photo credit Lynn J. Gillespie © Canadian Museum of Nature

Agguttinni means “where the prevailing wind occurs” in the Inuktitut local dialect. The park includes important bird areas, key habitats for polar bears and caribou, and numerous important Inuit cultural sites. It is very remote: no roads lead to it, and access is only by helicopter, boat in the summer, or snowmobile in the winter.

A field camp in Atagulisaktalik, Agguttinni Territorial Park. Photo credit Paul Sokoloff © Canadian Museum of Nature

During the development of the park’s management plan, a team from the Canadian Museum of Nature, led by Dr. Lynn Gillespie, inventoried the park’s plants and lichens in partnership with Nunavut Parks and Special Places, with the support of Polar Knowledge Canada

Over five weeks in the summer of 2021, Dr. Gillespie’s team traveled across Agguttinni, exploring the vicinity of four base camps in the park on foot and further afield by helicopter. Across this large area, they studied many different habitats from the interior Barnes Ice Cap to the coast of Baffin Bay.

Stewart Valley. Photo credit Lynn J. Gillespie © Canadian Museum of Nature

The heads of the long fiords, sheltered far inland, hosted the greatest plant diversity in the park, including numerous species rare on Baffin Island and two species previously only known from farther south in Canada: Lapland Diapensia (Diapensia lapponica) and Flame-tipped Lousewort (Pedicularis flammea). Conversely, the interior plateau near the ice cap was less diverse, but still held new records for Nunavut, such as Powdered Matchstick Lichen (Pilophorus caerulus), Starke’s Fork Moss (Kiaeria starkei) and Sprig Moss (Aongstroemia longipes).

Wooly lousewort (Pedicularis lanata). Photo credit Lynn J. Gillespie © Canadian Museum of Nature

This intensive fieldwork resulted in over a thousand new specimens deposited at the National Herbarium of Canada at the Canadian Museum of Nature and other herbaria worldwide. These pressed and preserved plants and lichens serve as proof that these species were found at this specific place and time and are the foundation for our knowledge of botanical diversity in the park.

Dr. Gillespie and her team also examined over 300 existing herbarium specimens from the park area, most of which were collected in 1950, the last time botanists intensively studied this part of Baffin Island. Combining data from these old and new specimens has resulted in an annotated checklist of the park’s plant and lichen diversity, describing the 141 vascular plant, 69 bryophyte, and 93 lichen species documented in Agguttinni, all native to the Arctic. 

This checklist, immensely valuable to park managers and botanists, is filled with descriptions and photos useful to anyone interested in Arctic botany and is out now in the open-access, peer-reviewed journal Check List. With information on which species are present, where they are distributed, and which ones are rare, it will help the conservation and management of the protected area.

Research article:

Gillespie LJ, Sokoloff PC, Levin GA, Doubt J, McMullin RT (2024) Vascular plant, bryophyte, and lichen biodiversity of Agguttinni Territorial Park, Baffin Island, Nunavut, Canada: an annotated species checklist of a new Arctic protected area. Check List 20(2): 279-443. https://doi.org/10.15560/20.2.279

Listen to the trees: a detective work on the origin of invasive species

An attempt to explore the history of the spread of four non-indigenous invasive tree species in one of the most important Hungarian forest-steppe forests of high conservation value.

Guest blog post by Arnold Erdélyi, Judit Hartdégen, Ákos Malatinszky, and Csaba Vadász

Today, almost everyone is familiar with the term “biological invasion”. Countless studies have been carried out to describe the various processes, and explore the cause and effect, and several methods have been developed in order to control certain invasive species. However, one of the biggest puzzles is always the question of how it all happened. It is not always easy to answer, and, in general, the smaller the area, the more difficult or even impossible it is to answer. In the course of our work, we attempted to explore the history of the spread of four, non-indigenous invasive tree species in one of the most important Hungarian forest-steppe forests of high conservation value, the Peszér Forest (approximately 1000 ha). Last week, we published our study in the journal One Ecosystem.

The Far Eastern tree of heaven (Ailanthus altissima), as well as the North American black cherry (Prunus serotina), the box elder (Acer negundo) and the common hackberry (Celtis occidentalis) are among the worst invasive plant species in Hungary. They are also responsible for serious conservation and economic problems in the Peszér Forest.

Invasion of tree of heaven (top left) and common hackberry (top right) in poplar stands, carpet of seedlings of black cherry (bottom left), and monodominant stand of box elder, regrown from stump after cutting (bottom right)

Historical reconstructions of the spread of invasive species are most often based on only one, or sometimes a few aspects. We used six approaches simultaneously:

  • we reviewed the published and grey literature,
  • extracted tree species data from the National Forest Database since 1958,
  • conducted a field survey with full spatial coverage (16,000 survey units (25×25 m quadrats)) – instead of sampling,
  • recorded all the largest (and presumably the oldest) individuals for annual ring counts,
  • performed hotspot analyses on the field data
  • collected local knowledge.
Cutting down the oldest common hackberry trees in order to count the annual rings from trunk discs

Our results show that each approach provided some new information, and without any of them the story revealed would have been much shorter and more uncertain. We have also highlighted that at the local level, the use of one or two aspects can be not only inadequate but also misleading.

From the literature it was possible to determine the exact place and date of the first occurrence of the tree of heaven and the black cherry. However, in the case of black cherry, for example, it was only possible to piece together the circumstances of the first plantings by combining three different sources. The first occurrences of box elder were found in forestry data. Finally, in the case of the common hackberry, searching for old individuals and determining their age gave the best results.

Common hackberry in the Peszér forest according to the recent forestry data (2016) and the field survey (2017-2019). The difference is clear: in the official forestry database, the tree species is underrepresented several times over

A well-explored story of a biological invasion can go a long way in making more and more people understand that controlling these non-indigenous species can only be beneficial. On the other hand, it can also help to strengthen conservation efforts, for example by increasing the volunteer workforce, which can be a major factor in the reduction of certain species. We hope that our work and the approaches we have taken will serve as a good model for exploring other invasion stories around the world.

Winter snapshot from the Peszér Forest, a diverse forest edge habitat along an inner road.

Research article:

Erdélyi A, Hartdégen J, Malatinszky Á, Vadász C (2023) Historical reconstruction of the invasions of four non-native tree species at local scale: a detective work on Ailanthus altissima, Celtis occidentalis, Prunus serotina and Acer negundo. One Ecosystem 8: e108683. https://doi.org/10.3897/oneeco.8.e108683

Hundreds of weeds found illegally advertised online in Australia

A research team led by Jacob Maher discovered thousands of online advertisements for weeds that are prohibited in Australia due to their harmful impact on the country’s environment and agriculture.

Hundreds of weeds have been found advertised on a public online marketplace in Australia. Cacti and pond plants were among the most frequently advertised illegal weed species. These weeds are prohibited in Australia due to their harmful impact on the country’s environment and agriculture. Despite this, a research team led by Jacob Maher discovered thousands of online advertisements for these weeds. Their study is published in the open access journal NeoBiota.

Water hyacinth, a notorious invader that was found traded online.

Trade of ornamental plants, the kind grown in homes and gardens, is the major way weeds are introduced to new places. Some ornamental plants can make their way into the environment and become invasive, negatively impacting native species and agriculture. Increasingly, plants are traded on the internet, allowing a wide variety of plants to be introduced to more distant places. A lack of surveillance and regulation of this trade has resulted in the wide trade of invasive species.

In response, scientists from the University of Adelaide have utilised specialised software called ‘web scrapers’ to monitor trade on public classifieds websites. These web scrapers automate the collection of online advertisements. This allowed the researchers to detect thousands of advertisements for weeds over a 12-month period. 

Opuntia, a notorious invader that was found traded online.

Despite Australia’s laws banning the trade of harmful weeds, advertisements were observed across the country. Some of the weeds advertised were associated with uses by traders, including food and medicine. The most popular uses were associated with pond and aquarium plants such as filtering water and providing fish habitat.

The researchers recommend that governments adopt web scraping technology to assist in regulating online trade of plants. They also highlight increasing public awareness and seeking cooperation from online marketplaces as solutions to this growing problem.

“Currently, these online marketplaces allow people to advertise and purchase invasive species, whether they are aware of it or not,” says Maher. “Regulation is needed, but we also need to cultivate awareness of amongst plant growers of this issues and we need help from marketplaces to regulate trade on their end.”

The technology developed in this study is now being utilised by biosecurity agencies in Australia to monitor and regulate the illegal trade of plants and animals online.

Original source:

Maher J, Stringham OC, Moncayo S, Wood L, Lassaline CR, Virtue J, Cassey P (2023) Weed wide web: characterising illegal online trade of invasive plants in Australia. NeoBiota 87: 45-72. https://doi.org/10.3897/neobiota.87.104472

Forgotten tropical plants rediscovered after 100+ years with the help of community science

Through the collaborative efforts of botanists and citizen scientists, these plants have been rediscovered after decades, some even after more than a century.

Deep in the tropical Andes are hiding plants that were discovered and then forgotten; plants that we knew almost nothing about. Now, thanks to the combined efforts of botanists from Germany, Ecuador, Peru and Costa Rica and amateur plant enthusiasts, these plants have been rediscovered, some of them after more than 100 years. The findings were described in the open-access journal PhytoKeys.

Nasa hastata. Photo by P. Gonzáles

The plants belong to Nasa, a genus from the Blazing Star family (Loasaceae) that has long caused headaches to scientists as its delicate but painfully urticant leaves make it difficult to collect. Most of them are rare, highly endemic, and only around for short periods, which makes them even more unlikely to end up in a herbarium collection.

Luckily, today’s scientists don’t have to rely on herbaria as their sole source of material and clues. Thanks to the advent of global networking and the increasing use of free data repositories, there is a lot more biodiversity data now that is available to use and easily accessible, for example as geo-referenced occurrence records and photos. Citizen science platform iNaturalist, where users can, among others, post photographic occurrence records, has turned into a valuable tool for biodiversity scientists, and plays a significant role in the rediscovery of these Andean plants.

One notable species, Nasa colanii, had only been recorded once, in 1978, until the research team came upon a photograph from 2019. This scarcity in records might have to do with the fact that the plant grows in a highly inaccessible region: in a cloud forest in the buffer zone of Peru’s Cordillera de Colán National Sanctuary, at an elevation of 2605 m.

A flowering branch of Nasa colanii. Photo by A. A. Wong Sato

Another species hadn’t been reported for approximately 130 years when iNaturalist users confirmed its existence in 2022 by uploading photographs. Nasa ferox had been known for centuries, but it didn’t get its scientific description until 2000. “Given the location of the park close to the [Ecuadorian] city of Cuenca, and the fact that the important road 582 goes through the park makes it particularly surprising that the species has not been reported in such a long time, even more so if we consider the numerous botanical expeditions that have been carried out in the general region,” the researchers write in their paper. In fact, only a small population of about ten fertile plants of N. ferox has been found, with the plants always growing in sheltered places such as in rock crevices or at the base of shrubs.

Remarkably, the typical form of Nasa humboldtiana called Nasa humboldtiana subspecies humboldtiana was rediscovered after 162 years, when the research team found a specimen in a conserved remnant of montane Andean forest in the province of Chimborazo, Ecuador.

Flower of Nasa humboldtiana subspecies humboldtiana. Photo by X. Cornejo

But probably the most exciting discoveries happened when the team found species that have been considered extinct in the wild. Two species of Nasa, namely N. hastata and N. solaria, were believed to share this fate, both from the Peruvian Department of Lima, a comparably well sampled area, given the proximity to the national capital. Until very recently, both species “remained unknown (or almost so) in the wild.” Earlier attempts to recollect these species near their type localities where they have been found some 100 years ago failed and it needed the help of iNaturalist to reveal that they are still present in the area.  

Nasa solaria. Photo by P. Gonzáles

Nasa hastata was recently rediscovered, after, for the first time, photos of living plants showed up taken by the sister of one of the authors. Only a handful of plants have since been reported from two sites, some 7 km apart. Similarly, a few dozens of plants have been found so far from N. solaria occurring in four small relict populations in remnants of forest that once covered larger areas in this region.  

Flower of Nasa hastata. Photo by P. Gonzáles

Observations uploaded to iNaturalist also revealed important information on another species, Nasa ramirezii,providing the first photographs of living plants from Ecuador and the first data on its exact location.

“All these discoveries serve as a reminder that even well-studied regions harbor diversity that can so easily remain overlooked and unexplored, and point to the role of botanists in documenting biodiversity which is an essential prerequisite for any conservation effort.” leading author Tilo Henning from the Leibniz Center for Agricultural Landscape Research (ZALF) says.

“Hopefully, as more scientists and members of the public contribute to the database, and more professionals get involved in the curation, more undescribed or ‘long lost’ taxa will be found. Our examples of the rediscovery of Nasa ferox after 130 years and Nasa hastata after 100 years, both ‘found’ on iNaturalist underscore this point,” the researchers say in their study.

Original source:

Henning T, Acuña-Castillo R, Cornejo X, Gonzáles P, Segovia E, Wong Sato AA, Weigend M (2023) When the absence of evidence is not the evidence of absence: Nasa (Loasaceae) rediscoveries from Peru and Ecuador, and the contribution of community science networks. PhytoKeys 229: 1-19. https://doi.org/10.3897/phytokeys.229.100082

Can we predict if a plant species will become exotic?

A new approach compared characteristics of species that succeeded or failed to establish after probably following the same historical introduction route.

Plant species become exotic after being accidentally or deliberately transported by humans to a new region outside their native range, where they establish self-perpetuating populations that quickly reproduce and spread. This is a complex process mediated by many factors, such as plant traits and genetics, which challenges the creation of general guidelines to predict or manage plant invasions. Scientists from Spanish and Australian institutions have now defined a new framework to find the predictors of invasiveness, investigating species that have succeeded or failed to establish abroad after following similar historical introduction routes.

Dr Javier Galán Díaz, University of Seville, Spain, Dr Enrique G. de la Riva, University of León, Spain, Dr Irene Martín-Forés, The University of Adelaide, Australia, and Dr Montserrat Vilà, Doñana Biological Station (EBD-CSIC), Spain, described their findings in a new paper in the open-access journal NeoBiota.

Ancient agricultural landscape dominated by plant species introduced in other Mediterranean regions (Parque Natural de Los Alcornocales, Andalucía, Spain). Photo by Dr Javier Galán Díaz

“While current policies exert strong control on the import and export of living organisms, including pests, across countries, until only a few decades ago, very little attention was paid to this issue. This means that many species were translocated to new regions without any consideration of their potential impacts,” says Dr Javier Galán Díaz.

An example of this is the massive plant exchange among Mediterranean‐type regions as a consequence of European colonialism: crops and cattle were exported, along with tools and materials, potentially bringing along the seeds of many plant species.

Agricultural landscape dominated by exotic species of European origin (Merced Vernal Pool and Grassland Reserve, California, U.S.A.). Photo by Dr Javier Galán Díaz

“So far, most studies on plant invasions have tried to explain the success of exotic species by comparing their traits with those of the native plant communities where they arrive, or by comparing the traits of plant species that have achieved different levels of invasion in the same region. But, if we take into account that the most common plant species from European agricultural landscapes have been in contact with humans and have therefore had the potential to be inadvertently transported to other Mediterranean regions, then only those that have successfully invaded other regions have something different in them that allowed them to establish and spread abroad,” Dr Galán Díaz explains.

Following this approach, the scientists found that, when comparing plant species transported from the Mediterranean Basin to other Mediterranean-climate regions (California, Central Chile, the Cape Region of South Africa and Southwestern and South Australia) in the search of predictors of invasiveness, only those species with large distribution ranges that occupy climatically diverse habitats in their native region became exotic. Also, species with many dispersal vectors (for instance those that have seeds dispersed by animals, water or wind), long bloom periods and acquisitive above- and belowground strategies of resource use are most likely to become exotic. Most of this plant information is readily available or easy to obtain from free and open-access repositories.

“Determining the factors that pre-adapt plant species to successfully establish and spread outside of their native ranges constitutes a powerful approach with great potential for management,” the researchers write in their paper. “This framework has the potential to improve prediction models and management practices to prevent the harmful impacts from species in invaded communities.”

“Using the existing information, we can identify the key species to monitor. This is especially encouraging in the era of Big Data, where observations from citizen science applications add to those of scientists, increasing the potential of screening systems,” Dr Galán Díaz says in conclusion.

Research article:

Galán Díaz J, de la Riva EG, Martín-Forés I, Vilà M (2023) Which features at home make a plant prone to become invasive? NeoBiota 86: 1-20. https://doi.org/10.3897/neobiota.86.104039

Follow NeoBiota on social media:

The most beautiful Vanilla: an unusual new species from Brazil’s Campos Rupestre

Brazilian Campos Rupestres have many endemic species, and a new study published in the journal PhytoKeys has just added one more.

One of the most beautiful vanilla orchid species in the Neotropical region grows in one of the most hostile environments in the Brazilian Cerrado, the Brazilian Campos Rupestres of the Espinhaço Range. “The Espinhaço refuges evolved between the Atlantic Forest and Amazonia Biomes as a consequence of extreme environmental conditions and climatic fluctuations during the Tertiary and Quaternary periods,” explains Emerson Ricardo Pansarin, one of the researchers behind the discovery of a new vanilla orchid.

Vanilla rupicola.

Brazilian Campos Rupestres have many endemic species, and a new study published in the journal PhytoKeys has just added one more.

What makes Vanilla rupicola remarkable is the fact that it grows on rock outcrops. “In this locality, Vanilla rupicola shows a reptant habit on rock outcrops and rooting in rock clefts. The elevation is from 800 to 1300 m a.s.l.,” the researchers write in their paper. Its flowers produce a sweet fragrance that can be noticed during the hottest hours of the day.

Habit of Vanilla rupicola on the rock outcrops of the Espinhaço Range, Minas Gerais, Brazil. Note the creeping stem on the rock.

“For years we traveled through the mountains of the Espinhaço Range until we found the flowering population,” says Emerson Ricardo Pansarin.

Vanilla rupicola.

Vanilla rupicola emerges in an essentially Amazonian clade. It seems plausible that the ancestor of this new taxon derived from an Amazonian taxon adapted to the environmental conditions of the Espinhaço Range and evolved in this particular environment,” he adds.

Vanilla rupicola is a rare species currently known to grow in a mountain-chain of Diamantina, in the ERMG Espinhaço Range, and the researchers tentatively classify it as Endangered.

Research article:

Pansarin ER, Menezes ELF (2023) A new remarkable Vanilla Mill. (Orchidaceae) species endemic to the Espinhaço Range, Brazil: its phylogenetic position and evolutionary relationships among Neotropical congeners. PhytoKeys 227: 151-165. https://doi.org/10.3897/phytokeys.227.101963