Invasive crayfish have the potential to cause high economic cost to artisanal fisheries in southern Africa through scavenging behaviour and destroying fish fry habitat.
A recent study by C∙I∙B Research Associate Josie South (University of Leeds, UK) with scientists from the South African Institute for Aquatic Biodiversity (SAIAB) quantified the damage caused by two invasive crayfish compared to native crab species, at two temperatures, on tilapia catch and macrophytes.
Economic costs of invasive species are vital to prioritise and incentivise management spending to reduce and restrict invasive species. No economic costs have been published for the global invader – the redclaw crayfish (Cherax quadricarinatus), and none for the entire continent of Africa. Another prolifically invasive crayfish, the red swamp crayfish (Procambarus clarkii) is also invasive in various countries of southern Africa. Anecdotal reports of crayfish scavenging from artisanal gillnet fisheries are abundant across the invasive ranges but lacked quantification. Similarly anecdotal information about macrophyte stands being destroyed by crayfish has been reported.
For their study, Josie and colleagues compared the feeding rates per gram of crayfish to that of the native Potamonautid crabs at 19°C and 28°C on simulated fisheries catch and macrophytes to identify how much damage may be caused.
The red swamp crayfish consumed the most macrophytes regardless of temperature, at a higher rate than the redclaw crayfish or crabs. In contrast, redclaw crayfish consumed the most tilapia regardless of temperature, and targeted the tail, abdomen, and fins whereas the crab only consumed the head of the fish. The damage rates of redclaw crayfish were then combined with average mass of crayfish in three invasion cores in Zambia and Zimbabwe. It was found that the damage one crayfish may cause annual fishery losses from $6.15 (Kafue River); $5.42 (Lake Kariba); and $3.62 (Barotse floodplain).
Inland fisheries contribute substantially to the livelihoods and quality of life in Africa. The two invasive crayfish have different capacities for ecological and socio-economic impact depending on the resource and the temperature which means that impact assessments should not be generalised across species.
Redclaw crayfish capacity to damage fish catch was substantial but this should be caveated with two over/under estimation issues: 1) the potential for fisher behavioural change which may reduce crayfish damage and 2) small damage to the fish may render the catch unsaleable and therefore the cost of the whole fish is lost.
Dr Josie South states that while these data are a crucial first step in filling knowledge gaps in crayfish impacts in Africa, it also stresses the need to derive observed costs from fisheries dependent data to avoid misleading estimates.
Also of concern, is the capacity for ecological and socio-economic damage from the red swamp crayfish, which was recently removed from the NEM:BA regulations of prohibited species due to lack of impact evidence.
Read the paper published in NeoBiota
Madzivanzira TC, Weyl OLF, South J (2022) Ecological and potential socioeconomic impacts of two globally-invasive crayfish. NeoBiota 72: 25–43. https://doi.org/10.3897/neobiota.72.71868
The insect, described as Mantispa? damzenogedanica, helped reveal important insights into the morphology of these fascinating insects and how it changed through history
Lacewings (Neuroptera) are mostly known for representatives such as green lacewings or antlions, which are distinguished by their appearance – large eyes and four long wings – but also by their predatory larvae, which play an important role as pest control agents in agriculture. But few non-specialists know that some lacewings can look a lot like praying mantises.
Mantis lacewings (Mantispida) are among the most charismatic, though rather poorly known representatives of the true lacewings. They look like small- to medium-sized praying mantises. Mantis lacewing are 5-47 mm long, and all of them have prominent grasping (also called raptorial) legs. This superficial resemblance is due to the convergent evolution of the shape in true mantises and mantis lacewings. Convergent evolution is a process of organisms evolving similar traits, due to their adaptation to the similar conditions – i.e. hummingbirds and sunbirds live on different continents but look very similar due to their similar lifestyle. This type of evolution has led to the similar shape of the grasping legs, which act as a couple of snap traps for unsuspecting prey.
Going back to the Cretaceous, Mantis lacewings have a long geological record. There are plenty of Mesozoic records of them and their relatives, such as thorny lacewings (Rachiberothidae) and beaded lacewings (Berothidae), totalling 105 recorded specimens. Curiously, there is a clear gap in mantis lacewings records from the Cainozoic.
Until recently, no adult mantis lacewings had been recorded from Baltic amber. In a single case, fossil parasitoid larvae of mantis lacewings were found attached to their host, a spider.
This changed last year, when a beautiful specimen of the mantis lacewing, almost 2 cm long, was brought to our attention by a private amber collector and esteemed supporter of palaeoentomology research – Jonas Damzen from Vilnus, Lithuania. The specimen was found at the Yantarny mine in Kaliningrad oblast, Russia.
By analysing the morphology of this beautiful specimen, we found out that it is closely related to the extant genus Mantispa. However, it was impossible to conclusively corroborate its affinity, because important characters such as rear wing venation and genitalia were obscured by so called “verlummung” – a white film, which covers many of the fossils in Baltic amber.
So, to deal with this uncertainty, we designated this specimen as “probable Mantispa” (Mantispa?). In our research article published in the journal Fossil Record, we gave it the name Mantispa? damzenogedanica. The specific epithet is a combination of ‘Damzen’, honouring Jonas Damzen, who found, prepared, and made the specimen available, and ‘gedanicum’, relative to one of the Latin names for Gdańsk, Poland, where the specimen is housed in the Museum of Gdańsk.
Except for being an impressive, large, imposing insect fossil of the mantis lacewing, and the first one in Baltic amber at that, M.? damzenogedanica also present an intriguing question: why are so few mantis lacewings recorded from this fossil deposit, which is among the best-studied in the world?
Baltic amber deposits were formed in the mid-to-late Eocene epoch (38-33.9 MYA) in Northern Europe. Current consensus on the climate of the area at the time stands that it was not dissimilar to the south of the North American eastern seaboard, for example the Carolinas or Florida’s Panhandle: it was warm-temperate. Such climate is in fact perfect for extant mantis lacewings, so it is logical to suggest that unsuitable climate was not the main reason for the rarity of these animals in Baltic amber.
Analysing the diversity of the shape of mantis lacewings, we found a surprising trend – since the Cretaceous, the diversity in the shape of their legs has decreased. While the shape of the raptorial legs in the Cretaceous was characterised by eclectic, amazing diversity, later mantis lacewings have a rather uniform shape of raptorial legs.
We are not sure what may have caused this decrease. We think that drastic biotic changes after the Cretaceous-Paleogene extinction event (the mass extinction that killed the dinosaurs) may have led to the environment becoming less conductive to mantis lacewings, which in turn decreased their diversity. Thus, it is likely that the rarity of mantis lacewings is simply a reflection of the decline in their diversity and abundance after the Cretaceous-Paleogene extinction.
Younger amber deposits (i.e. Dominican amber), and, of course, extant fauna display significant species diversity, but the diversity of shape never recovered after the Cretaceous. This new mantis lacewing from Baltic amber offers us a rare glimpse into a time when, in the world after dinosaurs, lacewings got a little less diverse and charismatic.
Research article: Baranov V, Pérez-de la Fuente R, Engel MS, Hammel JU, Kiesmüller C, Hörnig MK, Pazinato PG, Stahlecker C, Haug C, Haug JT (2022) The first adult mantis lacewing from Baltic amber, with an evaluation of the post-Cretaceous loss of morphological diversity of raptorial appendages in Mantispidae. Fossil Record 25(1): 11-24. https://doi.org/10.3897/fr.25.80134
New Research Idea, published in RIO Journal presents a promising machine-learning ecosystem to unite experts around the world and make up for lacking taxonomic expertise.
In their Research Idea, published in Research Ideas and Outcomes (RIO Journal), Swiss-Dutch research team present a promising machine-learning ecosystem to unite experts around the world and make up for lacking expert staff
Guest blog post by Luc Willemse, Senior collection manager at Naturalis Biodiversity Centre (Leiden, Netherlands)
Imagine the workday of a curator in a national natural history museum. Having spent several decades learning about a specific subgroup of grasshoppers, that person is now busy working on the identification and organisation of the holdings of the institution. To do this, the curator needs to study in detail a huge number of undescribed grasshoppers collected from all sorts of habitats around the world.
The problem here, however, is that a curator at a smaller natural history institution – is usually responsible for all insects kept at the museum, ranging from butterflies to beetles, flies and so on. In total, we know of around 1 million described insect species worldwide. Meanwhile, another 3,000 are being added each year, while many more are redescribed, as a result of further study and new discoveries. Becoming a specialist for grasshoppers was already a laborious activity that took decades, how about knowing all insects of the world? That’s simply impossible.
Then, how could we expect from one person to sort and update all collections at a museum: an activity that is the cornerstone of biodiversity research? A part of the solution, hiring and training additional staff, is costly and time-consuming, especially when we know that experts on certain species groups are already scarce on a global scale.
We believe that automated image recognition holds the key to reliable and sustainable practises at natural history institutions.
Today, image recognition tools integrated in mobile apps are already being used even by citizen scientists to identify plants and animals in the field. Based on an image taken by a smartphone, those tools identify specimens on the fly and estimate the accuracy of their results. What’s more is the fact that those identifications have proven to be almost as accurate as those done by humans. This gives us hope that we could help curators at museums worldwide take better and more timely care of the collections they are responsible for.
However, specimen identification for the use of natural history institutions is still much more complex than the tools used in the field. After all, the information they store and should be able to provide is meant to serve as a knowledge hub for educational and reference purposes for present and future generations of researchers around the globe.
This is why we propose a sustainable system where images, knowledge, trained recognition models and tools are exchanged between institutes, and where an international collaboration between museums from all sizes is crucial. The aim is to have a system that will benefit the entire community of natural history collections in providing further access to their invaluable collections.
We propose four elements to this system:
A central library of already trained image recognition models (algorithms) needs to be created. It will be openly accessible, so any other institute can profit from models trained by others.
A central library of datasets accessing images of collection specimens that have recently been identified by experts. This will provide an indispensable source of images for training new algorithms.
A digital workbench that provides an easy-to-use interface for inexperienced users to customise the algorithms and datasets to the particular needs in their own collections.
As the entire system depends on international collaboration as well as sharing of algorithms and datasets, a user forum is essential to discuss issues, coordinate, evaluate, test or implement novel technologies.
How would this work on a daily basis for curators? We provide two examples of use cases.
First, let’s zoom in to a case where a curator needs to identify a box of insects, for example bush crickets, to a lower taxonomic level. Here, he/she would take an image of the box and split it into segments of individual specimens. Then, image recognition will identify the bush crickets to a lower taxonomic level. The result, which we present in the table below – will be used to update object-level registration or to physically rearrange specimens into more accurate boxes. This entire step can also be done by non-specialist staff.
Another example is to incorporate image recognition tools into digitisation processes that include imaging specimens. In this case, image recognition tools can be used on the fly to check or confirm the identifications and thus improve data quality.
Using image recognition tools to identify specimens in museum collections is likely to become common practice in the future. It is a technical tool that will enable the community to share available taxonomic expertise.
Using image recognition tools creates the possibility to identify species groups for which there is very limited to none in-house expertise. Such practises would substantially reduce costs and time spent per treated item.
Image recognition applications carry metadata like version numbers and/or datasets used for training. Additionally, such an approach would make identification more transparent than the one carried out by humans whose expertise is, by design, in no way standardised or transparent.
Greeff M, Caspers M, Kalkman V, Willemse L, Sunderland BD, Bánki O, Hogeweg L (2022) Sharing taxonomic expertise between natural history collections using image recognition. Research Ideas and Outcomes 8: e79187. https://doi.org/10.3897/rio.8.e79187
A recent study in One Ecosystem has estimated the severe loss of ecosystem service value as a result of the widespread invasion by the plant species Coralita (Antigonon leptopus) on the Caribbean island of St. Eustatius. The results illustrate the drastic impact that a single invader can have on the economy of a small island and inform policy makers about priority areas for invasive species management.
See for full article: Huisman, S., Jesse, W., Ellers, J., & van Beukering, P. (2021). Mapping the economic loss of ecosystem services caused by the invasive plant species Antigonon leptopus on the Dutch Caribbean Island of St. Eustatius. One Ecosystem, 6, e72881. https://doi.org/10.3897/oneeco.6.e72881
The invader: Coralita
Coralita is a fast-growing, climbing vine with beautiful pink or white flowers. Originally from Mexico, it was introduced as a popular garden plant to many Caribbean islands and around the world. Its fast-growing nature means that it can outcompete most native species for terrain, quickly becoming the dominant species and reducing overall diversity (Jesse et al. 2020, Nature Today 2020, Eppinga et al. 2021a). This is especially the case on St. Eustatius, where published ground surveys indicate that the plant already appears on 33 percent of the island.
Losses of ecosystem services
Coralita overgrowing cars. Photo by Rotem Zilber
We estimated the total terrestrial ecosystem service (ES) value on St. Eustatius to be $2.7 million per year by mapping five important terrestrial ecosystem services: Tourism, Carbon sequestration, Non-use (i.e., intrinsic biodiversity) value, Local recreational value, and Archeological value. Subsequently, we calculated Coralita-induced loss of ecosystem services under two realistic distributional scenarios of Coralita cover on the island: 3% of island dominantly covered (based on Haber et al. 2021, Nature Today 2021) and 36% dominant cover (if entire range would reach dominant coverage), causing an annual ES value loss of $39,804 and $576,704 respectively. The highest ES value (17,584 $/ha/year) as well as the most severe losses (3% scenario: 184 $/ha/year; 36% scenario: 1,257 $/ha/year) were located on the dormant Quill volcano; a highly biodiverse location with popular hiking trails for locals and tourists alike.
Consequences for policy makers and practitioners
Coralita blocking water a drainage channel. Photo by Wendy Jesse.
There is an urgent need for studies such as this one that help to bridge the gap between academia and policy planning, as these translate abstract numbers into intuitive information. Instead of invasive species being just a biological term, direct impacts on people’s value systems and sources of income immediately strike a chord. I experience this on a daily basis, because in addition to being a coauthor on this paper, I currently work as a policy employee in nature protection and management.
Coralita overgrowing archeological heritage on St. Eustatius. Photo from St. Eustatius Center for Archeological Research (SECAR)
This study helps to prioritize locations for invasive species prevention, management, eradication, and restoration. It is imperative that invasive species do not reach locations of high ecosystem service value. Management of isolated satellite patches of Coralita close to locations of high ES value will likely be most effective in halting the plant’s invasive spread (Eppinga et al. 2021b). Setting up a targeted monitoring and rapid response strategy, as well as legislation for biosecurity measures to prevent other invasive species from entering the island, would likely help to reduce impacts on the important ecosystem services on St. Eustatius.
References
Academic literature:
Eppinga, M. B., Haber, E. A., Sweeney, L., Santos, M. J., Rietkerk, M., & Wassen, M. J. (2021a). Antigonon leptopus invasion is associated with plant community disassembly in a Caribbean island ecosystem. Biological Invasions, 1-19.
Eppinga M, Baudena M, Haber E, Rietkerk M, Wassen M, Santos M (2021b) Spatially explicit removal strategies increase the efficiency of invasive plant species control.
Ecological Applications 31 (3): 1‑13. https://doi.org/10.1002/eap.2257Haber E, Santos M, Leitão P, Schwieder M, Ketner P, Ernst J, Rietkerk M, Wassen M, Eppinga M (2021) High spatial resolution mapping identifies habitat characteristics of the invasive vine Antigonon leptopuson St. Eustatius (Lesser Antilles). Biotropica 53 (3): 941‑953. https://doi.org/10.1111/btp.12939
Jesse, W. A., Molleman, J., Franken, O., Lammers, M., Berg, M. P., Behm, J. E., … & Ellers, J. (2020). Disentangling the effects of plant species invasion and urban development on arthropod community composition. Global change biology, 26(6), 3294-3306.
A new genus of tarantula was discovered inside a bamboo culm from Mae Tho, Tak province, in Thailand. This is the first genus of tarantula that shows the surprising specialization of living in bamboo stalks. The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a wildlife YouTuber from Thailand, who collaborated with arachnologists Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote. The new genus and species are described in the journal ZooKeys.
Bamboo is important to some animals as it can serve as a source of nutrition, shelter, and habitat. Inside a bamboo culm, we discovered a new genus of tarantula, which was collected from Mae Tho, Mueang Tak district, Tak province, in Thailand.
Mae Tho, Mueang Tak district, Tak province, in Thailand, where the newly described tarantula was discovered. Photo by Narin Chomphuphuang
The discovered genus has not been previously studied by scientists; this is the first case of a genus of tarantula that shows the surprising specialization of living in bamboo stalks.
The newly described tarantula Taksinus bambus seen in the bamboo stalk. Photo by JoCho Sippawat
We named the new tarantula genus Taksinus in honor of the Thai king Taksin the Great. The name was chosen in recognition of Taksin the Great’s old name, Phraya Tak – governor of Tak province, which is where the new genus was discovered. After the Second Fall of Ayutthaya in 1767, Taksin the Great was the only king of the Thonburi Kingdom to become a key leader of Siam, prior to the establishment of Thailand.
The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a nationally known wildlife YouTuber in Thailand with 2.45 million subscribers, who collaborated with Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote, the arachnologists who studied and described the new genus.
Zongtum Sippawat, or JoCho Sippawat (left), with Wuttikrai Khaikaew, Kaweesak Keeratikiat, Narin Chomphuphuang and Chaowalit Songsangchote. Photo by Narin Chomphuphuang
In general, tarantulas from Southeast Asia can be either terrestrial or arboreal. Arboreal tarantulas spend time on different types of trees, but until now, researchers had not previously identified a tarantula found only on a specific tree type.
“These animals are truly remarkable; they are the first known tarantulas ever with a bamboo-based ecology,” Narin said.
Finding the new tarantula. Video by JoCho Sippawat
The tarantulas were discovered inside mature culms of Asian bamboo stalks (Gigantochloa sp.), with nest entrances ranging in size from 2–3 cm to a large fissure, within a silk-lined tubular burrow, either in the branch stub or in the middle of the bamboo culms. All the tarantulas found living in the culms had built silken retreat tubes that covered the stem cavity.
The tarantulas cannot bore into bamboo stems; therefore, they depend on the assistance of other animals. Bamboo is preyed upon by a variety of animals, including the bamboo borer beetle, bamboo worm, bamboo-nesting carpenter bee, and small mammals such as rodents. Furthermore, bamboo cracking is primarily caused by rapid changes in moisture content induced by the atmosphere, uneven drying, or drenching followed by rapid drying or by human activities.
Taksinus bambus tarantula in its habitat. Photo by JoCho Sippawat
Taksinus is classified as a new genus within the Ornithoctoninae subfamily of Southeast Asian tarantulas. The discovery comes 104 years after Chamberlin defined the previous genus in this subfamily, Melognathus, in 1917.
What makes Taksinus distinct from all other Asian arboreal genera is the relatively short embolus of the male pedipalps, which is used to transport sperm to the female seminal receptacles during mating. In addition to morphology, its habitat type and distribution are also different from those of related species. While Asian arboreal tarantulas have been reported in Indonesia (Sangihe Island and Sulawesi), Malaysia, Singapore, Sumatra, and Borneo, Taksinus was discovered in northern Thailand, which is a new geographical location for those spiders.
Looking at an entrance hole of a bamboo culm tarantula. Photo by Narin Chomphuphuang
“We examined all of the trees in the area where the species was discovered. This species is unique because it is associated with bamboo, and we have never observed this tarantula species in any other plant. Bamboo is important to this tarantula, not only in terms of lifestyle but also because it can only be found in high hill forests in the northern part of Thailand, at an elevation of about 1,000 m. It is not an exaggeration to say that they are now Thailand’s rarest tarantulas,” says Narin.
The tarantula Taksinus bambus in its habitat. Photo by JoCho Sippawat
Few people realize how much of Thailand’s wildlife remains undocumented. Thai forests now cover only 31.64% of the country’s total land area. We are primarily on a mission to research and save the biodiversity and wildlife within these forests from extinction, especially species-specific microhabitats.
Research article:
Songsangchote C, Sippawat Z, Khaikaew W, Chomphuphuang N (2022) A new genus of bamboo culm tarantula from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1080: 1-19. https://doi.org/10.3897/zookeys.1080.76876
Grasslands represent some of the largest and most diverse biomes of the world, yet they remain undervalued and under-researched. Extending in all continents except Antarctica, they host thousands ofhabitat specialist endemic species, support agricultural production, people’s livelihoods based on traditional and indigenous lifestyles, and several other ecosystem services such as pollination and water regulation.
Calamintho acini-Seselietum montani in Munarriz (south of Andia Range)
Palaearctic grasslands represent the richest habitats for vascular plants at small spatial scales but are seriously threatened due to land use change. European grasslands experienced two extreme ends of the land-use gradient, intensification of land use on productive lands and abandonment of marginal lands, and both resulted in the loss of grassland biodiversity. It is necessary to understand their biodiversity patterns and how they relate to land use to be able to design conservation and management actions. This understanding requires the harmonization and standardization of grassland classification that leads to a consistent syntaxonomy at the European level and can increase the usefulness of vegetation typologies for conservation and management.
We provide important insights to grasslands, with special focus on dry grasslands, from the western part of Europe (Navarre region, Spain), which constitutes a new step on the pan-European grassland classification. For this purpose, we used 958 relevés distributed across all the region and grassland types, 119 containing also information on bryophytes and lichens. The data used are available in EVA and GrassPlot databases.
The five phytosociological classes most represented in Navarre are distributed according to elevation, climate, soil and topographic variables. The class Lygeo-Stipetea develops in the most Mediterranean areas. On the other hand, the classes Nardetea and Elyno-Seslerietea develop at the highest elevations, linked to the highest annual precipitation and are distributed in the northern areas. Regarding soil, topographic and structural variables the class Nardetea presents the highest soil depth and is also the most acidophilous one. The class Elyno-Seslerietea is characterised by a higher cover of stones and rocks as well as higher soil organic matter content, and, together with Nardetea and Molinio-Arrhenatheretea, is the poorest in soil carbonate content. Conversely, Lygeo-Stipetea stands out by its high soil carbonate content and low soil organic matter. Molinio-Arrhenatheretea stands out for its high cover of the herb layer and cryptogams.
Lygeum spartum communities in Bardenas Reales
We would like to highlight that bryophytes and lichens, contrary to past assumptions, are core elements of these grasslands and particularly the Mediterranean ones of Lygeo-Stipetea, both in terms of biodiversity and of diagnostic species.
We provide, for the first time, an electronic expert system for grasslands in Navarre, based on diagnostic species of each hierarchical phytosociological level from class to association. This expert system can be implemented in the JUICE program and allows the unanimous assignment of any new relevé by means of its species composition to one of the different categories established, which is of enormous value particularly for practitioners. We provide, also for the first time, a detailed databased characterisation and comparison of the syntaxa in terms of their environmental conditions and biodiversity.
Research article:
García-Mijangos I, Berastegi A, Biurrun I, Dembicz I, Janišová M, Kuzemko A, Vynokurov D, Ambarlı D, Etayo J, Filibeck G, Jandt U, Natcheva R, Yildiz O, Dengler J (2021) Grasslands of Navarre (Spain), focusing on the Festuco–Brometea: classification, hierarchical expert system and characterisation. Vegetation Classification and Survey 2: 195-231. https://doi.org/10.3897/VCS/2021/69614
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper from Tibet, and the Glacier pit viper found west of the Nujiang River and Heishui, Sichuan.
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor Universitypublished the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.
Glacier pit viper (Gloydius swild)
The Nujiang pit viper has a greyish brown back with irregular black ring-shaped crossbands, wide, greyish-brown stripes behind the eyes, and relativity short fangs, while the Glacier pit viper is blueish-grey, with zigzag stripes on its back, and has relatively narrow stripes behind its eyes.
Nujiang pit viper (Gloydius lipipengi)
Interestingly, the Glacier pit viper was found under the Dagu Holy-glacier National Park: the glacier lake lies 2000 meters higher than the habitat of the snakes, at more than 4,880 m above sea level. This discovery suggests that the glaciers might be a key factor to the isolation and speciation of alpine pit vipers in southwest China.
The glacier lake on top of the mountain near the type locality of Glacier pit viper.
The stories behind the snakes’ scientific names are interesting too: with the new species from Tibet, Gloydius lipipengi, the name is dedicated to my Master’s supervisor, Professor Pi-Peng Li from the Institute of Herpetology at Shenyang Normal University, just in time for Li’s sixtieth birthday. Prof. Li has devoted himself to the study of the herpetological diversity of the Qinghai-Tibet Plateau, and it was under his guidance that I became an Asian pit viper enthusiast and professional herpetological researcher.
Gloydius swild, the new species from Heishui, Sichuan, is in turn named after the SWILD Group, which studies the fauna and biodiversity of southewst China. They discovered and collected the snake during an expedition to the Dagu Holy-glacier.
A misty morning near the habitat of Glacier pit viper.
We are equally impressed by the sceneries we encountered during our field work: throughout our journey, we got to look at sacred, crystal-like glacier lakes embraced by the mountains, morning mist falling over the village, and colorful broadleaf-conifer forests. During our expedition, we met a lot of hospitable Tibetan inhabitants and enjoyed their kindness and treats, which made the expedition all the more unforgettable.
Research article:
Shi J-S, Liu J-C, Giri R, Owens JB, Santra V, Kuttalam S, Selvan M, Guo K-J, Malhotra A (2021) Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87-108. https://doi.org/10.3897/zookeys.1061.70420
The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.
The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness.
More recently, the importance of deeper ecosystems started moving into the focus of modern marine research as many scientists across the globe are now working to unriddle the mysteries and processes that drive the patterns of life down in the deep.
Deeper reef habitats, starting at ~30m depth beyond SCUBA diving limits, are of crucial importance for coastal communities and adjacent ecosystems alike. They have been found to not only support coral and fish larval supply, aiding shallower reefs, but also to act as a refuge for many species in times of disturbance. Yet, going back to the start of this post – you cannot protect what you don’t know – and we currently know very little about these deeper reefs, especially ones in the Western Indian Ocean region.
We are many nations, but together we are one ocean.
With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.
All species play relevant roles in trophic relations, in the functioning of ecosystems, and all have a potential biotechnological interest.
Our Field Identification Guide is one of the first efforts to describe the mesophotic and sub-mesophotic reefs in the Western Indian Ocean. To effectively protect these ecosystems, stakeholders need to be able to visualise them and scientists need to be able to identify and classify the organisms they observe. Displaying the diversity of the benthic organisms we encountered is only the first step in a complex and long process, allowing us to categorize, study, monitor and thus effectively protect these habitats.
The correct identification of life is a fundamental building block of ecological knowledge. This international collaboration provided an important place to start from when considering the life on deeper reefs in Seychelles and the wider Western Indian Ocean region.
To survey the benthic flora and fauna of the Seychelles, we used a variety of methods, including submersibles, remotely operated vehicles and SCUBA diving teams equipped with stereo-video camera systems. We then recorded benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. This way, we ended up with 45 h of video footage and enough images to be able to present a photographic guide for the visual identification of the marine macrophytes, corals, sponges and other common invertebrates that inhabit Seychelles’ reefs.
We encountered coral fan gardens on steep slopes, boulders entirely encrusted with sponges of all colours and textures, corals of all shapes and sizes, and an amazing variety of critters. The images in our guide cannot do justice to the beauty of these habitats, and more than one tear was shed encountering these intact ecosystems teeming with life. Especially in times of increasingly frequent disturbance events and quickly shifting baselines (i.e., what we would see as a pristine, healthy reef in the 21st century), intact reef systems become increasingly rare. So much so that they are often confined to extremely remote and/or long and heavily protected areas. Finding these deeper reefs intact and with little to no signs of anthropogenic disturbance means hope – hope that there are yet undiscovered and unexplored reefs in the Western Indian Ocean region that show similar traits; and hope that we will discover even more novel habitats worth protecting.
We hope that this guide will help the public to discover the beauty of Seychelles’ deeper reefs and aid current and future monitoring and research activities in Seychelles and the Western Indian Ocean region.
Currently, there are few formalised training materials available to new marine researchers working in mesophotic and deeper reef habitats, especially for the Indian Ocean. The present benthic field ID guide will hopefully be of use to marine researchers, managers, divers and naturalists with the identification of organisms as seen in marine imagery or live in the field.
Paris Stefanoudis – University of Oxford, and Nekton
Taxonomic paper:
Fassbender N, Stefanoudis PV, Filander ZN, Gendron G, Mah CL, Mattio L, Mortimer JA, Moura CJ, Samaai T, Samimi-Namin K, Wagner D, Walton R, Woodall LC (2021) Reef benthos of Seychelles – A field guide. Biodiversity Data Journal 9: e65970. https://doi.org/10.3897/BDJ.9.e65970
For the first time, scientists report a vampire fish attached to the body of an Amazonian thorny catfish. Very unusually, the candirus were attached close to the lateral bone plates, rather than the gills, where they are normally found. Since the hosts were not badly harmed, and the candirus apparently derived no food benefit, scientists believe this association is commensalistic rather than parasitic. The research is published in the open-access journal Acta Ichthyologica et Piscatoria.
Guest blog post by Chiara C. F. Lubich, André R. Martins, Carlos E. C. Freitas, Lawrence E. Hurd and Flávia K. Siqueira-Souza
The Amazon River Basin is home to about 15% of all freshwater fish species known to science, and an estimated 40% yet to be named. These include some of the most bizarre fishes: the vampire fishes, locally known as candiru, members of the catfish subfamily Vandelliinae.). They survive by attaching themselves to the bodies of other fish and sucking on their blood, hence their common name. Yet, it was only recently that we found out that one candiru species, belonging to the genus Paracanthopoma,seems to be making use of its host in quite a different way.
During a sampling study of freshwater fish fauna in a lake of the Demeni River Basin, a left bank tributary of the Negro River, we found candirus attached to the surface of the body of an Amazonian species of a thorny catfish. By the end of the survey, we had observed a total of twenty candirus attached to the outside of the bodies of nine larger Doras phlyzakion, one or two per host. Very unusually, the candirus were attached close to the lateral bone plates, rather than the gills, where these fish are normally found.
Location of the study: Demeni River, left bank tributary of Negro River, Amazonas State, Brazil.
As a result of these observations, we recently published the first record of a candiru attached to the body surface of an Amazonian thorny catfish in an article in the open-access scholarly journal Acta Ichthyologica et Piscatoria.
Vampire fish have long and robust snouts, with strong dentary teeth that help them stay attached to the epidermis of their host and feed on its blood. However, when we performed a macroscopic analysis of the stomach contents of the preserved Paracanthopoma specimens, we were surprised to find no coagulated blood, nor flesh, skin or mucus. This might indicate an interaction between parasite and host that is more benign than usually attributed to vampire fish.
Doras phlyzakion with vampire fish (Paracanthopoma sp.) fixed into its epidermis close to the bony plates of the lateral line. Arrows: areas with reddish wounds.
We believe the association between candiru and host in this case might be commensalistic (where one organism benefits from another without harming it), rather than parasitic, because the hosts were not badly harmed, and the candiru apparently derived no food benefit.
But what else would they seek on the back of Amazonian thorny catfish? One explanation could be that, since candirus are tiny and nearly transparent, they might be avoiding getting noticed by visual predators by riding on larger fish. Another hypothesis is that they could be using their big cousins to transport them over longer distances that they wouldn’t be able to cover themselves, eventually making it to safety or new food sources.
Research article:
Lubich CCF, Martins AR, Freitas CEC, Hurd LE, Siqueira-Souza FK (2021) A candiru, Paracanthopoma sp. (Siluriformes: Trichomycteridae), associated with a thorny catfish, Doras phlyzakion (Siluriformes: Doradidae), in a tributary of the middle Rio Negro, Brazilian Amazon. Acta Ichthyologica et Piscatoria 51(3): 241-244. https://doi.org/10.3897/aiep.51.e64324
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
“(…) pronotum often takes on various extreme modifications, giving to the insects a most grotesque or bizarre appearance (…)”
quote from Hancock, Joseph Lane (1907) Orthoptera fam. Acridiidae, subfam Tetriginae. Genera Insectorum.
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? Well, I must disappoint you. What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
Most of the research you can find out there is probably based on genera Tetrix and Paratettix in Europe or Northern America (Adžić et al. 2021). Species of Northern America (Nearctic region, 35 species) and Europe (W Palearctic region, 11 species) are indeed best known from the standpoint of natural history, even though they represent only about 2% of the diversity. Here is the list of 19 species that are most often observed by amateur naturalists on the iNaturalist platform (Table 1) and as you can see 12 out of 19 species are indeed from Europe and Northern America. Because of that, let us focus on awesome neglected diversity in the tropics.
Species
Geographic distribution
N of observations
Tetrix subulata
Holarctic
618
Tettigidea lateralis
Nearctic
505
Tetrix undulata
W Palearctic
267
Tetrix tenuicornis
Palearctic
225
Criotettix bispinosus
Indochina and islands of SE Asia
225
Paratettix meridionalis
W Palearctic: Mediterranean
145
Paratettix mexicanus
Nearctic
111
Tetrix depressa
W Palearctic
90
Tetrix arenosa
Nearctic
82
Tetrix bipunctata
W Palearctic
77
Tetrix japonica
E Palearctic
73
Paratettix aztecus
S Nearctic to N Neotropics
54
Paraselina brunneri
E Australia
54
Nomotettix cristatus
Nearctic
53
Tetrix ceperoi
W Palearctic
51
Hyperyboella orphania
New Caledonia
49
Scelimena producta
Java, Sumatra, Bali
31
Eurymorphopus bolivariensis
New Caledonia
30
Discotettix belzebuth
Borneo
26
Table 1. Well-known Tetrigidae species. Pygmy grasshoppers with more than 25 Research-Grade observations in iNaturalist, together with their distribution briefly explained.
Why do I mention the iNaturalist platform? Because I think it is the future of zoology, especially of faunistics. Never before have we been able to simultaneously gather so much data from so many different places. I started using Flickr some time ago to search for photos of unidentified rare pygmy grasshoppers. I did find many rare species, and what is even crazier, species that were not known to science. I’ll try to present you with a glimpse of the diversity I found online, so maybe some new students or amateurs will contribute, as they did with Paraselina brunneri, after the study was published in ZooKeys.
The Angled Australian barkhopper, Paraselina brunneri (= P. multifora). A, B, D a female from Upper Orara, photos by Nick Lambert. C a female from Lansdowne forest, photo by Reiner Richter. E a male from Mt. Glorious, photo by Griffin Chong. F individual from Mt. Mellum, photo by Ian McMaster.
It seems that “rare” species from Australia are not so rare after all
Many new records ofParaselina brunneri and Selivinga tribulata can now be found online, thanks to a study published with ZooKeys.
The Tribulation helmed groundhopper, Selivinga tribulata, living specimens in natural habitat. A Female from Kuranda, photo by David Rentz. B male from Kuranda, photo by David Rentz. C male from Tully Range, photo by Matthew Connors. D nymph from Redlynch, photo by Matthew Connors. E, G a male from Kingfisher park, photo by Nick Monaghan. F female from Speewah, photo by Matthew Connors.
Enjoy some selected awesome places and selected amazing taxa that inhabit those places. Emphasis is given on the extremely rare and weird-looking, or as Hancock called them, bizarre and grotesque species. Those with leaf-like morphology, spines, warts, undulations, or horns. Enjoy a short voyage from the rainforests of Madagascar through the humid forests of Australia, New Guinea, Borneo, and finally the Atlantic Forest of Brazil.
Madagascar is home to some of the largest and most colourful species of Tetrigidae in whole world
Very peculiar are the species of the genera Holocerusand Notocerus, both of which were discussed in studies published in ZooKeys. Finally, one can find photographs of these beauties identified to species level.
Variability of Holocerus lucifer. A living specimen in Marojejy NP, photo by R. Becky. B–E variability of pronotal projection morphology (B holotype of Holocerus lucifer C Maroantsentra, Antongil Bay D holotype of H. taurus E Tamatave.
Interesting fact about those large pygmy grasshoppers: When I visited the rainforests of Madagascar, I observed one Holocerus devriesei and took photos of it. The insect then took flight far away in the rainforest. Who could think that an animal with such a large back spines could be such a skilful flier! The same is maybe true for Notocerus.
Holocerus devriesei in natural habitat. A Nymph from Andasibe, photo by P. Bertner. B nymph from Vohimana, photo by F. Vassen. C adult ♀ from Andasibe in c in dorsal view and D in dorsal view, photos by P. Bertner.Holocerus devriesei and its habitat. A ♂ from Ranomafana in natural habitat, photos by M. Hoffmann. B–E adult ♂ from Analamazaotra, photos by J. Skejo. F–G natural habitat in Analamazaotra G Ravenala madagascariensis, the Traveler’s Palm, photos by J. Skejo.Live female of the Formidable Pygmy Grasshopper, Notocerus formidabilis, in lateral view. Photo by Éric Mathieu.Live female of the Formidable Pygmy Grasshopper, Notocerus formidabilis, in dorsal view. Photo by Éric Mathieu.
Not all pygmy grasshoppers are large and colourful
Some species, like the Pymgy unicorns of Southern America are small but still interesting. Metopomystrum muriciense was described with ZooKeys from the Atlantic rainforests of Murici, Brazil, in 2017.
Metopomystrum muriciense: A Male holotype, head and portion of sternum, frontal view B head and portion of pronotum, dorsal view C head and portion of pronotum, lateral view (* sternomentum). Scale bars: 2.0 mm.
Some pygmy grasshoppers are weird
Giraffehoppers from New Guinea are among the most unique pygmy grasshoppers. Many species can be differentiated by the antennal shape, and maybe by face coloration. Those are very visual animals, and antennae and colours might be used for courtship (Tumbrinck & Skejo 2017).
A field photographic record of a living Ophiotettix pulcherrima mating pair from Yapen Island, Cenderawasih Bay, W New Guinea, lateral view. Photo by D. PriceField photographic records of living Ophiotettix.
For young entomologists: How did I decide to study pygmy grasshoppers?
No true biology student knows what she or he wants to study and which direction to take. With me, it was pretty much the same thing. Systematics caught my attention during primary and high school, and I always had a tendency to systematically compare data. My first idea was to study snakes, as I was amazed by shield-tailed snakes (Uropeltidae) and blind snakes (Scolecophidia), about whom I have read a lot. Unfortunately, I never saw representatives of those snake groups, but fortunately, there were a lot of animals that I had seen, and with whom I was more familiar in the field. Among them, there were grasshoppers and crickets (order Orthoptera). Together with Fran Rebrina, my friend and fellow student, I started the first systematic research of Orthoptera of Croatia and the Balkans. Our study on two Croatian endemic species, Rhacocleis buchichii and Barbitistes kaltenbachi, was published with ZooKeys last year.
In the first years of our Orthoptera studies (2011-2012), I never saw a single pygmy grasshopper in Croatia. I remember it as if it was yesterday when Fran and I asked our senior colleague, Ivan Budinski (BIOM, Sinj), where we could find Tetrigidae, and he confidently said that they are to be found around water. Peruća lake near the city of Vrlika was he place where I saw pygmy grasshoppers, namely Tetrix depressa and Tetrix ceperoi, for the first time ever. I could not believe that there were grasshoppers whose lifecycle is water dependent in any way, so I kept researching them, contacting leading European orthopterists familiar with them (Hendrik Devriese, Axel Hochkirch, Josef Tumbrinck), and checking all the museum collections where I could enter. The encounter on the shores of Peruća was the moment that determined my career as an entomologist. After I discovered specimens of the extremely rare Tetrix transsylvanica in Croatian Natural History Museum (HPM – Hrvatski Prirodoslovni Muzej, Zagreb) in 2013 (Skejo et al. 2014), and after a serendipitous discovery of a new Arulenus species (Skejo & Caballero 2016), I just decided that maybe this interesting group was understudied and required systematic research, and here I am in 2021, regularly publishing on this very group.
References
Adžić K, Deranja M, Pavlović M, Tumbrinck J, Skejo J (2021). Endangered Pygmy Grasshoppers (Tetrigidae). Imperiled – Enyclopaedia of Conservation,. Elsevier, https://doi.org/10.1016/B978-0-12-821139-7.00046-5
Mathieu É, Pavlović M, Skejo J (2021) The true colours of the Formidable Pygmy Grasshopper (Notocerus formidabilis Günther, 1974) from the Sava region (Madagascar). ZooKeys 1042: 41-50. https://doi.org/10.3897/zookeys.1042.66381
Silva DSM, Josip Skejo, Pereira MR, De Domenico FC, Sperber CF (2017) Comments on the recent changes in taxonomy of pygmy unicorns, with description of a new species of Metopomystrum from Brazil (Insecta, Tetrigidae, Cleostratini, Miriatrini). ZooKeys 702: 1-18. https://doi.org/10.3897/zookeys.702.13981
Skejo J, Connors M, Hendriksen M, Lambert N, Chong G, McMaster I, Monaghan N, Rentz D, Richter R, Rose K, Franjević D (2020) Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers. ZooKeys 948: 107-119. https://doi.org/10.3897/zookeys.948.52910
Skejo J, Medak K, Pavlović M, Kitonić D, Miko RJC, Franjević D (2020) The story of the Malagasy devils (Orthoptera, Tetrigidae): Holocerus lucifer in the north and H. devriesei sp. nov. in the south? ZooKeys 957: 1-15. https://doi.org/10.3897/zookeys.957.52565
Tumbrinck, J & Skejo, J. (2027) Taxonomic and biogeographic revision of the New Guinean genus Ophiotettix Walker, 1871 (Tetrigidae: Metrodorinae: Ophiotettigini trib. nov.), with the descriptions of 33 new species. In Telnov D, Barclay MVL, Pauwels OS (Eds) Biodiversity, biogeography and nature conservation in Wallacea and New Guinea (Volume III). The Entomological Society of Latvia, Riga, Latvia, 525-580.