Pensoft collaborates with R Discovery to elevate research discoverability

Pensoft and R Discovery’s innovative connection aims to change the way researchers find academic articles.

Leading scholarly publisher Pensoft has announced a strategic collaboration with R Discovery, the AI-powered research discovery platform by Cactus Communications, a renowned science communications and technology company. This partnership aims to revolutionize the accessibility and discoverability of research articles published by Pensoft, making them more readily available on R Discovery to its over three million researchers across the globe.

R Discovery, acclaimed for its advanced algorithms and an extensive database boasting over 120 million scholarly articles, empowers researchers with intelligent search capabilities and personalized recommendations. Through its innovative Reading Feed feature, R Discovery delivers tailored suggestions in a format reminiscent of social media, identifying articles based on individual research interests. This not only saves time but also keeps researchers updated with the latest and most relevant studies in their field.

Open Science is much more than cost-free access to research output.

Lyubomir Penev

One of R Discovery’s standout features is its ability to provide paper summaries, audio readings, and language translation, enabling users to quickly assess a paper’s relevance and enhance their research reading experience significantly.

With over 2.5 million app downloads and upwards of 80 million journal articles featured, the R Discovery database is one of the largest scholarly content repositories.

At Pensoft, we do realise that Open Science is much more than cost-free access to research outputs. It is also about easier discoverability and reusability, or, in other words, how likely it is for the reader to come across a particular scientific publication and, as a result, cite and build on those findings in his/her own studies. By feeding the content of our journals into R Discovery, we’re further facilitating the discoverability of the research done and shared by the authors who trust us with their work,” said ARPHA’s and Pensoft’s founder and CEO Prof. Lyubomir Penev.

Abhishek Goel, Co-Founder and CEO of Cactus Communications, commented on the collaboration, “We are delighted to work with Pensoft and offer researchers easy access to the publisher’s high-quality research articles on R Discovery. This is a milestone in our quest to support academia in advancing open science that can help researchers improve the world.

So far, R Discovery has successfully established partnership with over 20 publishers, enhancing the platform’s extensive repository of scholarly content. By joining forces with R Discovery, Pensoft solidifies its dedication to making scholarly publications from its open-access, peer-reviewed journal portfolio easily discoverable and accessible.

Pensoft’s ARPHA Publishing Platform integrates with OA Switchboard to streamline reporting to funders of open research

By the time authors open their inboxes to the message their work is online, a similar notification will have also reached their research funder.

Image credit: OA Switchboard.

By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.

This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.

All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.

“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”

comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

 

“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”

adds Yvonne Campfens, Executive Director of the OA Switchboard.

***

About the OA Switchboard:

A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.

About Pensoft:

Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.

All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.

***

Follow Pensoft on Twitter, Facebook and Linkedin.
Follow OA Switchboard on Twitter and Linkedin.

Russia creates its own humanised mice to test COVID-19 vaccines and drugs

Following the recent Coronavirus outbreak, almost three million people have been infected worldwide, whereas the death toll has already passed the 200,000 mark, according to official reports. Meanwhile, a vaccine remains to be found, and classic medications show low efficacy. Under these conditions, it is up to pharmacologists to do their best in the search of novel treatments. However, laboratory studies are limited by the absence of COVID-19 animal models.

Russian scientists from the Institute of Gene Biology of the Russian Academy of Sciences, the State Virology and Biotechnology Research Center “Vector” and Belgorod University are already working on the development of SARS-CoV-2-sensitive mice to be used as a murine model in tests of potential COVID-19 vaccines and drugs, reports the Office of the Chief State Sanitary Inspector.

To create such a line of mice, researchers have formulated a two-step concept, recently described in the open-access, peer-reviewed scholarly journal Research Results and Pharmacology. Firstly, the mice are to be made biologically safe for routine laboratory practice. Secondly, in order for the mice to be efficient for non-clinical trials, they will need to experience symptoms and pathogenesis as human-like as possible. The scientists believe that they have everything necessary to implement this conception and expect the first results as early as June 2020.

“SARS-CoV-2-inoculated mice will have a human-like pathogenesis and symptoms of the COVID-19. The key difference between a new model and the existing ones will be its biological safety – animals will become sensitive to SARS-CoV-2 only after activation in conditions of a virological laboratory. It makes it possible to nullify the contagion risk for the staff working in nurseries and non-specialised laboratories during a pandemic,”

the team explains.

Already available data shows that there are two key proteins in the human cells, which are involved in the virus entry. First of all, it is the angiotensin-converting enzyme 2 (ACE2), which is the direct and main target of the coronavirus’ “corona”. Three lines of transgenic mice with the human ACE2 variant have been found to be susceptible to the SARS-CoV, a causative agent of the SARS outbreak in 2003. However, it was shown that, in addition to ACE2, a molecular pathway of coronavirus invasion contains another important link: the enzyme transmembrane protease serine 2 (TMPRSS2). The blocking of TMPRSS2 prevents SARS-CoV-2 entry on the cell culture in vitro.

To obtain mice with human-like COVID-19 symptoms and pathology, the researchers will introduce human ACE2 and TMPRSS2 genes into the murine genome under the mice’s own Tmprss2 promoter. Another key decision on the way of creating the new model is to ensure that SARS-CoV-2 sensitivity is inducible only after the introduction of LoxP sites in front of the human ACE2 and TMPRSS2 genes. As a result, human genes in a murine genome will turn on once a crossbreeding with mice expressing Cre-recombinase occurs. 

“The main trick here is that this crossbreed will only happen in specialised virological laboratories, which will prevent the novel line of mice from becoming an infection ‘reservoir’ in ordinary laboratories,”

say the researchers.

Original source:

Soldatov VO, Kubekina MV, Silaeva YuYu, Bruter AV, Deykin AV (2020) On the way from SARS-CoV-sensitive mice to murine COVID-19 model. Research Results in Pharmacology 6(2): 1-7. https://doi.org/10.3897/rrpharmacology.6.53633

New promising compound against heart rhythm disorders and clogged arteries

The pharmacological agent outperforms current drugs in most of cases, show multiple experiments

A new pharmacological agent demonstrates promising results for the prevention of a wide range of heart rhythm disorders, including both cardiac and brain injury-induced arrhythmias. Furthermore, the compound (SS-68) demonstrates significant activity in conditions of reduced blood flow to the heart caused by obstructed arteries.

The study, conducted by a research team led by Dr Saida Bogus of the Kuban State Medical University in Russia, is published in the open-access journal Research Results in Pharmacology.

Each year, more than 17 million people from around the globe (mostly Europe and the USA) die of cardiovascular diseases and related complications, according to the World Health Organization. In Russia, about 3 out of 1,000 people suffer from the most common and malignant heart rhythm disorder: atrial fibrillation (AF), where the count is expected to at least double in the next 30 years. While sometimes lacking symptoms, atrial fibrillation could generally be recognised by a racing, irregular heartbeat, dizziness, fatigue, shortness of breath and chest pain, thereby largely compromising the quality of one’s life. The disorder could also lead to various complications, including dementia, stroke and heart failure.

Currently, the drugs administered to AF patients have major deficiencies, including narrow therapeutic windows, which means that even minimal imprecision in the dosage could result in unacceptable toxicity. Hence, patients need to be closely monitored and have their doses adjusted on a regular basis.

In their study, the team turned to the aminoindole derivatives to look for an alternative compound. This chemical group has already shown a significant potential in terms of cardio-pharmacological activity.

Having tested the SS-68 compound on multiple occasions in different animals, the researchers report that it has a pronounced antiarrhythmic effect and is able to bring the electrical activity of the heart back to normal and, in most cases, outperforming the reference drugs used in clinical practice: amiodarone, lidocaine, aymaline, ethacizine, etmozine and quinidine anaprilin.

Further, in brain injury-induced arrhythmias, the compound was found to reduce the episodes of epilepsy. It was also observed to have a positive effect in clogged blood vessels where it is reported to have successfully increased the coronary blood flow. In addition, the compound managed to decrease the area of necrosis in the heart tissue caused by a heart attack.

“To date, there have been significant achievements of Russian and foreign pharmacologists, chemists and clinicians in creating and introducing into the practical medicine a number of antiarrhythmic drugs different by their chemical structure, nature, spectrum, activity and mechanism of action; nevertheless, one of the most important tasks of modern pharmacology is searching for and developing new highly active substances of the corresponding action,” explain the scientists.

“Special attention should be paid to an in-depth study of the molecular mechanisms of action of this compound,” they conclude.

A paper looking further into the molecular mechanisms of the antiarrhythmic action of SS-68 prepared by the same research team is currently in press with Research Results in Pharmacology.

###

Original source:

Bogus SK, Galenko-Yaroshevsky PA, Suzdalev KF, Sukoyan GV, Abushkevich VG (2018) 2-phenyl-1-(3-pyrrolidin-1-il-propyl)-1 H-indole hydrochloride (SS-68): Antiarrhythmic and cardioprotective activity and its molecular mechanisms of action (Part I). Research Results in Pharmacology 4(2): 133-150. https://doi.org/10.3897/rrpharmacology.4.2859