In recognition of the love and devotion that Terry expressed for the study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, covering all subjects falling within the area of systematic zoology. Titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”.
In tribute to our beloved friend and founding Editor-in-Chief, Dr Terry
Erwin, who passed away on 11th May 2020, we are planning a special
memorial volume to be published on 11 May 2021, the date Terry left us. Terry
will be remembered by all who knew him for his radiant spirit, charming
enthusiasm for carabid beetles and never-ceasing exploration of the world of
biodiversity!
In recognition of the love and devotion that Terry expressed for study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”, to all subjects falling within the area of systematic zoology. Of special interest are papers recognising Terry’s dedication to collection based research, massive biodiversity surveys and origin of biodiversity hot spot areas. The Special will be edited by John Spence, Achille Casale, Thorsten Assmann, James Liebherr and Lyubomir Penev.
Article processing charges (APCs) will be waived for: (1) Contributions
to systematic biology and diversity of carabid beetles, (2) Contributions from
Terry’s students and (3) Contributions from his colleagues from the Smithsonian
Institution. The APC for articles which do not fall in the above categories
will be discounted at 30%.
The submission deadline is 31st December 2020.
Contributors are also invited to send memories and photos which shall be
published in a special addendum to the volume.
The memorial volume will also include a joint project of Plazi, Pensoft and the Biodiversity Literature Repository aimed at extracting of taxonomic data from Terry Erwin’s publications and making it easily accessible to the scientific community.
In recent years, the concept of Ecosystem Services (ES): the benefits people obtain from ecosystems, such as pollination provided by bees for crop growing, timber provided by forests or recreation enabled by appealing landscapes, has been greatly popularised, especially in the context of impeding ecological crises and constantly degrading natural environments.
Hence, there has been an increasing need for robust and practical methodologies to assess ES, in order to provide key stakeholders and decision-makers with crucial information. One such method to map and assess ES: the ES Matrix approach, has been increasingly used in the last decade.
The ES Matrix approach is based on the use of a lookup table consisting of geospatial units (e.g. types of ecosystems, habitats, land uses) and sets of ES, meant to be assessed for a specific study area, which means that the selection of a particular study area is the starting point in the assessment. Only then, suitable indicators and methods for ES quantification can be defined. Based on this information, a score for each of the ES considered is generated, referring to ES potential, ES supply, ES flow/use or demand for ES.
Ten years later, a research led by Dr C. Sylvie Campagne (Leibniz University Hannover, Germany), Dr Philip Roche (INRAE, France), Prof Dr Felix Muller (University of Kiel, Germany) and Prof Dr Benjamin Burkhard conducted a review of 109 published studies applying the ES matrix approach to find out how the ES matrix approach was applied and whether this was done in an oversimplified way or not.
In their recent paper, published in the open-access, peer-reviewed journal One Ecosystem, the review confirms the method’s flexibility, appropriateness and utility for decision-making, as well as its ability to increase awareness of ES. Nevertheless, the ES matrix approach has often been used in a “quick and dirty” way that urges more transparency and integration of variability analyses, they conclude.
“We analysed the diversity of application contexts, highlighted trends of uses and proposed future recommendations for improved applications of the ES matrix. Amongst the main patterns observed, the ES matrix approach allows for the assessment of a higher number of ES than other ES assessment methods. ES can be jointly assessed with indicators for ecosystem condition and biodiversity in the ES matrix,”
explains Campagne.
“Although the ES matrix allows us to consider many data sources to achieve the assessment scores for the individual ES, these were mainly used together with expert-based scoring (73%) and/or ES scores that were based on an already-published ES matrix or deduced by information found in related scientific publications (51%),”
she elaborates.
In 29% of the studies, an already existing matrix was used as an initial matrix for the assessment and in 16% no other data were used for the matrix scores or no adaptation of the existing matrix used was made.
“Nevertheless, we recommend to use only scores assessed for a specific study or, if one wishes to use pre-existing scores from another study, to revise them in depth, taking into account the local context of the new assessment,”
she points out.
The researchers also acknowledge the fact that 27% of the reviewed studies did not clearly explain their methodology, which underlines the lack of method elucidation on how the data had been used and where the scores came from. Although some studies addressed the need to consider variabilities and uncertainties in ES assessments, only a minority of studies (15%) did so. Thus, the team also recommends to systematically report and consider variabilities and uncertainties in each ES assessment.
“We emphasise the need for all scientific studies to describe clearly and extensively the whole methodology used to score or evaluate ES, in order to be able to rate the quality of the scores obtained. The increasing number of studies that use the ES matrix approach confirms its success, appropriateness, flexibility and utility to generate information for decision-making, as well as its ability to increase awareness of ES, but the application of the ES matrix has to become more transparent and integrate more variability analyses,”
concludes the research team.
Original source: Campagne CS, Roche P, Müller F, Burkhard B (2020) Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosystem 5: e51103. https://doi.org/10.3897/oneeco.5.e51103
Last year, the 18th International Congress of Myriapodology brought together 92 of the world’s top experts on the curious, yet still largely unknown multi-legged centipedes, millipedes, pauropods, symphylans (collectively referred to as myriapods) and velvet worms (onychophorans).
Held between 25th and 31st August 2019 at the Hungarian Natural History Museum in Budapest and co-organised by the Hungarian Biological Society, the biennial event saw the announcement of the latest findings related to the diversity, distribution and biology of these creatures. Now, the public gets the chance to learn about a good part of the research presented there on the pages of the open-access scholarly journal ZooKeys.
The special issue in ZooKeys, “Proceedings of the 18th International Congress of Myriapodology (25-31 August 2019, Budapest, Hungary)“, features a total of 11 research articles reporting on species new to science, updates on the distribution and conservation of already known myriapods and discoveries about the biology, ecology and evolution of individual species. Together, the publications reveal new insights into the myriapod life on four continents: Europe, Asia, Africa and Australia.
Amongst the published research outputs worth mentioning is the comparison between regional and global Red Listings of Threatened Species that worryingly identifies a missing overlap between the myriapod species included in the global IUCN Red List and the regional ones. This first-of-its-kind overview of the current conservation statuses of myriapods from around the world highlights the lack of dedicated funding for the conservation of hundreds of threatened myriapods. As a result, the scientists behind the study urge for the establishment of a Myriapoda Specialist Group in the Species Survival Commission of the IUCN.
The 1st overview of current #conservation statuses of #myriapods from around the world?️ reveals a missing overlap between species in the global @IUCNRedList and regional ones
Meanwhile, to give us a hint about how many millipedes are out there unbeknownst to the world and any conservation authorities, at the congress, three research teams revealed a total of seven new to science species: three giant pill-millipedes from Vietnam, another three from the biodiversity hotspot Madagascar and a spirostreptid millipede inhabiting Sao Tome and Principe.
Neighbouring populations of two Tasmanian species of flat-backed #millipedes seem to have come to their own terms to keep distance between each other in a remarkable case of #parapatry
Amongst the rest of the papers is the curious discovery of two Tasmanian species of flat-backed millipedes of the genus Tasmaniosoma whose neighbouring populations have seemingly come to their own terms to keep distance between each other, save for a little stretch of land, for no obvious reason. Not a single site where both species occur together was found by Dr Bob Mesibov, the millipede expert behind the study. How is the parapatric boundary maintained? How, when and where did the parapatry originate? These are the big mysteries that the already retired Australian scientist leaves for his successors to resolve.
David Lama (1990 – 2019), a legendary alpinist, recognised by the study’s author also for his commitment to conservation. Photo by MoserB / Copyrighted free use
The discovery of new, still unnamed animal species in a well-researched European region like the Alps is always a small sensation. All the more surprising is the description of a total of three new to science species previously misidentified as long-known alpine moths.
During a genetic project of the Tyrolean State Museums in Innsbruck (Austria), Austrian entomologist and head of the Natural Science Collections Peter Huemer used an integrative research approach that relies on molecular methods to study four European moths. Despite having been known for decades, those species remained quite controversial, because of many unknowns around their biology.
At the end, however, it turned out that the scientist was not dealing with four, but seven species. The three that were not adding up were indeed previously unknown species. Therefore, Huemer described the moths in a paper in the open-access, peer-reviewed journal Alpine Entomology. Curiously, all three species were given the names of legendary alpinists: Reinhold Messner, Peter Habeler and David Lama.
Habitat of Caryocolum lamai (Lama’s Curved-horn moth), Italy, Alpi Cozie, Colle Valcavera. Photo by Peter Huemer
Tribute to three legends in alpinism
“The idea to name the new species in honour of three world-renowned climbers was absolutely no coincidence,”
explains Huemer.
One of the newly described species, Caryocolum messneri, or Messner’s Curved-horn moth, is dedicated to Reinhold Messner. Messner is a famous alpinist who was the first to reach Mount Everest without additional oxygen, but also the first climber to ascend all fourteen peaks over 8,000 metres. For decades, he has been inspiring followers through lectures and books. His is also the Messner Mountain Museum project, which comprises six museums located at six different locations in South Tyrol, northern Italy, where each has the task to educate visitors on “man’s encounter with mountains” by showcasing the science of mountains and glaciers, the history of mountaineering and rock climbing, the history of mythical mountains, and the history of mountain-dwelling people.
“So what could have been a better fit for a name for the species that flutters on the doorstep of his residence, the Juval Castle in South Tyrol?”
says Huemer.
The second new species, Caryocolum habeleri, or Habeler’s Curved-horn moth, honours another extraordinary mountaineer: Peter Habeler. Having joined Messner on his expedition to Mount Everest, he also climbed this mountain without additional oxygen in a first for history. Another achievement is his climbing the famous Eiger North Face in mere 10 hours. Additionally, together with the study’s author, he sits on the advisory board of the nature conservation foundation “Blühendes Österreich“. However, the species’ name is also a nod to Peter Habeler’s cousin: Heinz Habeler, recognised as “the master of butterfly and moth research in Styria”. His collection is now housed in the Tyrolean State Museums.
The third alpinist, whose name is immortalised in a species name, is David Lama, specially recognised by Huemer for his commitment to conservation. Once, in order to protect endangered butterflies along the steep railway embankments in Innsbruck, Lama took care to secure volunteers in a remarkable action. Nevertheless, Lama earned his fame for his spectacular climbing achievements. His was the first free ascent of the Compressor route on the south-eastern flank of Cerro Torre.
“Unfortunately, David lost his life far too soon in a tragic avalanche accident on 16 April 2019 in Banff National Park, Canada. Now, Caryocolum lamai (Lama’s Curved-horn moth) is supposed to make him ‘immortal’ also in the natural sciences,”
says Huemer.
Many unresolved questions
The newly described moth species are closely related and belong to the genus Caryocolum of the so-called Curved-horn moths (family Gelechiidae).
A Curved-horn moth of the genus Caryocolum feeding on a carnation plant. This genus feeds exclusively on plants in the carnation family (Caryophyllaceae). Photo by P. Buchner / Tiroler Landesmuseen
As caterpillars, the species of this genus live exclusively on carnation plants. Even though the biology of the new moths is still unknown, because of their collection localities, it could be deduced that plants such as the stone carnation are likely their hosts. All species are restricted to dry and sunny habitats and sometimes inhabit altitudes of up to 2,500 m. So far, they have only been observed with artificial light at night.
While Messner’s Curved-horn moth occurs from northern Italy to Greece, the area of Habeler’s Curved-horn Moth is limited to the regions between southern France, northern Switzerland and southeastern Germany. On the other hand, Caryocolum lamai, only inhabits a small area in the western Alps of Italy and France.
Research on alpine butterflies and moths has been an important scientific focus at the Tyrolean state museums for decades. In 30 years, Peter Huemer discovered and named over 100 previously unknown to science species of lepidopterans. All these new discoveries have repeatedly shown the gaps in the study of biodiversity, even in Central Europe.
“How could we possibly protect a species that we don’t even have a name for is one of the key questions for science that derives from these studies,”
says Huemer in conclusion.
###
Original source:
Huemer P (2020) Integrative revision of the Caryocolum schleichi species group – a striking example of a temporally changing species concept (Lepidoptera, Gelechiidae). Alpine Entomology 4: 39-63. https://doi.org/10.3897/alpento.4.50703
A colony of what is apparently a new species of the genus Hipposideros found in an abandoned gold mine in Western Kenya Photo by B. D. Patterson / Field Museum
Newly published findings about the phylogenetics and systematics of some previously known, but also other yet to be identified species of Old World Leaf-nosed bats, provide the first contribution to a recently launched collection of research articles, whose task is to help scientists from across disciplines to better understand potential hosts and vectors of zoonotic diseases, such as the Coronavirus. Bats and pangolins are among the animals already identified to be particularly potent vehicles of life-threatening viruses, including the infamous SARS-CoV-2.
The article, publicly available in the peer-reviewed scholarly journal ZooKeys, also pilots a new generation of Linked Open Data (LOD) publishing practices, invented and implemented to facilitate ongoing scientific collaborations in times of urgency like those we experience today with the COVID-19 pandemic currently ravaging across over 230 countries around the globe.
In their study, an international team of scientists, led by Dr Bruce Patterson, Field Museum‘s MacArthur curator of mammals, point to the existence of numerous, yet to be described species of leaf-nosed bats inhabiting the biodiversity hotspots of East Africa and Southeast Asia. In order to expedite future discoveries about the identity, biology and ecology of those bats, they provide key insights into the genetics and relations within their higher groupings, as well as further information about their geographic distribution.
“Leaf-nosed bats carry coronaviruses–not the strain that’s affecting humans right now, but this is certainly not the last time a virus will be transmitted from a wild mammal to humans. If we have better knowledge of what these bats are, we’ll be better prepared if that happens,”
says Dr Terrence Demos, a post-doctoral researcher in Patterson’s lab and a principal author of the paper.
One of the possibly three new to science bat species, previously referred to as Hipposideros caffer or Sundevall’s leaf-nosed bat Photo by B. D. Patterson / Field Museum
“With COVID-19, we have a virus that’s running amok in the human population. It originated in a horseshoe bat in China. There are 25 or 30 species of horseshoe bats in China, and no one can determine which one was involved. We owe it to ourselves to learn more about them and their relatives,”
comments Patterson.
In order to ensure that scientists from across disciplines, including biologists, but also virologists and epidemiologists, in addition to health and policy officials and decision-makers have the scientific data and evidence at hand, Patterson and his team supplemented their research publication with a particularly valuable appendix table. There, in a conveniently organized table format, everyone can access fundamental raw genetic data about each studied specimen, as well as its precise identification, origin and the natural history collection it is preserved. However, what makes those data particularly useful for researchers looking to make ground-breaking and potentially life-saving discoveries is that all that information is linked to other types of data stored at various databases and repositories contributed by scientists from anywhere in the world.
Furthermore, in this case, those linked and publicly available data or Linked Open Data (LOD) are published in specific code languages, so that they are “understandable” for computers. Thus, when a researcher seeks to access data associated with a particular specimen he/she finds in the table, he/she can immediately access additional data stored at external data repositories by means of a single algorithm. Alternatively, another researcher might want to retrieve all pathogens extracted from tissues from specimens of a specific animal species or from particular populations inhabiting a certain geographical range and so on.
###
The data publication and dissemination approach piloted in this new study was elaborated by the science publisher and technology provider Pensoft and the digitisation company Plazi for the purposes of a special collection of research papers reporting on novel findings concerning the biology of bats and pangolins in the scholarly journal ZooKeys. By targeting the two most likely ‘culprits’ at the roots of the Coronavirus outbreak in 2020: bats and pangolins, the article collection aligns with the agenda of the COVID-19 Joint Task Force, a recent call for contributions made by the Consortium of European Taxonomic Facilities (CETAF), the Distributed System for Scientific Collections (DiSSCo) and the Integrated Digitized Biocollections (iDigBio).
###
Original source:
Patterson BD, Webala PW, Lavery TH, Agwanda BR, Goodman SM, Kerbis Peterhans JC, Demos TC (2020) Evolutionary relationships and population genetics of the Afrotropical leaf-nosed bats (Chiroptera, Hipposideridae). ZooKeys 929: 117-161. https://doi.org/10.3897/zookeys.929.50240
During an expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot, a new species of green pit viper Trimeresurus salazar with unique stripes and colouration patterns was discovered near Pakke Tiger Reserve. Scientists named the snake after J.K. Rowling’s fictional character, the Parselmouth wizard and the founder of one of the houses in the magical school Hogwarts, Salazar Slytherin. The discovery is published in the open-access journal Zoosystematics and Evolution.
A new green pit viper species of the genus Trimeresurus was discovered during the herpetological expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot. The scientists named the newly-discovered snake Trimeresurus salazar after a Parselmouth (able to talk with serpents) wizard, co-founder of Hogwarts School of Witchcraft and Wizardry and the founder of the House of Slytherin – Salazar Slytherin, the fictional character of J.K. Rowling’s saga “Harry Potter”. The discovery is published in the open-access journal Zoosystematics and Evolution.
The pit vipers in the genus Trimeresurus are charismatic venomous serpents, distributed widely across east and southeast Asia. In total, the genus includes at least 48 species, with fifteen representatives occurring in India. The species belonging to the genus are morphologically cryptic, which makes it difficult to distinguish them in the field. As a result, their real diversity could be underestimated.
Arunachal Pradesh, where the new species was found, belongs to the Himalayan biodiversity hotspot, which explains the diverse flora and fauna being continuously discovered there.
The new green pit viper demonstrates a unique orange to reddish stripe, present on the head and body in males.
Trimeresurus salazar sp. nov. juvenile male from Pakke Tiger Reserve. Credit: Aamod Zambre and Chintan Seth, Eaglenest Biodiversity Project. License: CC-BY 4.0
Explaining the name of the new species, the scientists suggest that it is colloquially referred to as the Salazar’s pit viper.
This is already the second species discovered within the course of the expedition to Arunachal Pradesh, which reflects the poor nature of biodiversity documentation across north-eastern India.
“Future dedicated surveys conducted across northeastern India will help document biodiversity, which is under threat from numerous development activities that include road widening, agriculture, and hydro-electric projects”, shares the lead researcher Dr. Zeeshan A. Mirza from National Centre for Biological Science of Bangalore, India.
Trimeresurus salazar sp. nov. holotype male BNHS 3554 in life Credit: Zeeshan Mirza et al., 2020 License: CC-BY 4.0
Mirza ZA, Bhosale HS, Phansalkar PU, Sawant M, Gowande GG, Patel H (2020) A new species of green pit vipers of the genus Trimeresurus Lacépède, 1804 (Reptilia, Serpentes, Viperidae) from western Arunachal Pradesh, India. Zoosystematics and Evolution 96(1): 123-138. https://doi.org/10.3897/zse.96.48431
The newly described Ball’s stange-combed beetle (Nototylus balli) Photo by Terry L. Erwin
For 157 years, scientists have wished they could understand the evolutionary relationships of a curious South American ground beetle that was missing a distinctive feature of the huge family of ground beetles (Carabidae). Could it be that this rare species was indeed lacking a characteristic trait known in over 40,000 species worldwide and how could that be? Was that species assigned to the wrong family from the very beginning?
The species, Nototylus fryi,or Fry’s strange-combed beetle, is known so far only from a single, damaged specimen found in 1863 in the Brazilian State of Espíritu Santo, which today is kept in the Natural History Museum of London. So rare and unusual, due to its lack of “antennal cleaners” – specialised “combing” structures located on the forelegs and used by carabids to keep their antennae clean, it also prompted the description of its own genus: Nototylus, now colloquially called strange-combed beetles.
Left foreleg showing antennal grooming organs in the newly described Ball’s stange-combed beetle (Nototylus balli) Photo by Terry L. Erwin
No mention of the structure was made in the original description of the species, so, at one point, scientists even started to wonder whether the beetle they were looking at was in fact a carabid at all.
Because the area where Fry’s strange-combed beetle had been found was once Southern Atlantic Forest, but today is mostly sugar cane fields, cacao plantations, and cattle ranches, scientists have feared that additional specimens of strange-combed beetles might never be collected again and that the group was already extinct. Recently, however, a US team of entomologists have reported the discovery of a second specimen, one also representing a second species of strange-combed beetles new to science.
Following a careful study of this second, poorly preserved specimen, collected in French Guiana in 2014, the team of Dr Terry Erwin (Smithsonian Institution), Dr David Kavanaugh (California Academy of Sciences) and Dr David Maddison (Oregon State University) described the species, Nototylus balli, or Ball’s strange-combed beetle, in a paper that they published in the open-access scholarly journal ZooKeys. The entomologists named the species in honour of their academic leader and renowned carabidologist George E. Ball, after presenting it to him in September 2016 around the time of his 90th birthday.
Despite its poor, yet relatively better condition, the new specimen shows that probable antennal grooming organs are indeed present in strange-combed beetles. However, they looked nothing like those seen in other genera of ground beetles and they are located on a different part of the front legs. Rather than stout and barely movable, the setae (hair-like structures) in the grooming organs of strange-combed beetles are slender, flexible and very differently shaped, which led the researchers to suggest that the structure had a different role in strange-combed beetles.
Judging from the shapes of the setae in the grooming organs, the scientists point out that they are best suited for painting or coating the antennae, rather than scraping or cleaning them. Their hypothesis is that these rare carabids use these grooming structures to cohabitate with ants or termites, where they use them to apply specific substances to their antennae, so that the host colony recognises them as a friendly species, a kind of behaviour already known in some beetles.
However, the mystery around the strange-combed beetle remains, as the scientists found no evidence of special secretory structures in the specimen studied. It turns out that the only way to test their hypothesis, as well as to better understand the evolutionary relationships of these beetles with other carabids is finding and observing additional, preferably live, specimens in their natural habitat. Fortunately, this new discovery shows that the continued search for these beetles may yield good results because strange-combed beetles are not extinct.
***
Original source:
Erwin TL, Kavanaugh DH, Maddison DR (2020) After 157 years, a second specimen and species of the phylogenetically enigmatic and previously monobasic genus Nototylus Gemminger & Harold, 1868 (Coleoptera, Carabidae, Nototylini). ZooKeys 927: 65-74. https://doi.org/10.3897/zookeys.927.49584
A newly discovered endemic species of melanistic black iguana (Iguana melanoderma), discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean) appears to be threatened by unsustainable harvesting (including pet trade) and both competition and hybridization from escaped or released invasive alien iguanas from South and Central America. Scientists call for urgent conservation measures in the article, recently published in the open-access journal Zookeys.
A newly discovered endemic species of melanistic black iguana (Iguana melanoderma), discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean), appears to be threatened by unsustainable harvesting (including pet trade) and both competition and hybridization from escaped or released invasive alien iguanas from South and Central America. International research group calls for urgent conservation measures in the article, recently published in the open-access journal Zookeys.
So far, there have been three species of iguana known from The Lesser Antilles: the Lesser Antillean iguana (Iguana delicatissima), a species endemic to the northernmost islands of the Lesser Antilles; and two introduced ones: the common iguana (Iguana iguana iguana) from South America and the green iguana (Iguana rhinolopha) from Central America.
The newly described species is characterised with private microsatellite alleles, unique mitochondrial ND4 haplotypes and a distinctive black spot between the eye and the ear cavity (tympanum). Juveniles and young adults have a dorsal carpet pattern, the colouration is darkening with aging (except for the anterior part of the snout).
A basking iguana optimizing after different trials its warming by a curved position when the sun is low on the horizon on the Windward coast of Saba. Сredit: M. Breuil License: CC-BY 4.0
It has already occurred before in Guadeloupe that Common Green Iguana displaced the Lesser Antilles iguanas through competition and hybridization which is on the way also in the Lesser Antilles. Potentially invasive common iguanas from the Central and South American lineages are likely to invade other islands and need to be differentiated from the endemic melanistic iguanas of the area.
The IUCN Red List lists the green iguana to be of “Least Concern”, but failed to differentiate between populations, some of which are threatened by extinction. With the new taxonomic proposal, these endemic insular populations can be considered as a conservation unit with their own assessments.
“With the increase in trade and shipping in the Caribbean region and post-hurricane restoration activities, it is very likely that there will be new opportunities for invasive iguanas to colonize new islands inhabited by endemic lineages”,
Iguana melanoderma sunbathing at dawn on the Windward coast of Saba. Сredit: M. Breuil License: CC-BY 4.0
Scientists describe the common melanistic iguanas from the islands of Saba and Montserrat as a new taxon and aim to establish its relationships with other green iguanas. That can help conservationists to accurately differentiate this endemic lineage from invasive iguanas and investigate its ecology and biology population on these two very small islands that are subject to a range of environmental disturbances including hurricanes, earthquakes and volcanic eruptions.
“Priority actions for the conservation of the species Iguana melanoderma are biosecurity, minimization of hunting, and habitat conservation. The maritime and airport authorities of both islands must be vigilant about the movements of iguanas, or their sub-products, in either direction, even if the animals remain within the same nation’s territory. Capacity-building and awareness-raising should strengthen the islands’ biosecurity system and could enhance pride in this flagship species”,
Geographical distribution of the three iguana groups identified by Lazell (1973) in the 1960s and new taxonomic proposition. Credit: Breuil et al. (2020) License: CC-BY 4.0
***
Original source:
Breuil M, Schikorski D, Vuillaume B, Krauss U, Morton MN, Corry E, Bech N, Jelić M, Grandjean F (2020) Painted black: Iguana melanoderma (Reptilia, Squamata, Iguanidae) a new melanistic endemic species from Saba and Montserrat islands (Lesser Antilles). ZooKeys 926: 95-131. https://doi.org/10.3897/zookeys.926.48679
A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been described from Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with North Carolina Museum of Natural Sciences‘ Herpetologist Bryan Stuart. This new species is described in ZooKeys.
The species was discovered by Thy Neang during Wild Earth Allies field surveys in June-July 2019 on an isolated mountain named Phnom Chi in the Prey Lang Wildlife Sanctuary when he encountered an unusual species of bent-toed gecko. “It was an extremely unexpected discovery. No one thought there were undescribed species in Prey Lang,” said Neang.
The geckos were found to belong to the C. irregularis species complex that includes at least 19 species distributed in south¬ern and central Vietnam, eastern Cambodia, and southern Laos. This is the first member of the complex to be found west of the Mekong River, demonstrating how biogeographic barriers can lead to speciation. Additionally, the geckos were unique in morphological characters and mitochondrial DNA, and distinct from C. ziegleri to which they are most closely related. Researchers have named the species Cyrtodactylus phnomchiensis after Phnom Chi mountain where it was found.
A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been discovered in Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with Bryan Stuart of the North Carolina Museum of Natural Sciences. Photo by Thy Neang
Bent-toed geckos of the genus Cyrtodactylus are one of the most species-diverse genera of gekkonid lizards, with 292 recognized species. Much of the diversity within Cyrtodactylus has been described only during the past decade and from mainland Southeast Asia, and many of these newly recognized species are thought to have extremely narrow geographic ranges. As such, Cyrtodactylus phnomchiensis is likely endemic to Phnom Chi, which consists of an isolated small mountain of rocky outcrops (peak of 652 m elevation) and a few associated smaller hills, altogether encompassing an area of approximately 4,464 hectares in Kampong Thom and Kratie Provinces within the Prey Lang Wildlife Sanctuary, Cambodia.
The forest habitat in Phnom Chi remains in relatively good condition, but small-scale illegal gold extraction around its base threatens the newly discovered species. A second species of lizard, the scincid Sphenomorphus preylangensis, was also recently described from Phnom Chi by a team of researchers including Neang. These new discoveries underscore the importance of Prey Lang Wildlife Sanctuary for biodiversity conservation and the critical need to strengthen its management.
Habitat at Phnom Chi, the type locality of the newly described bent-toed gecko. Photo by Thy Neang
Further, an assessment of C. phnomchiensis is urgently warranted by the IUCN Red List of Threatened Species (IUCN 2020) because of its small area of occupancy, status as relatively uncommon, and ongoing threats to its habitat.
“This exciting discovery adds another reptile species to science for Cambodia and the world. It also highlights the global importance of Cambodia’s biodiversity and illustrates the need for future exploration and biological research in Prey Lang,”
said Neang.
“When [Neang] first returned from fieldwork and told me that he had found a species in the C. irregularis group so far west of the Mekong River in Cambodia, I did not believe it. His discovery underscores how much unknown biodiversity remains out there in unexpected places. Clearly, Prey Lang Wildlife Sanctuary is important for biodiversity and deserves attention,”
said Neang’s co-author Stuart of the North Carolina Museum of Natural Sciences.
###
Original source:
Neang T, Henson A, Stuart BL (2020) A new species of Cyrtodactylus (Squamata, Gekkonidae) from Cambodia’s Prey Lang Wildlife Sanctuary. ZooKeys 926: 133-158. https://doi.org/10.3897/zookeys.926.48671
Pensoft’s flagship journal ZooKeys invites free-to-publish research on key biological traits of SARS-like viruses potential hosts and vectors; Plazi harvests and brings together all relevant data from legacy literature to a reliable FAIR-data repository
To bridge the huge knowledge gaps in the understanding of how and which animal species successfully transmit life-threatening diseases to humans, thereby paving the way for global health emergencies, scholarly publisher Pensoft and literature digitisation provider Plazi join efforts, expertise and high-tech infrastructure.
By using the advanced text- and data-mining tools and semantic publishing workflows they have developed, the long-standing partners are to rapidly publish easy-to-access and reusable biodiversity research findings and data, related to hosts or vectors of the SARS-CoV-2 or other coronaviruses, in order to provide the stepping stones needed to manage and prevent similar crises in the future.
Already, there’s plenty of evidence pointing to certain animals, including pangolins, bats, snakes and civets, to be the hosts of viruses like SARS-CoV-2 (coronaviruses), hence, potential triggers of global health crises, such as the currently ravaging Coronavirus pandemic. However, scientific research on what biological and behavioural specifics of those species make them particularly successful vectors of zoonotic diseases is surprisingly scarce. Even worse, the little that science ‘knows’ today is often locked behind paywalls and copyright laws, or simply ‘trapped’ in formats inaccessible to text- and data-mining performed by search algorithms.
This is why Pensoft’s flagship zoological open-access, peer-reviewed scientific journal ZooKeysrecently announced its upcoming, special issue, titled “Biology of pangolins and bats”, to invite research papers on relevant biological traits and behavioural features of bats and pangolins, which are or could be making them efficient vectors of zoonotic diseases. Another open-science innovation champion in the Pensoft’s portfolio, Research Ideas and Outcomes (RIO Journal) launched another free-to-publish collection of early and/or brief outcomes of research devoted to SARS-like viruses.
Due to the expedited peer review and publication processes at ZooKeys, the articles will rapidly be made public and accessible to scientists, decision-makers and other experts, who could then build on the findings and eventually come up with effective measures for the prevention and mitigation of future zoonotic epidemics. To further facilitate the availability of such critical research, ZooKeys is waiving the publication charges for accepted papers.
Meanwhile, the literature digitisation provider Plazi is deploying its text- and data-mining expertise and tools, to locate and acquire publications related to hosts of coronaviruses – such as those expected in the upcoming “Biology of pangolins and bats” special issue in ZooKeys – and deposit them in a newly formed Coronavirus-Host Community, a repository hosted on the Zenodo platform. There, all publications will be granted persistent open access and enhanced with taxonomy-specific data derived from their sources. Contributions to Plazi can be made at various levels: from sending suggestions of articles to be added to the Zotero bibliographic public libraries on virus-hosts associations and hosts’ taxonomy, to helping the conversion of those articles into findable, accessible, interoperable and reusable (FAIR) knowledge.
Pensoft’s and Plazi’s collaboration once again aligns with the efforts of the biodiversity community, after the natural science collections consortium DiSSCo (Distributed System of Scientific Collections) and the Consortium of European Taxonomic Facilities (CETAF), recently announced the COVID-19 Task Force with the aim to create a network of taxonomists, collection curators and other experts from around the globe.