Beware of scientific scams! Tips to avoid predatory publishing in biological journals

Predatory publishing has been growing exponentially, with severe consequences for society and the environment.

Guest blog post by Cássio Cardoso Pereira, Gabriela França Fernandes, and Walisson Kenedy Siqueira

We are bombarded day and night with slot-machine invitations from journals, books, and events such as congresses and lectures. Predatory publishing has reached alarming levels in biology, which is why we published an editorial in the journal Neotropical Biology and Conservation to alert the community, show the modus operandi of these publishers, and pass on good practices so that researchers, especially beginners, can escape this trap.

Piggybacking on the open access movement, numerous predatory publishers have emerged in search of easy profits. These cybercriminals take advantage of the publish-or-perish culture without providing any information about their peer-review protocols, concerned not with the scientific, bibliographic, or ethical aspects of publishing, but with the money received from authors.

The number of predatory publishers has grown exponentially in recent years and spread across all areas of knowledge, including biology. It is a common practice of these journals, often with an equally fake editorial staff, to send electronic invitations to potential authors to publish articles. These invitations are often facilitated by initial screenings of the emails of corresponding authors available on the internet. The emailed invitations from the supposed editors often stress that the author’s work is sound and, since it has already gone through the scrutiny of the editorial board, requires only the payment of a fee to publish it, with no need for further peer review.

Invitations to join the editorial board of these journals are also frequent, mostly intended to take advantage of the scientists’ prestige. Instead of editing articles, these invited editors are used as poster boys, i.e., they have their names published on the journal’s website, thus attracting unsuspecting authors to submit their manuscripts.

These journals are generally not included in the directory of open access journals (DOAJ) and are not indexed in the main bibliometric databases, such as Google Scholar, SciELO, Scopus, and Web of Science, for the simple reason that they do not meet their inclusion criteria. The websites of these journals often have little information about the editorial board, have a fake International Standard Serial Number (ISSN), lack transparency regarding their scope, provide no indication of a policy of retraction, have no transparency regarding copyright transfer, and provide very vague contact information, often omitting the address of the journal’s office.

In addition to papers, there are also invitations to publish books and book chapters with fake International Standard Book Numbers and dubious editorial boards. There is also a flood of invitations to predatory meetings, such as online conferences, symposia, workshops, and lectures. These often have websites that are equally confusing and never linked to a university or a postgraduate program. Above all, one should consult advisors, supervisors, or senior colleagues about the invitation and the sender’s academic reputation. In any case, one must pay attention not only to the citation metrics but also, mainly, to their editorial board, ISSN, ISBN, contact information, and relationships with recognized institutions.

When we analyze the impacts of predatory publishing on the scientific community, the worst problems are:

  • the dissemination of erroneous information about scientific problems of interest
  • the facilitation of plagiarism
  • the waste of public resources intended for publication
  • the appointment of researchers at universities and research institutes based on curricula full of doubtful publications, generating negative cascading effects that undermine higher education as a whole.

The damage done to society can be even worse. Governments, large companies, and decision-makers can be misled by false information, resulting in attitudes that undermine responses to major human problems such as climate change, biodiversity, and pandemics.

Efforts to fight predatory publishers require collaboration and support at higher levels. Governments need to create regulatory agencies that carefully and systematically evaluate the activities carried out by scientific journals. Science funding agencies should require that publication fees be paid only to publishers that adhere to an internationally recognized set of transparency and ethical rules. We need to discuss our values and incentives in the academic community, so we can start prioritizing quality over quantity. This would provide a reference point for research, help design coherent interventions, and improve information and public policy in favor of society and the environment.

Reference:

Pereira CC, Mello MAR, Negreiros D, Figueiredo JCG, Kenedy-Siqueira W, Maia LR, Fernandes S, Fernandes GFC, Ponce de Leon A, Ashworth L, Oki Y, de Castro GC, Aguilar R, Fearnside PM, Fernandes GW (2023) Beware of scientific scams! Hints to avoid predatory publishing in biological journals. Neotropical Biology and Conservation 18(2): 97-105. https://doi.org/10.3897/neotropical.18.e108887

Uncovering the hidden value of urban rivers: Study reveals community perceptions of ecosystem services

The case of the Zamora and Malacatos rivers in Loja, Ecuador

Guest blog post by Natalia Alvarado-Arias, Vinicio Moya-Almeida, Francisco Cabrera-Torres, and Andrea Medina-Enríquez

Urban rivers play a crucial role in providing ecosystem services that contribute to the social well-being and quality of life of urban inhabitants. However, rapid urbanization has led to the progressive degradation of these rivers, affecting their capacity to deliver these services and generating significant socioecological impacts. A groundbreaking study conducted in the Zamora and Malacatos Rivers in Loja, Ecuador, performed a participatory mapping of the non-monetary social values (both positive and negative) and their associated ecosystem services. This research, published in the journal One Ecosystem, aimed to understand community perceptions and preferences in the context of degraded landscapes, using a complementary analysis approach to traditional methods.

Oblique aerial photographs of the research area captured with unmanned aerial vehicles (2021). Left: Malacatos River. Right: Zamora River

The methodology employed in this study involved data collection and analysis using ArcGIS Survey123 Connect (ESRI 2020), a digital survey tool that facilitated easy data collection from participants. Additionally, The Social Values for Ecosystem Services (SolVES 4.0) tool was utilized, integrating participatory survey data and environmental data to assess and map the social values associated with ecosystem services. This combination of technological tools allowed for comprehensive analysis and visual representation of the results.

The study findings revealed that the most relevant social values encompassed learning, aesthetics, therapy, displeasure, deficient and inaccessible infrastructure, and the threat of flooding. Different spatial patterns were identified for each of these social values, with the horizontal distance to green areas emerging as a significant environmental variable contributing to these patterns.

Spatial distribution of positive social values.

These findings enhance our understanding of the social values and preferences associated with ecosystem services in urban river contexts. Furthermore, they provide valuable insights for identifying areas of opportunity and conflict, informing community planning, and enabling effective management of the urban landscape. The significance of this study lies in its novel approach, considering non-monetary social values, and its application in a city in the Global South, where previous research has predominantly focused on the Global North.

The degradation of urban rivers and the resulting socioecological impacts are a growing concern worldwide. Rivers play a vital role in providing natural resources, species habitats, freshwater supply, and flood control, while also satisfying the social, spiritual, and recreational needs of local communities. However, the processes of rapid urbanization have transformed river ecosystems into monofunctional channels and open sewers, negatively impacting the quality of life of residents.

Spatial distribution of negative social values.

This study emphasizes the importance of considering social values and community preferences when assessing and managing urban rivers. By doing so, opportunities and conflicts can be identified, and management strategies can be developed that are socially accepted and supported. Active community participation is crucial in this process as it allows for the addressing of traditional viewpoints and power asymmetries in planning.

The study employed a participatory and community-based approach, utilizing surveys and digital mapping tools such as ArcGIS Survey123 Connect (ESRI 2020) and The Social Values for Ecosystem Services (SolVES 4.0) to collect and analyze data from multiple social actors. This integration of technological tools and participatory methods allowed for a more comprehensive understanding of the social values and ecosystem services associated with urban rivers.

An urban river. Photo by alcides OTA used under a CC BY-NC 2.0 license.

In summary, this groundbreaking study highlights the importance of urban rivers as providers of ecosystem services and their role in the quality of life of urban communities. By understanding and valuing the social and cultural aspects of river ecosystems, effective management strategies can be developed to promote the restoration and conservation of these critical natural resources. Active community participation is essential in achieving sustainable management of urban rivers and ensuring a prosperous future for future generations.

Research article:

Alvarado-Arias N, Moya-Almeida V, Cabrera-Torres F, Medina-Enríquez A (2023) Evaluation and mapping of the positive and negative social values for the urban river ecosystem. One Ecosystem 8: e101122. https://doi.org/10.3897/oneeco.8.e101122

Follow One Ecosystem on social media:

When life gives you zebra mussels

The ease with which this Ponto-Caspian bivalve is being spread by the pet trade on both sides of the Atlantic is a major concern.

Guest blog post by James Dickey

The role played by the global pet trade in the spread of invasive alien species is increasingly gaining attention. Media outlets have excitedly picked up on stories of released goldfish growing to the size of rugby balls, Amazonian catfish appearing in Scottish rivers, and North American crayfish terrorising Tiergarten tourists in Berlin. In recent years I’ve been drawn to these stories, despite the simplistic, repetitive plot: well-meaning but feckless owners can no longer give pets the care they deserve, they struggle to rehome the pets, they release the pets into the wild, chaos ensues.

This happens more than you might think, with pet releases deemed responsible for 53% of invasive vertebrate species and one third of all aquatic invasive species. It has been shown that the more readily available a species is in the pet trade, the greater the risk of it being released, or escaping, into the wild.

Somewhat fascinatingly, this also puts the trade at the mercy of pop culture influences. 1970s animated series “Rascal the Raccoon” is commonly blamed for Japan’s invasive racoon population, and demand for Trachemys scripta pets is said to have boomed in the 1990s due to “Teenage Mutant Ninja Turtles.” Side note: the influence of movies highlighting the challenges of pet ownership, such as “Gremlins” or “Little Shop of Horrors”, warrants further study.

Hitchhikers

While invasion ecology has typically focused on these released species and the impacts that they cause, many species are sold with commensal organisms attached. These incidentally carried fauna are commonly known as “hitchhikers”.

Recent studies have found the protozoan Vorticella sp. and a species of bdelloid rotifer associated with two species of atyid shrimps, digenean larvae with the carnivorous snail Anentome helena, and an epibiont, Diceratocephala boschmai, on New Guinean ornamental Cherax crayfish.

Temnocephalid eggs located on thorax carapace (white arrow) of adult Cherax monticola. From Ložek F, Patoka J, Bláha M. 2021. Another hitchhiker exposed: Diceratocephala boschmai (Platyhelminthes: Temnocephalida) found associated with ornamental crayfish Cherax spp. Knowl. Manag. Aquat. Ecosyst., 422, 25.

A high-profile example emerged in 2021 when zebra mussels (Dreissena polymorpha) were detected in 21 US states on aquarium moss balls that had been imported from Ukraine, and subsequent searches revealed the species in 600 locations in Canada. Similar findings have since emerged from Europe. Having colonised both European and North American waters, the ease with which this Ponto-Caspian bivalve is being spread by the pet trade on both sides of the Atlantic is a major concern. Zebra mussels have been listed as one of the IUCN’s “100 of the Worst Invasive Species”, and their myriad ecological and economic impacts range from habitat alteration, to competition with native unionids, to disruption of food-web structure, to blocking industrial water intake pipes. They are also able to attach to boat hulls and other organisms, facilitating further spread.

The discovery

Zebra mussels, Dreissena polymorpha, found amongst ordered European pond snail, Viviparus viviparus

I remember the moment clearly. I had ordered seventy-five Viviparus viviparus – a common European pond snail species – for behavioural studies at GEOMAR Helmholtz Centre for Ocean Research Kiel where I was based for lab work in the group of Elizabeta Briski. After some stress over posting delays and an increasingly fraught relationship developing with the GEOMAR receptionist, the snails arrived. Over the next day, watching them go about their lives in our climate chamber in their new tanks became a favourite way to spend working breaks. With obvious dimorphism you could clearly tell males from females, which added to the developing snail soap operas. However, just before packing up to leave the lab, I noticed a huge lump on one snail. What on earth is that? Soon I noticed a second. I called Elizabeta with my suspicions, which she confirmed the next day. Photos were taken, measurements made, and our go-to ecological geneticist Reid Brennan was begged to work his DNA sequencing magic. Before long, it was all confirmed: we had zebra mussels.

Potential implications

The biggest takeaway message here is that even native species in the pet trade can facilitate the spread of non-native hitchhikers. In a parallel universe, those snails did not go to an invasion ecology lab but rather to someone keen to stock their garden pond. Escape from ponds is a major pathway for freshwater species introductions, and even if the impact of a native species escaping might be limited, its potential for the zoochorous dispersal of a non-native should not be ignored.

Zebra mussels, Dreissena polymorpha, found amongst ordered European pond snail, Viviparus viviparus.

Of course, questions surround the conditions under which the pond snails were held before selling. Were they stocked in zebra mussel infested outdoor ponds? Which other species are held in a similar way? How prevalent are these practices within the trade? One way of combating this risk of non-native species spread is via legislation. Calls have been made for white lists of low-risk species that can be sold in the trade in place of risky species, but in our study, the issue stems from the selling of a native species within its native range, which would surely be deemed low-risk.

We propose that should a white-list system be adopted, the potential for a “low-risk” species to transport invasive species must be accounted for. We also call for stricter biosecurity practices to be enforced, including regular checking and disinfecting of outdoor stock ponds where appropriate. Tools such as environmental DNA surveillance could be used to effectively detect the presence of targeted invasive species, as part of biosecurity “audits”. However, for the time being, a desperate, final line of defence is to raise awareness amongst consumers and for them to be wary of unwanted hitchhikers.

References:

Dickey JWE, Brennan RS, Chung SS, Jeschke JM, Steffen GT, Briski E (2023) More than we bargained for: Zebra mussels transported amongst European native freshwater snails. NeoBiota 10: 1–10. https://doi.org/10.3897/neobiota.83.97647

DeRoy EM, Scott R, Hussey NE, MacIsaac HJ (2020) Density dependence mediates the ecological impact of an invasive fish. Diversity and Distributions 26: 867–880. https://doi.org/10.1111/ddi.13063

Gippet JMW, Bertelsmeier C (2021) Invasiveness is linked to greater commercial success in the global pet trade. Proceedings of the National Academy of Science USA 118. https://doi.org/10.1073/pnas.2016337118

Lozek F, Patoka J, Bláha M (2021) Another hitchhiker exposed: Diceratocephala boschmai (Platyhelminthes: Temnocephalida) found associated with ornamental crayfish Cherax spp. Knowledge and Management of Aquatic Ecosystems 2020-Janua. https://doi.org/10.1051/kmae/2021023

Militz TA, Foale S (2017) The “Nemo Effect”: Perception and reality of Finding Nemo’s impact on marine aquarium fisheries. Fish and Fisheries 18: 596–606. https://doi.org/10.1111/faf.12202

Padilla DK, Williams SL (2004) Beyond ballast water: Aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in Ecology and the Environment 2: 131–138. https://doi.org/10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2

Patoka J, Patoková B (2021) Hitchhiking Exotic Clam: Dreissena polymorpha (Pallas, 1771) Transported via the Ornamental Plant Trade. Diversity 13: 1–5.

Patoka J, Magalhães ALB, Kouba A, Faulkes Z, Jerikho R, Vitule JRS (2018) Invasive aquatic pets: Failed policies increase risks of harmful invasions. Biodiversity and Conservation 27: 3037–3046. https://doi.org/10.1007/s10531-018-1581-3

Richardson MJ, Whoriskey FG, Roy LH (1995) Turbidity generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds. Journal of Fish Biology: 576–585.

Saul WC, Roy HE, Booy O, Carnevali L, Chen HJ, Genovesi P, Harrower CA, Hulme PE, Pagad S, Pergl J, Jeschke JM (2017) Assessing patterns in introduction pathways of alien species by linking major invasion data bases. Journal of Applied Ecology 54: 657–669. https://doi.org/10.1111/1365-2664.12819

Simberloff D (2006) Risk assessments, blacklists, and white lists for introduced species: Are predictions good enough to be useful? Agricultural and Resource Economics Review 35: 1–10. https://doi.org/10.1017/S1068280500010005

Stanicka A, Maciaszek R, Cichy A, Templin J, Świderek W, Żbikowska E, Labecka AM (2022) Unwanted ‘hitchhikers’ of ornamental snails: A case report of digeneans transported via the international pet trade. The European Zoological Journal 89: 601–607. https://doi.org/10.1080/24750263.2022.2065039

Zeng Y, Shakir KK, Yeo DCJ (2019) Competition between a native freshwater crab and an invasive crayfish in tropical Southeast Asia. Biological Invasions 21: 2653–2663. https://doi.org/10.1007/s10530-019-02009-6

A new “groins of fire” frog, from the Peruvian Amazon

“When we found this new species in the Amazon lowlands of central Peru, we were quite surprised and kind of speechless.”

Guest blog post by Germán Chávez

As a South American herpetologist, it is inevitable to be absolutely buzzed every time I hear “Germán, you have to go to the Amazon jungle”. Going to the Amazon forest in Peru is perhaps the most joyful way to do your work. The chances to find so many frogs, lizards, snakes, turtles, and even caimans are really high, so one can’t help but get excited.

The Agua Blanca forest. Photo by Germán Chávez

The thing is, to someone like me who focuses their work on describing new species, the expectations shouldn’t be that high. The Amazon has always been a place full of mysteries, so many explorers, seduced by its enigmatic atmosphere, have gone deeper and deeper into the Amazonia. This has resulted in the description of so many species and very few unexplored places left.

So, when Wilmar Aznaran and I found this new species in the Amazon lowlands of central Peru, a well-visited area, we were quite surprised and kind of speechless. I have to confess that my reaction was “Bloody hell!” Externally, the frog is clearly different from any other similar species, and that was evident for us at the very moment we caught it. Indeed, the first option for the title of our new paper in Evolutionary Systematics was “Expect the unexpected: a new treefrog from the Amazon lowlands of Peru.” We could not believe that a medium-sized arboreal frog had passed in front of other researchers’ eyes, and remained unseen.

Scinax pyroinguinis. Photo by Germán Chávez

Soon we found out that it is not a common species in the area: after catching two individuals, we were unable to find more. Not ready to give up, we went once more time to that site a few months later and our efforts to find it were unsuccessful, so we suggest it is not a common frog.

At that point, we knew that we had a new species on hands, but describing it with only two specimens was challenging. Luis A. García-Ayachi went to the area and his efforts were also unsuccessful. That is when Alessandro Catenazzi joined us, so we decided to add an integrative approach to our work, basing our research on morphological and genetic differences. I can only say thanks to all our co-authors: from then on, everything started to work out.

Scinax pyroinguinis. Photo by Germán Chávez

We noticed there were wildfires in the area, are a serious threat to the frog’s habitat. So it is really curious that the orange pattern on the groins, thighs and shanks of the new species, resembles flames, like those threatening its habitat. No better name for our frog than Scinax pyroinguinis, which literally means “groins of fire”.

We hope that this discovery encourages people  and institutions to protect these remnant forests in central Peru, because they may yet harbour unknown species. If these forests disappear, we will probably lose a diversity that we do not even know now yet, and may never will. It is sort of a race against deforestation and habitat loss, but this doesn’t mean there’s nothing we can do. Research like ours is really important to help put the focus on this place, at least in the short term, and try to attract people to join forces in the conservation of Scinax pyroinguinis and its habitat.

Research article:

Chávez G, Aznaran W, García-Ayachi LA, Catenazzi A (2023) Rising from the ashes: A new treefrog (Anura, Hylidae, Scinax) from a wildfire-threatened area in the Amazon lowlands of central Peru. Evolutionary Systematics 7(1): 183-194. https://doi.org/10.3897/evolsyst.7.102425

The amazing diversity of the Caribbean pygmy jumping leaves

Pygmy grasshoppers come in many shapes and colors and are often exciting to see, but their taxonomy is a mess.

Guest blog post by Josip Skejo & Niko Kasalo

A lovable mess

Tetrigidae, commonly known as pygmy grasshoppers, are an ancient and diverse family, currently numbering about 2000 species. As their name suggests, tetrigids are very small; their largest representatives are barely several centimeters long, so they might be difficult to spot on a casual stroll through tropical vegetation. However, when they are spotted, they are immediately recognizable by their elongated pronotum, a hard structure that starts behind the head and covers the entire body like a hood. They come in many shapes and colors and are often exciting to see, but this comes with a price—the taxonomy of Tetrigidae, the way they are organized into natural groups, is a mess. This is where we come in.

In our latest paper, we dealt with Choriphyllini, a small Caribbean tribe that belongs to the subfamily Cladonotinae. This subfamily had been filling up with unrelated but similar-looking tetrigids for more than a century. It had never been clearly defined so almost everything wingless and robust was assigned to Cladonotinae. We decided to put an end to this by slowly removing the superficially similar genera from the subfamily and describing tribes to group the genera that are clearly related to each other. We piloted this system just last year, when we described the tribe Valalyllini from Madagascar, with only two endemic (and endangered) genera and species.

The diversity and the distribution of the tribe Valalyllini, the Malagasy dead-leaf-like Cladonotinae. Both species are endemic to small areas and are likely endangered because of deforestation. Both species most probably inhabit rainforest leaf litter.

Put the species of Choriphyllini and Valalyllini together, mix them up, and try to guess which belongs where—this is no simple task; they are all doing their impressions of dead leaves that our primate brains struggle to differentiate. And there’s more: such leaf-like grasshoppers live in Africa and South East Asia as well, and then there are those that look like twigs and spiky tree bark.

Only now that we have an idea of what the true Cladonotinae are can we be properly amazed by the duality they represent to us. On the one hand, they are incredibly diverse with every species having its own variation on the basic shape. On the other, they are so alike that they either represent the best example of convergent evolution ever documented or they all stem from a common ancestor that is currently supposed to have lived during the Mesozoic. The evolutionary history of Cladonotinae will take many years to unravel, but the work can only begin after we define what to call by that name.

Valalyllum folium, a member of the tribe Valalyllini, subfamily Cladonotinae. This species, endemic to Madagascar, is a relative of Choriphyllini.

It only took 250 years

The first species of Choriphyllini, Phyllotettix rhombeus, was described in 1765 as Cicada rhombea, that is, as a member of an entirely different order of insects. Continuing in this manner, many authors (including the great Linnaeus himself) made many taxonomic and nomenclatural mistakes that compounded over the centuries and made these grasshoppers difficult to identify and refer to. It didn’t help that new species and new records kept being reported without being contextualized by comprehensive literature reviews. Like detectives, we followed the scattered crumbs of data and arrived at a synthesis that will make future research in the region much more pleasant.

Hancock’s plate I from the “Tettigidae of North America” shows leaf-like Caribbean species under the numbers 1), 2) and 7), but has many taxonomic and nomenclatural errors. 1) – Phyllotettix foliatus (= female holotype of Hancock’s Choriphyllum foliatum), 2) – Phyllotettix rhombeus (= Hancock’s Choriphyllum westwoodi), 7) – Choriphyllum saussurei. (= Hancock’s Phyllonotus saussurei). Source: Biodiversity Heritage Library, available at https://www.biodiversitylibrary.org/item/25899#page/10.

This is not where interesting facts about Phyllotettix rhombeus stop. While looking through the literature, we tried to extract the measurements of drawings. Most of the drawings had a scale bar printed next to them, but the archaic usage of “lines” as the standard measurement initially gave us some trouble. That is why at first we doubted one of our most fascinating discoveries: with the pronotal length measuring nearly 3 centimeters, Phyllotettix rhombeus is the largest tetrigid ever recorded! Many, many authors dealt with this species over the last 250 years, but this record was never made explicit.

It should not go unnoticed now that its proposed common name is “Jamaican Colossal Jumping Leaf”. Inspired by this, we took the measurements of the other species as well and made a figure where all the specimens are resized to a common scale, which shows the diversity of both shapes and sizes.

The genera and species of the tribe Choriphyllini. All specimens are drawn to scale.

Besides P. rhombeus, there are three more species in the genus Phyllotettix: P. plagiatus, P. foliatus, and P. compressus. All four of them are known only from Jamaica. P. foliatus and P. compressus are known from the Blue Mountains, but for the other two no precise localities are known; we still don’t know where exactly the largest tetrigid lives. The other genus of the tribe is Choriphyllum, also with four species. Three of them, C. sagrai, C. saussurei, and C. wallaceum live in Cuba, while C. bahamense is all alone on Hummingbird Cay island in the Bahamas. The easiest way to differentiate these two genera is a little strange but practical, the tallest point of the leaf-like crest in Choriphyllum species is in the front, while in Phyllotettix species it is in the back.

A map of all known Choriphyllini records. For three species, not a single precise locality is known.

Some Caribbean leaves dance and jump

For each species, we proposed a common name as a means to give these animals even more character. Names, such as “Jamaican Bitten Jumping Leaf” and “Old Cuban Dancing Leaf” may not be “official”, but they have certainly found their audience. The tweet in which we shared the collage of all the species was viewed over 17000 times; everyone was amazed by the pretty shapes and some even noted that they especially liked the crazy common names. We were very glad to see our scientific and artistic package that is Choriphyllini be so warmly received.

Another hit on Twitter, with over 20000 views, is the post showcasing the newly-described species from Cuba, Choriphyllum wallaceum. The holotype of this species has been awaiting description for a long time. We found it in Museo Nacional de Ciencias Naturales in Madrid, Spain, with a note from Ignacio Bolívar, the father of the Tetrigidae classification system. He referred to it as “Choriphyllum Seoanei” but never managed to publish it.

This “new” species presented us with the perfect opportunity to honor the 200th anniversary of Alfred Russel Wallace’s birth. Wallace is often called the “father of biogeography” but is all too often neglected when discussing the origins of the theory of evolution, with which Charles Darwin is considered synonymous. Wallace, with his independent arrival at the key concepts of the evolutionary theory, his correspondence with Darwin, and his staunch defense of Darwin’s ideas, was (and is) at the very least equal to Darwin and deserves much more recognition than he currently gets.

Choriphyllum wallaceum, a newly-described species from Cuba, named after Alfred Russel Wallace.

This is just the start

Choriphyllini are a pretty package, but one that merely introduces the real problem. The history of this tribe is long, yet we have very few specimens to work with. Although we have an understanding of how morphology varies within species, P. compressus and P. foliatus are not only suspiciously similar to each other, but they also live in the same general area of the Blue Mountains. It remains to be seen if they are in fact a single species.

Much more pressing is that we have only a vague idea of where these animals live and how their populations are impacted by various factors such as human activity and climate change—we do not have a baseline against which to assess their conservation status. Then there is the fact that there are many more islands in the Caribbean, making the possibility of discovering new Choriphyllini species on them real and exciting. We can only guess what the future holds for these neglected animals.

Old Cuban Dancing Leaf (Choriphyllum sagrai) in its natural environment among the leaf litter in Cuba, photographed by Sheyla Yong.

The stage is set; everything we know about this group is laid out in the paper and now there is no path but forward. Research is expensive, dedication to this work takes a certain kind of soul, and everything takes time. It is our sincere hope that someone someday takes this further. The pygmy jumping leaves will wait for as long as they can, on their islands, hopping without a care in the world.

References:

Deranja M, Kasalo N, Adžić K, Franjević D, Skejo J (2022) Lepocranus and Valalyllum gen. nov. (Orthoptera, Tetrigidae, Cladonotinae), endangered Malagasy dead-leaf-like grasshoppers. ZooKeys 1109: 1-15. https://doi.org/10.3897/zookeys.1109.85565

Skejo J, Yong S, Bogić D, Kasalo N (2023) Caribbean pygmy jumping leaves (Tetrigidae, Cladonotinae, Choriphyllini). Deutsche Entomologische Zeitschrift 70(1): 129-141. https://doi.org/10.3897/dez.70.98982

Tax man turned taxonomist: a citizen scientist’s journey into botany

“I have absolutely no formal training in botany, but now I find myself as a coauthor in the publication of 18 new species in Costaceae.”

Guest blog post by David Skinner

Costus prancei, one of the 18 newly described species in Costaceae.

I am a retired government bureaucrat who worked for 40 years as an administrator in state and federal taxation. I have absolutely no formal training in botany, but now I find myself as an active participant in a major taxonomic revision and a coauthor in the publication of 18 new species in a plant family called Costaceae. This is the story of how my gardening hobby turned into an avocation and led me to work with some of the premier botanists in the world. It is also the story of how I have met several other plant enthusiasts from countries throughout the tropics who have contributed so very much to our work. I write this story in the hopes of encouraging more professional scientists to incorporate the observations of such “citizen scientists” in their research, and to encourage these enthusiasts to more carefully document their observations and post their photos and notes to resources like Inaturalist.org.

My story started about 30 years ago when my wife gave me a rhizome of the white butterfly ginger (Hedychium coronarium) as a Christmas present. I became interested in gingers, species of the family Zingiberaceae, but soon my interests began to focus almost exclusively on the closely related “spiral gingers” in the family Costaceae. I loved the architecture of the plants with their spiral staircase of leaves leading up to a variety of shapes and colors of bracts and flowers. I started collecting any cultivated Costus plants I could find in nurseries or mail-order catalogues. Soon, I learned that only a few species can survive outdoors in the winter where I live, so built a greenhouse.

Costus convexus, one of the 18 newly described species in Costaceae.

My serious interest in Costaceae began after I obtained a copy of the 1972 monograph of New World Costaceae by Dr. Paul Maas. It became my bible.

As I studied his descriptions of the species and applied his identification keys to the cultivated plants, I soon realized that many of the popular Costus species in cultivation had been incorrectly identified. I started doing presentations to garden clubs and posting to online groups. I developed a website called “Gingers ‘R’ Us.”

My “real job” had me traveling to Washington, DC periodically and I always tried to carve out time to visit Mike Bordelon at the Smithsonian Greenhouses in Suitland, Maryland. On one of these trips, I met Dr. Chelsea Specht, who was working at the Smithsonian Institution as a postdoctoral fellow.

Chelsea Specht and Mike Bordelon at the Smithsonian Greenhouses in 2004.

She had written what I believe is the first molecular study in Costaceae in 2001.This opened up a whole new world of interest for me as I tried to understand these new-to-me terms, like “clades” and “phylogenetic relationships”. In this paper she introduced the new generic divisions of the family that were solidified five years later in a more complete phylogenetic study . Chelsea very patiently answered my novice questions about phylogenetic trees and how they relate to the taxonomy of the plants.

Reinaldo Aguilar in 2013 at the type locality of Costus maritimus, now a synonym in the Costus comosus complex.

In 2005 I made my first trip to the New World tropics looking for Costus in its native habitat. On the Osa Peninsula of Costa Rica, I was incredibly lucky to meet Reinaldo Aguilar, the world-famous “para-taxonomist” who has studied the plants of the Osa for over 30 years. He is is self-taught like me and does not have a botanical degree, but has coauthored many scientific articles. He worked closely with the late Scott Mori of the New York Botanical Garden and was honored in a 2017 article in NYBG Science Talk.

That first trip to Costa Rica had me hooked. I fell in love with tropical forests and over the next few years made trips to several other Latin American countries as well as back to Costa Rica. Always, my focus was on Costus and the other members of its family.

Along the way, I met several “unsung heroes” in the plant world,  like Marco Jiménez Villata, whom I met in the town of Zamora in southern Ecuador. Marco specializes in orchids, but he is also a generalist and knows a lot about the plants of southern Ecuador. He (now retired) was a school administrator and had traveled to many remote villages in the province and was always on the lookout for interesting plants. I have traveled with Marco and his son Marco Jiménez León several other times and we have become good friends.

Marco Jimenez and son Marco with Costus convexus.

In 2015 we went to the type locality of the species Costus zamoranus and took the first photographs of this species. At that trip, Marco showed me an area of high elevation near the Podocarpus National Park, where I found an unusual-looking Costus that we are now describing as Costus oreophilus. He also showed me unexplored places where I found another new species, Costus convexus. I made sure we credited him with his role in the discovery and documentation of those new species in our publication in PhytoKeys.

I have also traveled several times in Panama and Ecuador with another very well known, but non-doctorate plant enthusiast – Carla Black. Carla is the president of the Heliconia Society International, an organization uniting enthusiasts (scientists and non-scientists) in the order Zingiberales.

Carla Black with Juan Carlos Amado on the old Camino Real.

In 2015 we searched for the critically endangered Costus vinosus. We found a few plants growing deep in the forest of the Chagres National Park along an old Spanish trail used to transport gold to the Atlantic coast. There is still a mystery regarding the true form of the flower of C. vinosus, and I am in touch with another Inaturalist observer who has found it (not in flower) in the mountains northeast of Panama City. He will let me know when he finds it in flower!

Costus callosus, one of the 18 newly described species in Costaceae.

In 2019 Carla and I visited the “Willie Mazu” site in Panama to photograph and study the new species Costus callosus, and in Santa Fé de Veraguas, we looked for a species proposed by Dr. Maas that is now described as Costus alleniopsis.

My serious collaboration with Dr. Maas began in 2017, when I was preparing for a trip to Oaxaca in southern Mexico. He asked me to be on the lookout for  two species of Costus from that region that he had identified as new based solely on his examination of herbarium specimens, without any good data on the floral parts.

By that time, I was posting my Costus observations on Inaturalist.org and using that resource to look for interesting plants. I also used it to find plant people to contact for local information. For this Mexico trip I found a huge number of observations posted by Manuel Gutiérrez from Oaxaca City.

Manuel Gutiérrez photographing the plant that turned out to be Costus sepacuitensis.

I found that he had extensive knowledge of the Chinantla region in the mountains east of Oaxaca City and had worked with the indigenous tribe there. Together, we explored the indigenous lands of Santa Cruz Tepetotutla.

We found many plants in flower of what Dr. Maas wanted to describe as Costus alticolus. We also found the species he planned to describe as Costus oaxacus, but I later found the same species in Guatemala, already described as Costus sepacuitensis.

Later I learned of the plans to prepare a complete revision to the taxonomy of the New World Costaceae. Together with Paul and Hiltje Maas, we spent several days at the Naturalis Herbarium in Leiden, comparing my photos against the hundreds of Costus herbarium specimens there. I had a long list of species that was curious about, and we were able to get through it and figure out what questions remained, even though we had not come up with all the answers.

Dave Skinner and Paul Maas discussing some Costus spp. in Leiden in 2017.

It was soon apparent that there are major changes needed in the taxonomy and nomenclature of these plants, and that information from the field would be an essential supplement to the observations made from the herbarium specimens.

Paul and Hiltje Maas in Leiden in 2017.

In 2016 I visited the type locality of Costus laevis in central Peru. I was surprised to find that the plants there are nothing at all like the Costus laevis of Central America, but match perfectly to the herbarium specimen that was deposited in Spain over 230 years ago. It was clear to me that the herbarium specimen designated as the type had been misinterpreted. I wrote an article explaining the problem – but I had no idea what the solution might be.

Dr. Maas agreed that there was a problem with that species that we eventually resolved. This resolution will be a part of the forthcoming revision of the New World Costaceae that is in preparation, nearing completion.

An image of Costus guanaiensis posted by Anthony Batista on iNaturalist.org on October 27, 2021.

Another major problem involved the Costus guanaiensis complex. Paul and Hiltje, along with Chelsea, had visited the New York Botanical Garden Herbarium, where the holotype of that species is held, and realized that it had been misinterpreted due to the lack of a good flower description. What had been identified as Costus guanaiensis in the herbarium was actually a completely different species that Maas had planned to describe as a new species.

Dave Skinner with a plant in cultivation of Costus gibbosus at Rio Palenque Science Center, Ecuador.

The entire C. guanaiensis complex needed name changes and redefinitions of species boundaries, ultimately resulting in the description of Costus gibbosus that is published in PhytoKeys. The resolution of the other members of that complex will be explained in the forthcoming revision. Over the next several years, Paul and I exchanged 1,626 emails (yes, I counted them – with the help of MS Outlook) pounding out the details of the changes needed in the taxonomy of New World Costaceae. In collaboration with him, I made many more field trips to resolve the remaining questions we had.

My extensive collaboration with Paul Maas has been one of the most rewarding experiences of my lifetime. He has taught me so much about the rules of nomenclature and the process of describing a new species. The one thing he could never teach me was his almost uncanny ability to look at a dried herbarium specimen and make a determination of the species. I suppose that only comes from experience as  he has examined over 11,000 specimens of Costaceae that will become our list of exxicatae when the full revision is published.

I should not fail to mention my time working with Dr. Thiago André. In 2014 I flew to Rio de Janeiro and then Thi and I, along with his academic advisor and another student, went to the state of Espirito Santo to look for the endangered species Chamaecostus cuspidatus. Thi has been our expert in that genus and has helped with the review of the new species published in PhytoKeys, Chamaecostus manausensis. In 2014 he was still finishing his doctorate and was in process of preparing a molecular phylogeny and morphological study of the species complex of Chamaecostus subsessilis.

Thiago André with Chamaecostus cuspidatus in 2014.

Thi and I have stayed in close contact, and he came to Florida one year to visit in my home and see the Costaceae in my private garden, Le Jardín Ombragé. He is now a professor at the Universidade de Brasília.

Finally, I should discuss my collaboration with Eugenio Valderrama and the other members of the Specht Lab at Cornell University. In 2018 I went to Cornell to visit Eugenio and we discussed the sampling to be used in the molecular phylogeny that will be a very important part of the full revision when it is published.

Eugenio Valderrama and Chelsea Specht with Costus convexus.

At Cornell, Eugenio produced a novel baiting schema for extracting specific genes from across all Costus species and in 2020 published a paper. With further sampling, another paper was published in 2022 to reveal interesting data on a whole package of pollination-related characters, and how they show evidence of convergent evolution. Eugenio’s phylogenies very well support the new species we are publishing in PhytoKeys, and the full molecular phylogeny will be included in our full revision when it is published.

Eugenio checking out a Renealmia sp. Antioquia, Colombia 2022.

Just this past December I went to Colombia to attend the Heliconia Society Conference at Quindío, and Eugenio and I each made presentations there about our work with Costaceae. Then we traveled together to investigate several other interesting species of Costaceae, including the new species Costus antioquiensis, and a strange yellow bracted form of Costus comosus found in the species-rich area of San Juan de Arama in Meta.

How did I know to look there? An observer, a citizen scientist, had posted his records and photos on Inaturalist.org. I have my account set to filter all Costaceae and send me a daily email with all the new postings of the family, and this plant will now be appearing as a sample in a molecular phylogeny and as an observed species in a monograph.

I hope this blog article will provide some background and insight into what I think must be an unusual collaboration between a citizen scientist and the much more qualified lead authors of our PhytoKeys article describing eighteen new species in Costaceae. It has certainly been a rewarding experience for me, and I hope other plant enthusiasts will be encouraged to share their observations on forums like Inaturalist.org, providing detailed and accurate information and photos. At least for the one plant family I have some expertise in, I will continue to monitor and curate those observations on Inaturalist.

 To see all of my own field observations of Costaceae, including the new species we are describing in PhytoKeys, go to https://www.inaturalist.org/observations?user_id=selvadero.

References

André T, Specht CD, Salzman S, Palma-Silva C, Wendt T (2015) Evolution of species diversity in the genus Chamaecostus (Costaceae): Molecular phylogenetics and morphometric ap­proaches. Phytotaxa 204(4): 265-276. https://doi.org/10.11646/phytotaxa.204.4.3

Maas, P. J. M. (1972). Costoideae (Zingiberaceae). Flora Neotropica 8, 1–139. doi: 10.1093/aob/mch177

Maas PJM, Maas-van de Kamer H, André T, Skinner D, Valderrama E, Specht CD (2023) Eighteen new species of Neotropical Costaceae (Zingiberales). PhytoKeys 222: 75-127. https://doi.org/10.3897/phytokeys.222.87779

Salzman S, Driscoll HE, Renner T, André T, Shen S, Specht CD (2015) Spiraling into his­tory: A molecular phylogeny and investigation of biogeographic origins and flo­ral evolution for the genus Costus. Systematic Botany 40(1): 104–115. https://doi.org/10.1600/036364415X686404

Skinner D (2008) Costus of the Golfo Dulce Region. Heliconia Society Bulletin 14(4):1-6

Skinner D and Jiménez M (2015) Costus zamoranus: An endemic species to Zamora-Chinchipe Province in Southeastern Ecuador. Heliconia Society Bulletin 21(3):4-9

Skinner D (2016) Following Ruiz. Heliconia Society Bulletin 22(4): 7–14.

Skinner D and Black C. (2016) Search for the Mysterious Lost Plant (Costus vinosus). Heliconia Society Bulletin 22(3):1-3

Skinner D (2019) A Tale of Two Costus (Costus sepacuitensis) and Costus cupreifolius) Heliconia Society Bulletin 25(1):1-3

Specht CD, Kress WJ, Stevenson DW, DeSalle R (2001) A molecular phylogeny of Costa­ceae (Zingiberales). Molecular Phylogenetics and Evolution 21(3): 333–345. https://doi.org/10.1006/mpev.2001.1029

Specht CD, Stevenson DW (2006) A new phylogeny-based generic classification of Costaceae (Zingiberales). Taxon 55(1): 153–163. https://doi.org/10.2307/25065537

Valderrama E, Sass C, Pinilla-Vargas M, Skinner D, Maas PJM, Maas-van de Kamer H, Landis JB, Guan CJ, AlmeidaA., Specht CD (2020) Unraveling the spiraling radiation: A phylogenomic anal­ysis of neotropical Costus L. Frontiers in Plant Science 11: 1195. https://doi.org/10.3389/fpls.2020.01195

Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kamer H, Sass C, Pinilla-Vargas M, Guan CJ, Phillips R, Almeida A, Specht CD (2022) The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L.Frontiers in Plant Science 13: https://doi.org/10.3389/fpls.2022.874322

Where did all those insects come from? Tracking the history of insect invasion in Chile

Going through centuries-old literature, researchers compiled a database of the exotic insects established in the country.

Guest blog post by Daniela N. López, Eduardo Fuentes-Contreras, Cecilia Ruiz, Sandra Ide, Sergio A. Estay

Understanding the history of non-native species arrivals to a country can shed light on the origins, pathways of introduction, and the current and future impacts of these species in a new territory. In this sense, collecting this information is important, and sometimes essential, for researchers and decision makers. However, in most cases, reconstructing this history takes a lot of work. Finding antique references is hard work. To add more complexities, changes in the taxonomy of species or groups could be frustrating as we try to track the moment when a species was referenced in the country for the first time, sometimes centuries ago. Of course, we only learned about these issues when, almost seven years ago, we thought that compiling a database for the exotic insects established in Chile would be interesting to people working on invasive species in the country.

Tremex fuscicornis caught in Chile. Photo by Sergio Estay

First, we collected information from physical and electronic books and journals available in our institutional libraries, but soon we noticed that we needed a more significant effort. In Chile, the National Library and The National Congress library allowed us to review and collect information from texts, in many cases, over a hundred years old. We also had to request information from foreign specialized libraries and bookstores. Sometimes, we had to negotiate with private collectors to buy antique books or documents. When we figured the first version of the database was ready, we began a second step for detecting errors, correcting the taxonomy, and completing the information about the reported species.

Ctenarytaina eucalypti individuals and damage in Chile. Photo by Sergio Estay

The analysis began when we finally completed the database. What types of questions could we answer using this data? Was the database complete enough to detect historical, biogeographic, and ecological patterns? Two competing hypotheses were the starting point for the study at this stage. On the one hand, the species that dominated the non-native insect assemblage could have come from original environmental conditions that matched Chile’s. Or, the pool of non-native insects arrived using pathways associated with the country’s economic activities, regardless of their origin.

We found records of almost 600 non-native insect species established in continental Chile. Most species corresponded to Hemiptera (true bugs and scales, among others) from Palaearctic origin and were linked to agriculture and forestry, as we initially hypothesized. These characteristics point to the central role of intercontinental human-mediated transport in structuring non-native insect assemblages in Chile. Non-native insect introductions began immediately after the arrival of Europeans to the central valley of Chile and have shown an enormous acceleration since 1950. Using data on the economic history of Chile, we can preliminary link this acceleration with the strong development in agriculture and forestry in Chile after World War II and the increase in intercontinental air traffic.

Exotic aphids in garden in Chile. Photo by Sergio Estay

The development and analysis of this database gave us some preliminary answers about the ecology of invasive insect species and opened the door to new questions. Also, this is a work in progress. We need the scientific community’s support to improve and correct the records, provide new reports and collect further references to support the database. Our data and analysis may be representative of other countries in South America. Similarities between our countries can facilitate using this information to manage recent introductions and prevent significant economic, social, or environmental damage.

Reference

López DN, Fuentes-Contreras E, Ruiz C, Ide S, Estay SA (2023) A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NeoBiota 81: 183-197. https://doi.org/10.3897/neobiota.81.87362

EIVE 1.0 – The largest system of ecological indicator values in Europe

EIVE 1.0 is the most comprehensive system of ecological indicator values of vascular plants in Europe to date. It can be used as an important tool for continental-scale analyses of vegetation and floristic data.

Guest blog post by Jürgen Dengler, Florian Jansen & François Gillet

Geographic coverage of the 31 ecological indicator value systems that entered the calculation of the consensus system of EIVE 1.0 (image from the original article).

It took seven years and hundreds of hours of work by an international team of 34 authors to develop and publish the most comprehensive system of ecological indicator values (EIVs) of vascular plants in Europe to date.

EIVE 1.0 is now available as an open access database and described in the accompanying paper (Dengler et al. 2023).

EIVE 1.0 provides the five most-used ecological indicators, M – moisture, N – nitrogen, R – reaction, L – light and T – temperature, for a total of 14,835 vascular plant taxa in Europe, or between 13,748 and 14,714 for the individual indicators. For each of these taxa, EIVE contains three values: the EIVE niche position indicator, the EIVE niche width indicator and the number of regional EIV systems on which the assessment was based. Both niche position and niche width are given on a continuous scale from 0 to 10, not as categorical ordinal values as in the source systems.

Evidently, EIVE can be an important tool for continental-scale analyses of vegetation and floristic data in Europe.

It will allow to analyse the nearly 2 million vegetation plots currently contained in the European Vegetation Archive (EVA; Chytrý et al. 2016) in new ways.

Since EVA apart from elevation, slope inclination and aspect hardly contains any in situ measured environmental variables, the numerous macroecological studies up to date had to rely on coarse modelled environmental data (e.g. climate) instead. This is particularly problematic for soil variables such as pH, moisture or nutrients, which can change dramatically within a few metres.

Here, the approximation of site conditions by mean ecological indicator values can improve the predictive power substantially (Scherrer and Guisan 2019). Likewise, in broad-scale vegetation classification studies, mean EIVE values per plot would allow a better characterisation of the distinguished vegetation units. Lastly, one should not forget that most countries in Europe do not have a national EIV system, and here EIVE could fill the gap.

Violin plots showing largely continuous value distributions of the niche position and niche width values of the five indicators in EIVE 1.0 (image from the original article).

Almost on the same day as EIVE 1.0 another supranational system of ecological indicator values in Europe has been published by Tichý et al. (2023) with a similar approach.

Thus, it will be important for vegetation scientists in Europe to understand the pros and cons of both systems to allow the wise selection of the most appropriate tool:

  • EIVE 1.0 is based on 31 regional EIV systems, while Tichý et al. (2023) uses 12.
  • Both systems provide indicator values for moisture, nitrogen/nutrients, reaction, light and temperature, while Tichý et al. (2023) additionally has a salinity indicator.
  • Tichý et al. (2023) aimed at using the same scales as Ellenberg et al. (1991), which means that the scales vary between indicators (1–9, 0–9, 1–12), while EIVE has a uniform interval scale of 0–10 for all indicators.
  • Only EIVE provides niche width in addition to niche position. Niche width is an important aspect of the niche and might be used to improve the calculation of mean indicator values per plot (e.g. by weighting with inverse niche width).
  • The taxonomic coverage is larger in EIVE than in Tichý et al. (2023): 14,835 vs. 8,908 accepted taxa and 11,148 vs. 8,679 species.
  • EIVE provides indicator values for accepted subspecies, while Tichý et al. (2023) is restricted to species and aggregates. Separate indicator values for subspecies might be important for two reasons: (a) subspecies often strongly differ in at least one niche dimension; (b) many of the taxa now considered as subspecies have been treated at species level in the regional EIV systems.
  • Tichý et al. (2023) added 431 species not contained in any of the source systems based on vegetation-plot data from the European Vegetation Archive (EVA; Chytrý et al. 2016) while EIVE calculated the European indicator values only for taxa occurring at least in one source system. 
  • While both systems present maps that suggest a good coverage across Europe, Tichý et al. (2023)’s source systems largely were from Central Europe, NW Europe and Italy, but, unlike EIVE, these authors did not use source systems from the more “distal” parts of Europe, such as Sweden, Faroe Islands, Russia, Georgia, Romania, Poland and Spain, and they used only a small subset of indicators of the EIV systems of Ukraine, Greece and the Alps.
  • In a validation with GBIF-derived data on temperature niches, Dengler et al. (2023) showed that EIVE has a slightly stronger correlation than Tichý et al. (2023)’s indicators (r = 0.886 vs. 0.852).
The correlation of EIVE-T values of species with GBIF-derived temperature niche data was high and even higher when restricting the calculation to those species whose consensus value was based on at least four sources (image from the original article).

How did EIVE manage to integrate all EIV systems in Europe that contained at least one of the selected indicators for vascular plants, while Tichý et al. (2023) used only a small subset?

This difference is mainly due to a more complex workflow in EIVE (which also was one of the reasons why the preparation took so long). First, Tichý et al. (2023) restricted their search to EIV systems and indicators that had the same number of categories as the “original” Ellenberg system.

Second, from these they discarded those that showed a too low correlation with Ellenberg. By contrast, EIVE’s workflow allowed the use of any system with an ordinal (or even metric) scale, irrespective of the number of categories or the initial match with Ellenberg et al. (1991).

EIVE also did not treat one system (Ellenberg) as the master to assess all others but considered each of them equally valid. While indeed the individual EIV systems are often quite inconsistent, i.e. even if they refer to Ellenberg, the same value of an indicator in one system might mean something different in another system, our iterative linear optimisation enabled us to adjust all 31 systems for the five indicators to a common basis.

This in turn allowed deriving EIVE as the consensus system of all the source systems. The fact that in our validation of the temperature indicator, EIVE performed better than Tichý et al. (2023) and much better than most of the regional EIV systems might be attributable to the so-called wisdom of the crowd, going back to the statistician Francis Galton who found that averaging numerous independent assessments (even by laymen) of a continuous quantity can leads to very good estimates of the true value. 

Apart from the indicator values themselves, EIVE has a second main feature that might not be so obvious at first glance, but which actually took the EIVE team, including several taxonomists, more time than the workflow to generate the indicator values themselves: the taxonomic backbone. EIVE for vascular plants is fully based on the taxonomic concept (including the synonymic relationships) of the Euro+Med Plantbase.

However, since Euro+Med lacks an important part of taxa that are frequently recorded in vegetation plots, to make our backbone fully usable to vegetation science, we expanded it beyond Euro+Med to something called “Euro+Med augmented”. We particularly added hybrids, neophytes and aggregates, three groups of plants hitherto only very marginally covered in Euro+Med. All additions were done by experts consistently with the taxonomic concept of Euro+Med and are fully documented. Likewise, many additional synonym relationships had to be added that were missing in Euro+Med.

Finally, we implemented the so-called “concept synonymy” (see Jansen and Dengler 2010), which allows the assignment of the same name from different sources to different accepted names (“taxonomic concepts”). This applies mainly to nested taxa that are treated at different levels in different sources, e.g. once as species with several subspecies, once as aggregate with several species. However, there are also some cases of misapplied names (i.e. names that were not used in agreement with their nomenclatural type in certain EIV systems). Such cases generally cannot be solved by the various tools for automatic taxonomic cleaning, but require experts who make a case-by-case decision.

The whole taxonomic workflow of EIVE is fully transparent with an R code that “digests”:

(a) the names as they are in the source systems,

(b) the official Euro+Med database and

(c) tables that document our additions and modifications (with reasons and references).

This comprehensive documentation will allow continuous and efficient improvement in the future, be it because of taxonomic novelties adopted in Euro+Med or because EIVE’s experts decide to change certain interpretations. That way, “Euro+Med augmented” and the accompanying R-based workflow can also be a valuable tool for other projects that wish to harmonise plant taxonomic information from various sources at a continental scale, e.g. in vegetation-plot databases such as GrassPlot (Dengler et al. 2018) and EVA (Chytrý et al. 2016).

The publication of EIVE 1.0 is not the endpoint, but rather a starting point for future developments in a community-based approach.

Together with interested colleagues from outside, the EIVE core team plans to prepare better and more comprehensive releases of EIVE in the future, including updates to its taxonomic backbone.

Future releases of EIVE will be published in fixed versions, typically together with a paper that describes the changes in the content.

As steps for the next two years, we anticipate that we will first add further taxa (bryophytes, lichens, macroalgae) and some additional indicators, both of which are relatively easy with our established R-based workflow. Then we plan EIVE 2.0 that will use the approx. 2 million vegetation plots in EVA (Chytrý et al. 2016) to re-calibrate EIVE for all taxa (see http://euroveg.org/requests/EVA-data-request-form-2022-02-10-Dengleretal.pdf).

We invite you to get into contact with us if you have:

(a) a new or overlooked indicator value system for any taxonomic group in Europe and adjacent areas (including comprehensive datasets of measured environmental data in vegetation plots);

(b) suggestions for improvements of our taxonomic backbone;

(c) a paper idea in the EIVE context that you would like to realise together with the EIVE core team (since everything is OA, you can, of course, use EIVE 1.0 for any possible purpose without notifying us as long as you cite EIVE properly).

Last but not least, any test of the validity and performance of EIVE, alone or in comparison with Tichý et al. (2023), with in situ measured environmental variables, locally or even continentally, would be most welcome.

***

This Behind the paper post refers to the article Ecological Indicator Values for Europe (EIVE) 1.0 by Jürgen Dengler, Florian Jansen, Olha Chusova, Elisabeth Hüllbusch, Michael P. Nobis, Koenraad Van Meerbeek, Irena Axmanová, Hans Henrik Bruun, Milan Chytrý, Riccardo Guarino, Gerhard Karrer, Karlien Moeys, Thomas Raus, Manuel J. Steinbauer, Lubomir Tichý, Torbjörn Tyler, Ketevan Batsatsashvili, Claudia Bita-Nicolae, Yakiv Didukh, Martin Diekmann, Thorsten Englisch, Eduardo Fernandez Pascual, Dieter Frank, Ulrich Graf, Michal Hájek, Sven D. Jelaska, Borja Jiménez-Alfaro, Philippe Julve, George Nakhutsrishvili, Wim A. Ozinga, Eszter-Karolina Ruprecht, Urban Šilc, Jean-Paul Theurillat, and François Gillet published in Vegetation Classification and Survey (https://doi.org/10.3897/VCS.98324).

***

Follow the Vegetation Classification and Survey journal on Facebook and Twitter.

***

Brief personal summaries: 

Jürgen Dengler is a Professor of Vegetation Ecology at the Zurich University of Applied Science (ZHAW) in Wädenswil, Switzerland. Among others, he cofounded the European Vegetation Database (EVA), the global vegetation-plot database “sPlot” and the “GrassPlot” database of the Eurasian Dry Grassland Group. His major research interests are grassland ecology, grassland conservation, biodiversity patterns, macroecology, vegetation change, broad-scale vegetation classification, methodological developments in vegetation ecology and ecoinformatics.

Florian Jansen is a Professor of Landscape Ecology at the University of Rostock, Germany. His research interests are vegetation ecology and dynamics, mire ecology including greenhouse gas emissions, and numerical ecology with R. He (co-)founded the German Vegetation Database vegetweb.de, the European Vegetation Database (EVA), and the global vegetation-plot database “sPlot”. He wrote the R package eHOF for modelling species response curves along one-dimensional ecological gradients.

François Gillet is an Emeritus Professor of Community Ecology at the University of Franche-Comté in Besançon, France. His major research interests are vegetation diversity, ecology and dynamics, grassland and forest ecology, integrated synusial phytosociology, numerical ecology with R, dynamic modelling of social-ecological systems.

***

References: 

Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H.J., Aćić, S., (…) & Yamalov, S. 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science 19: 173–180.

Dengler J, Wagner V, Dembicz I, García-Mijangos I, Naqinezhad A, Boch S, Chiarucci A, Conradi T, Filibeck G, … Biurrun I (2018) GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia 48: 331–347.

Dengler, J., Jansen, F., Chusova, O., Hüllbusch, E., Nobis, M.P., Van Meerbeek, K., Axmanová, I., Bruun, H.H., Chytrý, M., (…) & Gillet, F. 2023. Ecological Indicator Values for Europe (EIVE) 1.0. Vegetation Classification and Survey 4: 7–29.

Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–248.

Jansen F, Dengler J (2010) Plant names in vegetation databases – a neglected source of bias. Journal of Vegetation Science 21: 1179–1186.

Midolo, G., Herben, T., Axmanová, I., Marcenò, C., Pätsch, R., Bruelheide, H., Karger, D.N., Acic, S., Bergamini, A., Bergmeier, E., Biurrun, I., Bonari, G., Carni, A., Chiarucci. A., De Sanctis, M., Demina, O., (…), Dengler, J., (…) & Chytrý, M. 2023. Disturbance indicator values for European plants. Global Ecology and Biogeography 32: 24–34.

Scherrer D, Guisan A (2019) Ecological indicator values reveal missing predictors of species distributions. Scientific Reports 9: Article 3061.

Tichý, L, Axmanová, I., Dengler, J., Guarino, R., Jansen, F., Midolo, G., Nobis, M.P., Van Meerbeek, K., Aćić, S., (…) & Chytrý, M. 2023. Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science 34: e13168.

A double defensive mutualism? A case between plants, extrafloral nectaries, and trophobionts

Тhis is the first case reported in the literature of a double defensive mutualism occurring simultaneously on a single plant species.

Guest blog post by Cássio Pereira

The Zeyheria montana shrub is quite common in the Brazilian Cerrado and is known to have extrafloral nectaries on the leaf blade that attract patrolling ants such as the aggressive Ectatomma tuberculatum. The ant, in turn, defends the leaves against the action of herbivores. However, extrafloral nectaries can distract ants on the leaves, segregating them from the reproductive parts and preventing them from driving away pollinators, which can benefit the action of florivores and nectar robbers.

Surprisingly, in southeastern Brazil, we observed a second defensive mutualism occurring on the reproductive tissues of these shrubs between E. tuberculatum and the treehopper Guayaquila xiphias, which provides the ant with honeydew in exchange for protection. This trophobiosis relationship (interaction between ants and phytophagous hemipterans that secrete sugary exudates) seems to be effective not only in the defense of floral buds and flowers, but also of the fruit, which, despite being dry, contains a lot of water in its formation and is attacked by beetles of the Curculionidae family.

The treehoppers G. xiphias at the base of Z. montana fruits.

As far as we know, this is the first case reported in the literature of a double defensive mutualism occurring simultaneously on a single plant species. Given this record, important questions arise regarding these interactions. Is the trophobiosis that occurs in reproductive organs capable of increasing the fitness of these plants? Although these ants are probably also scaring away possible pollinating insects, could the fact that Z. montana is primarily pollinated by hummingbirds offset this loss given that hummingbirds are larger and perhaps immune to ant attacks?

Our record raises more questions than it answers. Long-term Z. montana population studies would help improve our ecological understanding of these interactions.

Leaves and Spines: A new spiny-tailed leaf-toed gecko from the unexplored coastal savanna of Angola

A random survey in a poorly explored region of the southern Benguela Province of Angola, led to the discovery of a unique new spiny-tailed leaf-toed gecko.

Guest blog post by Javier Lobon-Rovira

After the long, hard days of fieldwork in the arid coastal region of southern Angola, Angolan researcher Pedro Vaz Pinto and his enthusiastic son Afonso, found the best spot to spend the night before heading back home. In the area of Carivo, every night was different: after four visits to this unique place, a different gecko species always showed up to add to the growing species list.

On a random night in August 2021, they went for a routine night walks and came across this unique gecko. In shock, Pedro immediately started sharing photos with the coauthors, Werner and Javier. “Guys, I think I found a new Kolekanos” he said.

Kolekanos is a unique and iconic gecko genus in Africa and more specifically only known from southwestern Angola. Kolekanos plumicaudus was described by one of the most recognized herpetologists in Africa, the late Wulf Haacke (1936– 2021).

Feather-tailed Kolekanos was at that point a monotypic genus (only one species in the genus), known only from ~200km south of the new discovery. Immediately, we all knew that what we were looking in that photo was something different from the known K. plumicaudus. “It is a Kolekanos… but, those are spines in the tail, not feathers…” was one of the most common reactions that night. So, we started planning our next trip to the area.

Three months later we were back at Carivo, now focusing on finding more specimens of that unique gecko. After only one hour, we spotted at least six specimens among the semi-dessert vegetations and rocks. At that moment, all doubt went away. The behavior and habitat of the new gecko was completely distinctive in comparison with K. plumicaudus.

Then, with our goal achieved and based on the big success of the first night, we planned to go back through different areas to explore some of the most remote regions in Northern Namibe and southern Benguela provinces. After two days driving on impossible roads, the team reached Ekongo. That night we were tired, so we decided to have a short walk around the camp. And… there it was…! Like a ghost, this small, cryptic, and elusive gecko started  showing up in every big rock boulder. 

This study, now published in the journal ZooKeys, also highlights how poorly explored and understood some regions of Angola remain, even as it has been considered as an important source of diversification and endemism in West Africa.