Frog with tapir-like nose found in Amazon rainforest

The people of Peru’s Comunidad Nativa Tres Esquinas have long known about a tiny, burrowing frog with a characteristically long snout. Yet, until now, this species has remained elusive to biologists.

The people of Peru’s ​​Comunidad Nativa Tres Esquinas have long known about a tiny, burrowing frog with a long snout; one local name for it is rana danta, “tapir frog” for its resemblance to the large-nosed Amazonian mammal. But until now, this frog has remained elusive to biologists. Thanks to the help of local guides, an international team of researchers was able to find the frog and give it an official scientific name and description.

It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.

Michelle Thompson, researcher in the Keller Science Action Center at Chicago’s Field Museum

“These frogs are really hard to find, and that leads to them being understudied,” says Michelle Thompson, a researcher in the Keller Science Action Center at Chicago’s Field Museum and one of the authors of a study describing the frog in Evolutionary Systematics. “It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.”

“Frogs of this genus are spread throughout the Amazon, but since they live underground and can’t get very far by digging, the ranges each species is distributed in are fairly small. Since we found this new species in Amazon peatland, it wouldn’t be strange for it to be restricted to this environment. Its body shape and general look seems to be adapted to the soft soil of the peatland, rather than the robust and wider shape of species in other environments,”says Germán Chávez, a researcher at Peru’s Instituto Peruano de Herpetología and the study’s first author.

Synapturanus danta. Photo provided by Field Museum

The tapir frog’s appearance is striking. “It looks like a caricature of a tapir, because it has a big blobby body with this tiny little pointy head,” says Thompson. But despite its goofy appearance, it was very difficult to find. “The frogs are tiny, about the size of a quarter, they’re like brown, they’re underground, and they’re quick,” she says. “You know these little frogs are somewhere underground, but you just don’t see them hopping around.”

But while the frogs are hard to see, they’re not hard to hear. “We just kept hearing this beep-beep-beep coming from underground, and we suspected it could be a new species of burrowing frog because there had recently been other species in its genus described,” says Thompson. “But how do we get to it?”

Local guides who were familiar with the frogs led the researchers to peatland areas– wetlands carpeted with nutrient-rich turf made of decaying plant matter. The team searched by night, when the frogs were most active. 

“After 15 to 20 minutes of digging and looking for them, I heard Michelle screaming, and to me that could only mean that she and David had found the first adult,” says Chavez.

“We could hear them underground, going beep-beep-beep, and we’d stop, turn off our lights, and dig around, and then listen for it again,” says Thompson. “After a few hours, one hopped out of his little burrow, and we were screaming, ‘Somebody grab it!’”

Synapturanus danta. Photo by Germán Chávez

In addition to finally finding adult specimens of the frogs, the team recorded their calls. “I am obsessed with recording frog calls, so I decided to record the call first and then continue digging,” says Chávez.

The researchers used the physical specimens of the frogs, along with the recordings of their calls and an analysis of the frogs’ DNA, to confirm that they were a new species. They named them Synapturanus danta– Synapturanus is the name of the genus they belong to, and danta is the local word for “tapir.”

The frogs’ burrowing behavior that made them hard to find likely makes them an important part of their peatland home. “They’re part of the underground ecosystem,” says Thompson. “They’re moving down there, they’re eating down there, they’re laying their eggs down there. They contribute to nutrient cycling and changing the soil structure.”

“Beside the important role of this new species in the food chain of its habitat, we believe that it could be an indicator of healthy peatlands,” says Chávez. “First, we have to confirm whether it’s restricted to this habitat, but its body adaptations seem to point in that direction. For instance, if the habitat is too dry, the soil would become too hard for a non-robust frog like this one to dig. This would leave our frog with far fewer chances to find a shelter and eventually, it would be hunted by a bigger predator. So I think possibilities that this frog would be a wetlands specialist are high, but still need to go further in this research to confirm it.”

Panoramic view of the type locality. Photo by Alvaro del Campo

And the study’s implications go beyond the description of one little frog. S. danta was found during a rapid inventory led by Field Museum scientists, a program in which biologists and social scientists spend a few weeks in a patch of the Amazon to learn what species live there, how the people in the area manage the land, and how they can help make a case for the area to be protected. “Even though it’s called a rapid inventory, it could take a year or more to plan these things, and then it could take a year or a decade to do the conservation follow-up,” says Thompson. “The rapid part is where you spend a month in the field. And it’s a total whirlwind.”

A view of the landscape in the Amazonian Peatlands inhabited by Synapturanus danta. Photo by Luis Montenegro

Peru’s Putumayo Basin, where this rapid inventory took place, is part of a larger conservation scheme by the Keller Science Action Center and its partners. “The Putumayo Corridor spans from Ecuador, Colombia, Peru, and down to Brazil, following the Putumayo River,” says Thompson. “There’s very little deforestation, and it’s also one of the last free flowing rivers that has no current dams. There’s like a huge conservation opportunity to conserve the whole corridor, watershed and surrounding areas. This tapir frog is another piece of evidence of why scientists and local people need to work together to protect this region.”

Research article:

Chávez G, Thompson ME, Sánchez DA, Chávez-Arribasplata JC, Catenazzi A (2022) A needle in a haystack: Integrative taxonomy reveals the existence of a new small species of fossorial frog (Anura, Microhylidae, Synapturanus) from the vast lower Putumayo basin, Peru. Evolutionary Systematics 6(1): 9-20. https://doi.org/10.3897/evolsyst.6.80281

Simplified method to survey amphibians will aid conservation

Researchers developed a method to determine which amphibians inhabit a specific area. The new technique will resolve some of the issues with conventional methods, such as capture and observational surveys.

Ryukyu Sword Tailed Newt, or Firebellied Newt. Photo by Neil Dalphin via Creative Commons CC0.

An international collaborative research group of members from seven institutions has developed a method to determine which amphibians (frogs, newts and salamanders) inhabit a specific area. Their work was published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics (MBMG).

To do so, the scientists amplified and analysed extra-organismal DNA (also known as environmental DNA or eDNA) found in the water. This DNA ends up in the water after being expelled from the amphibian’s body along with mucus and excrement. 

The research group included Postdoctoral Researcher Sakata K. Masayuki and Professor Minamoto Toshifumi (Kobe University), Associate Professor Kurabayashi Atsushi (Nagahama Institute of Bio-Science and Technology), Nakamura Masatoshi (IDEA Consultants, Inc.) and Associate Professor Nishikawa Kanto (Kyoto University). 

The newly developed technique will resolve some of the issues with conventional methods, such as capture and observational surveys, which require a specialist surveyor who can visually identify species. Conventional surveys are also prone to discrepancies due to environmental factors, such as climate and season.

The researchers hope that the new method will revolutionise species monitoring, as it will enable anyone to easily monitor the amphibians that inhabit an area by collecting water samples.  

While monitoring in general is crucial to conserve the natural ecosystems, the importance of surveying amphibians is even more pressing, given the pace of their populations’ decline.

Amongst major obstacles to amphibian monitoring, however, are the facts that they are nocturnal; their young (e.g. tadpoles) and adults live in different habitats; and that specialist knowledge is required to capture individuals and identify their species. These issues make it particularly difficult to accurately survey amphibians in a standardised way, and results of individual efforts often contradict each other.

On the other hand, eDNA analysis techniques have already been established in programmes targeted at monitoring fish species, where they are already commonplace. So, the researchers behind the present study joined forces to contribute towards the development of a similar standardised analysis method for amphibians.

First of all, the researchers designed multiple methods for analysing the eDNA of amphibians and evaluated their performance to identify the most effective method. Next, they conducted parallel monitoring of 122 sites in 10 farmlands across Japan using the developed eDNA analysis along with the conventional methods (i.e. capture surveys using a net and observation surveys). 

As a result, the newly developed method was able to detect all three orders of amphibians: Caudata (the newts and salamanders), Anura (the frogs), and Gymnophiona (the caecilians). 

Furthermore, this novel eDNA analysis method was able to detect more species across all field study sites than the conventional method-based surveys, indicating its effectiveness.

Research Background

Amphibian biodiversity is continuing to decline worldwide and collecting basic information about their habitats and other aspects via monitoring is vital for conservation efforts. Traditional methods of monitoring amphibians include visual and auditory observations, and capture surveys.

However, amphibians tend to be small in size and many are nocturnal. The success of surveys varies greatly depending on the climate and season, and specialist knowledge is required to identify species. Consequently, it is difficult to monitor a wide area and assess habitats. The last decade has seen the significant development of environmental DNA analysis techniques, which can be used to investigate the distribution of a species by analysing external DNA (environmental DNA) that is released into the environment along with an organism’s excrement, mucus and other bodily fluids. 

The fundamentals of this technique involve collecting water from the survey site and analysing the eDNA contained in it to find out which species inhabit the area. In recent years, the technique has gained attention as a supplement for conventional monitoring methods. Standardised methods of analysis have already been established for other species, especially fishes, and diversity monitoring using eDNA is becoming commonplace. 

However, eDNA monitoring of amphibians is still at the development stage. One reason for this is that the proposed eDNA analysis method must be suitable for the target species or taxonomic group, and there are still issues with developing and implementing a comprehensive method for detecting amphibians. If such a method could be developed, this would make it possible for monitoring to be conducted even by people who do not have the specialised knowledge to identify species nor surveying experience.

Hopefully, this would be established as a unified standard for large-scale monitoring surveys, such as those on a national scale. This research group’s efforts to develop and evaluate analysis methods will hopefully lay the foundations for eDNA analysis to become a common tool for monitoring amphibians, as well as fish. 

***

Follow Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook.

***

Research article: 

Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T (2022) Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6: e76534. https://doi.org/10.3897/mbmg.6.76534

Natural History Museum of Berlin’s journal Fossil Record started publishing on ARPHA Platform

Fossil Record – the paleontological scholarly journal of the Natural History Museum of Berlin (Museum für Naturkunde Berlin) published its first articles after moving to the academic publisher Pensoft and its publishing platform ARPHA Platform in late 2021. The renowned scientific outlet – launched in 1998 – joined two other historical journals owned by the Museum: Deutsche Entomologische Zeitschrift and Zoosystematics and Evolution, which moved to Pensoft back in 2014.

Fossil Record – the paleontological scholarly journal of the Natural History Museum of Berlin (Museum für Naturkunde Berlin) published its first articles after moving to the academic publisher Pensoft and its publishing platform ARPHA in late 2021. The renowned scientific outlet – launched in 1998 – joined two other historical journals owned by the Museum: Deutsche Entomologische Zeitschrift and Zoosystematics and Evolution, which moved to Pensoft back in 2014.

Published in two issues a year, the open-access scientific outlet covers research from all areas of palaeontology, including the taxonomy and systematics of fossil organisms, biostratigraphy, palaeoecology, and evolution. It deals with all taxonomic groups, including invertebrates, microfossils, plants, and vertebrates.

As a result of the move to ARPHA, Fossil Record utilises the whole package of ARPHA Platform’s services, including its fast-track, end-to-end publishing module, designed to appeal to readers, authors, reviewers and editors alike. A major advantage is that the whole editorial process, starting from the submission of a manuscript and continuing into peer review, editing, publication, dissemination, archiving and hosting, happens within the online ecosystem of ARPHA. 

As soon as they are published, the articles in Fossil Record are available in three formats: PDF, machine-readable JATS XML and semantically enriched HTML for better and mobile-friendly reader experience. 

The publications are equipped with real-time metrics on both article and sub-article level that allow easy access to the number of visitors, views and downloads for every article and each of it’s figures, tables or supplementary materials. In their turn, the semantic enhancements do not only allow for easy navigation throughout the text and quick access to cited literature and the article’s own citations, but also tag each taxon that appears in the paper to provide links to further information concerning its occurrences, genomics, nomenclature, treatments and more as available from various databases.      

The first five papers – now available on the brand new journal website powered by ARPHA – already demonstrate the breadth of topics covered by Fossil Record, including systematics, paleobiogeography, palaeodiversity and morphology, as well as the international appeal of the scholarly outlet. The articles are co-authored by collaborative research teams representing ten countries and spanning three continents: Europe, Asia and Africa.

***

About the Natural History Museum of Berlin:

The “Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science” is an integrated research museum within the Leibniz Association. It is one of the most important research institutions worldwide in the areas of biological and geological evolution and biodiversity.

The Museum’s mission is to discover and describe life and earth – with people, through dialogue. As an excellent research museum and innovative communication platform, it wants to engage with and influence the scientific and societal discourse about the future of our planet, worldwide. Its vision, strategy and structure make the museum an excellent research museum. The Natural History Museum of Berlin has research partners in Berlin, Germany and approximately 60 other countries. Over 700,000 visitors per year as well as steadily increasing participation in educational and other events show that the Museum has become an innovative communication centre that helps shape the scientific and social dialogue about the future of our earth. 

Cultivated and wild bananas in northern Viet Nam threatened by а devastating fungal disease

For over 100 years, Fusarium, one of the most important fungal plant pathogens, has affected banana production worldwide.

Fusarium is one of the most important fungal plant pathogens, affecting the cultivation of a wide range of crops. All over the world, thousands of farmers suffer agricultural losses caused by Fusarium oxysporum f. sp. cubense (referred to as Foc for short), which directly affects their income, subsistence, and nourishment.

As a soil-borne fungus, Foc invades the root system, from where it moves into the vascular tissue that gradually deteriorates, until eventually the plant dies. What makes it particularly hard to deal with is that, even 20 years after all infected plants and tissue are removed, spores of it still remain in the soil.

One industry significantly affected by Foc is global banana export, largely dependent on the cultivation of members of the Cavendish subgroup, which are highly susceptible to some of the Foc strains.

For over 100 years, the fungus has affected banana production worldwide. Researchers predict it will continue spreading intensively in Asia, affecting important banana-producing countries such as China, the Philippines, Pakistan, and Viet Nam.

For Viet Nam, predictions on the impact of Foc for the future are dramatic: an estimated loss in the banana production area of 8% within the next five years, and up to 71% within the next 25 years. In particular, the recent rise of the novel TR4 strain has resulted in worldwide anxiety about the future of the well-known Cavendish banana and many other cultivars. Fusarium oxysporum f. sp. cubense is, however, not limited to TR4 or other well-known strains, like Race 1 or Race 2; it is a species complex that plant pathologists are yet to fully disentangle. 

In Viet Nam, like in the rest of Asia, Africa, Latin America, and the Caribbean, most bananas are consumed and traded locally, supporting rural livelihood. This means that any reduction in crop harvest directly affects local people’s income and nourishment. 

It has thus become necessary to find out what are the individual species causing the Fusarium wilt among Vietnamese bananas. Only by understanding which species are infecting the cultivated bananas can concrete measures be taken to control the future spreading of the disease to other regions.

Using DNA analyses and morphological characterization, an international team of researchers from Viet Nam (Plant Resources Center, Vietnam National University of Agriculture), Belgium (Meise Botanic Garden, KU Leuven, Bioversity Leuven, MUCL) and the Netherlands (Naturalis Biodiversity Center) investigated the identity of the Fusarium wilt infections. They recently published their joint research in the open-access, peer-reviewed journal MycoKeys.

The study shows that approximately 3 out of 4 Fusarium infections of the northern Vietnamese bananas are caused by the species F. tardichlamydosporum, which can be regarded as the typical Race 1 infections. Interestingly, Foc TR4 is not yet a dominant strain in northern Viet Nam, as the species causing the disease – F. odoratissimum – only accounts for 10% of the Fusarium infections. A similar proportion of Fusarium infections is caused by the species Fusarium cugenangense – considered to cause Race 2 infections among bananas.More importantly, Fusarium wilt was not only found in cultivated bananas: the disease seemed to also affect wild bananas. This finding indicates that wild bananas might function as a sink for Fusarium wilt from where reinfections towards cultivars could take place.

Research article:

Le Thi L, Mertens A, Vu DT, Vu TD, Anh Minh PL, Duc HN, de Backer S, Swennen R, Vandelook F, Panis B, Amalfi M, Decock C, Gomes SIF, Merckx VSFT, Janssens SB (2022) Diversity of Fusarium associated banana wilt in northern Viet Nam. MycoKeys 87: 53-76. https://doi.org/10.3897/mycokeys.87.72941

Call for data papers describing datasets from Northern Eurasia in Biodiversity Data Journal

In collaboration with the Finnish Biodiversity Information Facility (FinBIF) and Pensoft Publishers, GBIF has announced a new call for authors to submit and publish data papers on Russia in a special collection of Biodiversity Data Journal (BDJ). The call extends and expands upon a successful effort in 2020 to mobilize data from European Russia.

GBIF partners with FinBIF and Pensoft’s Biodiversity Data Journal to streamline publication of new datasets about biodiversity from Northern Eurasia

Original post via GBIF

In collaboration with the Finnish Biodiversity Information Facility (FinBIF) and Pensoft Publishers, GBIF has announced a new call for authors to submit and publish data papers on Northern Eurasia in a special collection of Biodiversity Data Journal (BDJ). The call expands upon successful efforts to mobilize data from European Russia in 2020 and from the rest of Russia in 2021.

Until 30 June 2022, Pensoft will waive the article processing fee (normally €650) for the first 50 accepted data paper manuscripts that meet the following criteria for describing a dataset:

See the complete definition of these terms below.

Detailed instructions

Authors must prepare the manuscript in English and submit it in accordance with BDJ’s instructions to authors by 30 June 2022. Late submissions will not be eligible for APC waivers.

Sponsorship is limited to the first 50 accepted submissions meeting these criteria on a first-come, first-served basis. The call for submissions can therefore close prior to the deadline of 30 June 2022. Authors may contribute to more than one manuscript, but artificial division of the logically uniform data and data stories, or “salami publishing”, is not allowed.

BDJ will publish a special issue including the selected papers by the end of 2021. The journal is indexed by Web of Science (Impact Factor 1.225), Scopus (CiteScore: 2.0) and listed in РИНЦ / eLibrary.ru.

For non-native speakers, please ensure that your English is checked either by native speakers or by professional English-language editors prior to submission. You may credit these individuals as a “Contributor” through the AWT interface. Contributors are not listed as co-authors but can help you improve your manuscripts. BDJ will introduce stricter language checks for the 2022 call; poorly written submissions will be rejected prior to the peer-review process.

In addition to the BDJ instruction to authors, data papers must referenced the dataset by
a) citing the dataset’s DOI
b) appearing in the paper’s list of references
c) including “Northern Eurasia 2022” in the Project Data: Title and “N-Eurasia-2022“ in Project Data: Identifier in the dataset’s metadata.

Authors should explore the GBIF.org section on data papers and Strategies and guidelines for scholarly publishing of biodiversity data. Manuscripts and datasets will go through a standard peer-review process. When submitting a manuscript to BDJ, authors are requested to assign their manuscript to the Topical Collection: Biota of Northern Eurasia at step 3 of the submission process. To initiate the manuscript submission, remember to press the Submit to the journal button.

To see an example, view this dataset on GBIF.org and the corresponding data paper published by BDJ.

Questions may be directed either to Dmitry Schigel, GBIF scientific officer, or Yasen Mutafchiev, managing editor of Biodiversity Data Journal.

This project is a continuation of successful calls for data papers from European Russia in 2020 and 2021. The funded papers are available in the Biota of Russia special collection and the datasets are shown on the project page.

Definition of terms

Datasets with more than 7,000 presence records new to GBIF.org

Datasets should contain at a minimum 7,000 presence records new to GBIF.org. While the focus is on additional records for the region, records already published in GBIF may meet the criteria of ‘new’ if they are substantially improved, particularly through the addition of georeferenced locations.” Artificial reduction of records from otherwise uniform datasets to the necessary minimum (“salami publishing”) is discouraged and may result in rejection of the manuscript. New submissions describing updates of datasets, already presented in earlier published data papers will not be sponsored.

Justification for publishing datasets with fewer records (e.g. sampling-event datasets, sequence-based data, checklists with endemics etc.) will be considered on a case-by-case basis.

Datasets with high-quality data and metadata

Authors should start by publishing a dataset comprised of data and metadata that meets GBIF’s stated data quality requirement. This effort will involve work on an installation of the GBIF Integrated Publishing ToolkitBDJ will conduct its standard data audit and technical review. All datasets must pass the data audit prior to a manuscript being forwarded for peer review.

Only when the dataset is prepared should authors then turn to working on the manuscript text. The extended metadata you enter in the IPT while describing your dataset can be converted into manuscript with a single-click of a button in the ARPHA Writing Tool (see also Creation and Publication of Data Papers from Ecological Metadata Language (EML) Metadata. Authors can then complete, edit and submit manuscripts to BDJ for review.

Datasets with geographic coverage in Northern Eurasia

In correspondence with the funding priorities of this programme, at least 80% of the records in a dataset should have coordinates that fall within the priority areas of Russia, Ukraine, Belarus, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan, Moldova, Georgia, Armenia and Azerbaijan. However, authors of the paper may be affiliated with institutions anywhere in the world.

***

Follow Biodiversity Data Journal on Twitter and Facebook to keep yourself posted about the new research published.

New rainfrog species named in honor of Greta Thunberg

The Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for new-to-science species. The funds raised are to aid their conservation.

In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species. The funds raised at the auction benefited the conservation of the newly recognized species. It is estimated that about 100 new species are discovered each year.

The scientific article officially describing and naming the new species, Pristimantis gretathunbergae, was published in Pensoft’s scientific journal ZooKeys.

Greta Thunberg, Sweden at the Annual Meeting 2019 of the World Economic Forum in Davos, January 25, 2019. Copyright by World Economic Forum / Manuel Lopez

The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). The two have collaborated for 10 years in Panama and have published eight scientific articles together and described 12 new species.

The team found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation. The Chucanti reserve was established by the Panamanian conservation organization ADOPTA with support from Rainforest Trust.

The Greta Thunberg Rainfrog exhibits distinctive black eyes—unique for Central American rainfrogs. Its closest relatives inhabit northwestern Colombia. Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. The Chucanti Reserve where the frog was first found is part of a growing network of natural parks and preserves championed by the Panamanian Government.

Greta Thunberg’s rainfrog, Pristimantis gretathunbergae. Photo by Konrad Mebert

The Rainforest Trust auction winner wanted to name the frog in honor of Greta Thunberg and her work in highlighting the urgency in preventing climate change. Her “School Strike for Climate” outside the Swedish parliament has inspired students worldwide to carry out similar strikes called Fridays for Future. She has impressed global leaders and her work is drawing others to action for the climate.

The plight of the Greta Thunberg Rainfrog is closely linked to climate warming, as rising temperatures would destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years. Deadly chytrid fungus pose additional threats for its amphibians. Conservation of the remaining habitat is critical to ensure the survival of the frog. The important work in Panama by ADOPTA and Rainforest Trust globally to protect rainforests is critical to the survival of this frog and many other endangered species.

Research article:

Mebert K, González-Pinzón M, Miranda M, Griffith E, Vesely M, Schmid PL, Batista A (2022) A new rainfrog of the genus Pristimantis (Anura, Brachycephaloidea) from central and eastern Panama. ZooKeys 1081: 1–34. https://doi.org/10.3897/zookeys.1081.63009

First tarantula to live in bamboo stalks found in Thailand

A new genus of tarantula was discovered inside a bamboo culm from Mae Tho, Tak province, in Thailand. This is the first genus of tarantula that shows the surprising specialization of living in bamboo stalks. The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a wildlife YouTuber from Thailand, who collaborated with arachnologists Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote. The new genus and species are described in the journal ZooKeys.

Guest blog post by Dr. Narin Chomphuphuang

Bamboo is important to some animals as it can serve as a source of nutrition, shelter, and habitat. Inside a bamboo culm, we discovered a new genus of tarantula, which was collected from Mae Tho, Mueang Tak district, Tak province, in Thailand.

Mae Tho, Mueang Tak district, Tak province, in Thailand, where the newly described tarantula was discovered. Photo by Narin Chomphuphuang

The discovered genus has not been previously studied by scientists; this is the first case of a genus of tarantula that shows the surprising specialization of living in bamboo stalks.

We named the new tarantula genus Taksinus in honor of the Thai king Taksin the Great. The name was chosen in recognition of Taksin the Great’s old name, Phraya Tak – governor of Tak province, which is where the new genus was discovered. After the Second Fall of Ayutthaya in 1767, Taksin the Great was the only king of the Thonburi Kingdom to become a key leader of Siam, prior to the establishment of Thailand.

The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a nationally known wildlife YouTuber in Thailand with 2.45 million subscribers, who collaborated with Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote, the arachnologists who studied and described the new genus. 

Zongtum Sippawat, or JoCho Sippawat (left), with Wuttikrai Khaikaew, Kaweesak Keeratikiat, Narin Chomphuphuang and Chaowalit Songsangchote. Photo by Narin Chomphuphuang

In general, tarantulas from Southeast Asia can be either terrestrial or arboreal. Arboreal tarantulas spend time on different types of trees, but until now, researchers had not previously identified a tarantula found only on a specific tree type.

“These animals are truly remarkable; they are the first known tarantulas ever with a bamboo-based ecology,” Narin said.

Finding the new tarantula. Video by JoCho Sippawat

The tarantulas were discovered inside mature culms of Asian bamboo stalks (Gigantochloa sp.), with nest entrances ranging in size from 2–3 cm to a large fissure, within a silk-lined tubular burrow, either in the branch stub or in the middle of the bamboo culms. All the tarantulas found living in the culms had built silken retreat tubes that covered the stem cavity.

The tarantulas cannot bore into bamboo stems; therefore, they depend on the assistance of other animals. Bamboo is preyed upon by a variety of animals, including the bamboo borer beetle, bamboo worm, bamboo-nesting carpenter bee, and small mammals such as rodents. Furthermore, bamboo cracking is primarily caused by rapid changes in moisture content induced by the atmosphere, uneven drying, or drenching followed by rapid drying or by human activities. 

Taksinus bambus tarantula in its habitat. Photo by JoCho Sippawat

Taksinus is classified as a new genus within the Ornithoctoninae subfamily of Southeast Asian tarantulas. The discovery comes 104 years after Chamberlin defined the previous genus in this subfamily, Melognathus, in 1917.

What makes Taksinus distinct from all other Asian arboreal genera is the relatively short embolus of the male pedipalps, which is used to transport sperm to the female seminal receptacles during mating. In addition to morphology, its habitat type and distribution are also different from those of related species. While Asian arboreal tarantulas have been reported in Indonesia (Sangihe Island and Sulawesi), Malaysia, Singapore, Sumatra, and Borneo, Taksinus was discovered in northern Thailand, which is a new geographical location for those spiders.

Looking at an entrance hole of a bamboo culm tarantula. Photo by Narin Chomphuphuang

“We examined all of the trees in the area where the species was discovered. This species is unique because it is associated with bamboo, and we have never observed this tarantula species in any other plant. Bamboo is important to this tarantula, not only in terms of lifestyle but also because it can only be found in high hill forests in the northern part of Thailand, at an elevation of about 1,000 m. It is not an exaggeration to say that they are now Thailand’s rarest tarantulas,” says Narin.

Few people realize how much of Thailand’s wildlife remains undocumented. Thai forests now cover only 31.64% of the country’s total land area. We are primarily on a mission to research and save the biodiversity and wildlife within these forests from extinction, especially species-specific microhabitats.

Research article:

Songsangchote C, Sippawat Z, Khaikaew W, Chomphuphuang N (2022) A new genus of bamboo culm tarantula from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1080: 1-19. https://doi.org/10.3897/zookeys.1080.76876

Extensive practical guide to DNA-based biodiversity assessment methods published as a ‘living’ document by DNAqua-Net COST Action

Between 2016 and 2021, over 500 researchers collaborated within the DNAqua-Net international network, funded by the European Union’s European Cooperation in Science and Technology programme (COST), with the goal to develop and advance biodiversity assessment methods based on analysis of DNA obtained from the environment (e.g. river water) or from unsorted collections of organisms. 

Such innovative methods are a real game changer when it comes to large-scale assessment of biodiversity and ecological monitoring, as collecting environmental samples that are sent to the lab for analysis is much cheaper, faster and non-invasive, compared with capturing and examining live organisms. However, large-scale adoption has been hindered by a lack of standardisation and official guidance. 

Recognising the urgent need to scale up ecological monitoring as we respond to the biodiversity and climate crises, the DNAqua-Net team published a guidance document for the implementation of DNA-based biomonitoring tools.

The guide considers four different types of samples: water, sediments, invertebrate collections and diatoms, and two primary analysis types: single species detection via qPCR and similar targeted methods; and assessment of biological communities via DNA metabarcoding. At each stage of the field and laboratory process the guide sets out the scientific consensus, as well as the choices that need to be made and the trade-offs they entail. In particular, the guide considers how the choices may be influenced by common practical constraints such as logistics, time and budget. Available in an Advanced Book format, the guidelines will be updated as the technology continues to evolve.

Leaders of DNAqua-Net are Prof. Dr. Florian Leese of the University of Duisburg-Essen (Germany) and Dr. Agnès Bouchez of the French National Institute for Agriculture, Food, and Environment (INRAE). The core writing team for the present guide book involves Dr. Micaela Hellström (MIX Research AB, Sweden), Dr. Kat Bruce (NatureMetrics Ltd., UK), Dr. Rosetta Blackman (University of Zurich and EAWAG, Switzerland), Dr. Sarah Bourlat (LIB/Museum Koenig, Germany), and Prof. Kristy Deiner (ETH Zurich and SimplexDNA AG, Switzerland).

“Back in 2016 we realised that all around the globe researchers are testing new eDNA methods, developing individual solutions and products. While this is excellent, we need to reach a consensus and provide this consensus to stakeholders from the applied sectors”, 

says Florian Leese.
This video was created as part of EU COST Action DNAqua-Net (CA15219) and shows how environmental DNA (eDNA) can be sampled and analysed from aquatic ecosystems. It shows the whole cycle from the start to final results. 
Credit: DNAqua-Net

The guide’s lead author Dr. Kat Bruce adds:

“The urgency of addressing the twin biodiversity and climate crises means that we need to accelerate the adoption of new technologies that can provide data and insights at large scales. In doing so, we walk a tricky line to agree on sufficiently standardised methods that can be usefully applied as soon as they add value, while still continuing to develop them further and innovate within the field. It was a daunting task to seek consensus from several hundred scientists working in a fast-moving field, but we found that our technology is based on a strong foundation of knowledge and there was a high level of agreement on the core principles – even if the details vary and different users make different choices depending on their environmental, financial or logistical constraints.”

Looking back on the last four years that culminated in the publication of a “living” research publication, Prof. Dr. Kristy Deiner says:

“The document took many twists and turns through more than ten versions and passionate discussions across many workshops and late night drinks. All in the days when we could linger at conferences without fear of the pandemic weighing on us. As we worked to find consensus, one thing was clear: we had a lot to say and a standard review paper was not going to cut it. With the knowledge and experience gathered across the DNAqua-Net, it made sense to not limit this flow of information, but rather to try and tackle it head on and use it to address the many questions we’ve all struggled with while developing DNA-based biodiversity survey methods.”

Now that the document – or at least its first version – is publicly available, the researchers are already planning for the next steps and challenges.

“The bottom line is we’ve come a long way in the last ten years. We have a buffet of methods for which many produce accurate, reliable and actionable data to the aid of biodiversity monitoring and conservation. While there is still much work to be done, the many unanswered questions are because the uptake is so broad. With this broad uptake comes novel challenges, but also new insights and a diversity of minds with new ideas to address them. As said this is planned to be a living document and we welcome continued inputs no matter how great or small,” says Deiner.

Dr. Micaela Hellström recalls:

“The book evolved over the four years of COST Action DNAqua-Net which made it possible for the many scientists and stakeholders involved to collaborate and exchange knowledge on an unprecedented scale. Our whole team is well aware of the urgent need to monitor biodiversity loss and to provide accurate species distribution information on large scales, to protect the species that are left. This was a strong driving force for all of us involved in the production of this document. We need consensus on how to coherently collect biodiversity data to fully understand changes in nature.”

“It was a great and intense experience to be a part of the five-person core writing team. In the months prior to submitting the document, we spent countless hours, weekends and late nights researching the field, communicating with researchers and stakeholders, and joining vivid Zoom discussions. As a result, the present book provides solid guidance on multiple eDNA monitoring methods that are – or will soon become – available as the field moves forward.” 

***

The DNAqua-Net team invites fellow researchers and practitioners to provide their feedback and personal contributions using the contacts below.

***

Original source:

Bruce K, Blackman R, Bourlat SJ, Hellström AM, Bakker J, Bista I, Bohmann K, Bouchez A, Brys R, Clark K, Elbrecht V, Fazi S, Fonseca V, Hänfling B, Leese F, Mächler E, Mahon AR, Meissner K, Panksep K, Pawlowski J, Schmidt Yáñez P, Seymour M, Thalinger B, Valentini A, Woodcock P, Traugott M, Vasselon V, Deiner K (2021) A practical guide to DNA-based methods for biodiversity assessment. Advanced Books. https://doi.org/10.3897/ab.e68634

A year of biodiversity: Top 10 new species of 2021 from Pensoft journals, Part 2

While 2021 may have been a stressful and, frankly, strange year, in the world of biodiversity there has been plenty to celebrate! Out of the many new species we published in our journals this year, we’ve curated a selection of the 10 most spectacular discoveries. The world hides amazing creatures just waiting to be found – and we’re making this happen, one new species at a time.

Read Part 1 of the Top 10 new species of 2021 here.

5. The Instagram model

Many students and young researchers are encouraged to explore biodiversity by starting from their own backyard. Yes, but how often do they find undescribed snake species in there?

This is exactly what happened to Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar. Confined to his home in Chamba, India because of the COVID-19 lockdown, he started photographing any wildlife he came across and uploading it on his Instagram account. One of his images showed a beautiful kukri snake.

The picture immediately caught the attention of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and Harshil Patel (Veer Narmad South Gujarat University, Surat), who worked together with Virendar to describe it as a new species under the name Oligodon churahensis.

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” Zeeshan A. Mirza told us earlier this month.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

Published in: Evolutionary Systematics

4. The tiny snail with an athletic name

Do freshwater snails make good tennis players? Well, one of them certainly has the name for it.

Enter Travunijana djokovici, a new species of aquatic snail named after famous Serbian ten­nis player Novak Djokovic.

Found in a karstic spring near Podgorica, the capital of Montenegro, T. Djokovici is part of the family of mud snails, which inhabit fresh or brackish water, including caves and subterranean habitats.

The tiny snail was discovered by Slovak biospeleologist Jozef Grego and Montenegrin zoologist Vladimir Pešić of the University of Montenegro, who claim they named it after the renowned tennis player “to acknowledge his inspiring enthusiasm and energy.”.

To discover some of the world’s rarest animals that inhabit the unique underground habitats of the Dinaric karst, to reach inaccessible cave and spring habitats and for the restless work during processing of the collected material, you need Novak’s energy and enthusiasm,” they add.

Amazingly, Novak Djokovic found out that he’s now a namesake to a tiny snail, and he even had a comment.

“I am honoured that a new species of snail was named after me because I am a big fan of nature and ecosystems and I appreciate all kinds of animals and plants,” he says in an Eurosport article. “I don’t know how symbolic this is, because throughout my career I always tried to be fast and then a snail was named after me,” he joked. “Maybe it’s a message for me, telling me to slow down a bit!”

Published in: Subterranean Biology

3. The Coronavirus caddisfly

The COVID-19 pandemic has undoubtedly affected all of us, and the scientific world is no exception. Fieldwork got postponed, museums remained closed, arranging meet-ups and travel became almost impossible.

Scientists used this as a drive and inspiration as they continued their hard work on new discoveries. Only this year, we published the descriptions of the beetle Trigonopterus corona, the wasp Allorhogas quarentenus, and, yes, the caddisfly Potamophylax coronavirus.

P. coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species new to science. Its name will be an eternal memory of an extremely difficult period.

In a broader sense, the researchers also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.

P. coronavirus is part of the small insect order of Trichoptera, which is very sensitive to water pollution and habitat deterioration. The authors of the species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river, and failure to understand this may drive it, along with many other species, towards extinction.

Published in: Biodiversity Data Journal

2. The cutest peacock spider ever

If you think spiders can’t be cute, you’ve probably never seen a peacock spider. They have big forward-facing eyes, and their males perform fun courtship dances.

Citizen scientist Sheryl Holliday was the first to spot this vibrant spider while walking in Mount Gambier, Australia, and she posted her find on Facebook. It was later described as a new species by arachnologist Joseph Schubert of Museums Victoria.

Coloured bright orange, it was called Maratus Nemo, after the popular Disney character.

‘It has a really vibrant orange face with white stripes on it, which kind of looks like a clown fish, so I thought Nemo would be a really suitable name for it,’ Joseph Schubert says.

Maratus Nemo is probably the first influencer arachnid – his curious story, bright colours and fun name practically made him an internet star overnight.

Published in: Evolutionary Systematics

1. The tiny ant that challenges gender stereotypes

Found in Ecuador’s evergreen tropical forests, this miniature trap jaw ant bears the curious Latin name Strumigenys ayersthey. Unlike most species named in honour of people, whose names end with -ae (after females) and –i (after males), S. ayersthey might be the only species in the world to have a scientific name with the suffix –they.

“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments, Strumigenys ayersthey,” authors Philipp Hoenle of the Technical University of
Darmstadt
and Douglas Booher of Yale University state in their paper.

Strumigenys ayersthey sp. nov. is thus inclusively named in honor of Jeremy Ayers for the multitude of humans among the spectrum of gender who have been unrepresented under traditional naming practices.”

Curiously, it was no other than lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in writing the etymology section for the research article, where they explain the origin of the species name and honor their mutual friend, activist and artist Jeremy Ayers.

This ant can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus.

“Such a beautiful and rare animal was just the species to celebrate both biological and human diversity,” Douglas Booher said.

Published in: ZooKeys

Scientists discover White-handed gibbons that have been evolving in the south of Malaysia

Genetic assessment of captive gibbons to identify their species and subspecies is an important step before any conservation actions. A group of wildlife researchers recently discovered a previously unknown population of white-handed gibbons (subspecies lar) from Peninsular Malaysia. Their findings are now published in the open-access journal ZooKeys. Betsy and Lola are among the captive white-handed gibbons undergoing a strict rehabilitation process before being released back to the wild.

Many captive gibbons kept in zoos and rescue centres have been seized from illegal pet trade, private collectors, and plantations where their natural habitats are getting destroyed. 

In 2013, the National Wildlife Rescue Centre (NWRC) of the Department of Wildlife and National Parks (PERHILITAN) was established in Peninsular Malaysia to help with the rehabilitation of wildlife species – including gibbons – before they are reintroduced or translocated back to the wild. Under the Primate Rehabilitation Programme initiated by PERHILITAN, captive gibbons have to go through a number of procedures and assessments, where their taxonomy and genetics might be examined, before they can go back to living in the wild.

Members of the research team at National Wildlife Forensic Laboratory of DWNP. Photo by PERHILITAN

Following the Guidelines for Reintroductions and Other Conservation Translocations provided by the IUCN Species Survival Commission, researchers Dr Jeffrine J. Rovie-Ryan from Universiti Malaysia Sarawak and Millawati Gani and colleagues from the National Wildlife Forensic Laboratory of PERHILITAN conducted a genetic assessment on 12 captive white-handed gibbons in NWRC. Determining the subspecies and origin of the animals is an important step that informs further decisions on their translocation and reintroduction.

In a research paper published in the open-access journal ZooKeys, the team describes a previously unknown southern population of the white-handed gibbon subspecies lar living in Peninsular Malaysia. In what started as a straightforward species and subspecies identification process using DNA technology, the researchers discovered unusual mutations in the DNA of the studied gibbons. This is how the researchers found themselves before a distinct population, which they concluded must have been evolving in isolation.

Lola (left) and Betsy (right), two of the White-handed gibbons of the Hylobates lar lar subspecies undergoing rehabilitation process at Pulau Ungka, NWRC. Photo by Hani Nabilia and PERHILITAN

“Given the prolonged isolation, it is likely that the southern population has undergone some local speciation, but this finding should be regarded as preliminary and requires further investigation,” explained Dr Jeffrine. Furthermore, the researchers suggest there might be a northern population inhabiting Southern Thailand.

Still going through rehabilitation, the gibbons from the study have been pre-released into a semi-wild enclosure known as Pulau Ungka (Gibbon Island), where their recovery is closely monitored by primate experts of PERHILITAN.

Research article:

Gani M, Rovie-Ryan JJ, Sitam FT, Mohd Kulaimi, NA, Zheng, CC, Atiqah AN, Abd Rahim, NM, Mohammed AA (2021) Taxonomic and genetic assessment of captive White-Handed Gibbons (Hylobates lar) in Peninsular Malaysia with implications towards conservation translocation and reintroduction programme. ZooKeys 1076: 25–41 (2021), doi: 10.3897/zookeys.1076.73262