New tarantula species from Angola distinct with a one-of-a-kind ‘horn’ on its back

A new to science species of tarantula with a peculiar horn-like protuberance sticking out of its back was recently identified from Angola, a largely underexplored country located at the intersection of several Afrotropical ecoregions.

Collected as part of the National Geographic Okavango Wilderness Project, which aims to uncover the undersampled biodiversity in the entire Okavango catchment of Angola, Namibia and Botswana, thereby paving the way for sustainable conservation in the area, the new arachnid is described in a paper published in the open-access journal African Invertebrates by the team of Drs John Midgley and Ian Engelbrecht.

Although the new spider (Ceratogyrus attonitifer sp.n.) belongs to a group known as horned baboon spiders, the peculiar protuberance is not present in all of these species. Moreover, in the other species – where it is – the structure is completely sclerotised, whereas the Angolan specimens demonstrate a soft and characteristically longer ‘horn’. The function of the curious structure remains unknown.

The new tarantula’s extraordinary morphology has also prompted its species name: C. attonitifer, which is derived from the Latin root attonit– (“astonishment” or “fascination”), and the suffix –fer (“bearer of” or “carrier”). It refers to the astonishment of the authors upon the discovery of the remarkable species.

“No other spider in the world possesses a similar foveal protuberance,” comment the authors of the paper.

Individual of the newly described species in defensive posture in its natural habitat. Photo by Kostadine Luchansky.

During a series of surveys between 2015 and 2016, the researchers collected several female specimens from the miombo forests of central Angola. To find them, the team would normally spend the day locating burrows, often hidden among grass tufts, but sometimes found in open sand, and excavate specimens during the night. Interestingly, whenever the researchers placed an object in the burrow, the spiders were quick and eager to attack it.

The indigenous people in the region provided additional information about the biology and lifestyle of the baboon spider. While undescribed and unknown to the experts until very recently, the arachnid has long been going by the name “chandachuly” among the local tribes. Thanks to their reports, information about the animal’s behaviour could also be noted. The tarantula tends to prey on insects and the females can be seen enlarging already existing burrows rather than digging their own. Also, the venom of the newly described species is said to not be dangerous to humans, even though there have been some fatalities caused by infected bites gone untreated due to poor medical access.

In conclusion, the researchers note that the discovery of the novel baboon spider from Angola does not only extend substantially the known distributional range of the genus, but can also serve as further evidence of the hugely unreported endemic fauna of the country:

“The general paucity of biodiversity data for Angola is clearly illustrated by this example with theraphosid spiders, highlighting the importance of collecting specimens in biodiversity frontiers.”

Apart from the described species, the survey produced specimens of two other potentially new to science species and range expansions for other genera. However, the available material is so far insufficient to formally diagnose and describe them.

The newly described baboon spider species (Ceratogyrus attonitifer), showing the peculiar soft and elongated horn-like protuberance sticking out of its back. Photo by Dr Ian Enelbrecht.

###

Original source:

Midgley JM, Engelbrecht I (2019) New collection records for Theraphosidae (Araneae, Mygalomorphae) in Angola, with the description of a remarkable new species of Ceratogyrus. African Invertebrates 60(1): 1-13. https://doi.org/10.3897/afrinvertebr.60.32141

The Widow Next Door: Where is the globally invasive Noble False Widow settling next?

Noble false widow spider (Steatoda nobilis) at a public bus stop in the seaside resort of Lyme Regis, southern England. Photo by Rainer Breitling.

Spiders are one of the most successful groups of ‘invaders’ on the planet. Out of over 47,000 species of spiders known today, there are some that tend to follow humans across the globe and settle in habitats far away from their native homelands. A particularly notorious example is the species Steatoda nobilis, the Noble False Widow spider.

Originating from Madeira (Portugal) and the Canary Islands (Spain), the Noble False Widow has been rapidly spreading around the globe over the last few decades. While the species is already well established in Western Europe and large parts of the Mediterranean area, it has recently spread into California, South America and Central Europe. Meanwhile, its populations in England, where the spider used to be restricted to the very southern parts of the country, are now seen to experience a sudden expansion northwards.

As its name suggests, this is a relatively large species that resembles the well-known Black Widow and can inflict a painful – yet mostly harmless to humans – bite. Naturally, its ‘arrival’ causes widespread concerns and public disruptions. Specifically, the Noble False Widow poses a threat to native faunas, since it can prey on nearly every smaller animal thanks to its potent venom and sturdy webs.

Recently, experts and non-professional citizen scientists joined forces to reconstruct the invasion path of the Noble False Widow in Europe and the Americas, so that they could identify patterns and predict which regions are likely to be the next colonised by the spider.

By combining data from museum collections and the Spider and Harvestman Recording Scheme of the British Arachnological Society with published literature and their own observations from England, Germany, France and Ecuador, the researchers provided an unprecedented detailed view of the expansion of the Noble False Widow. The study, conducted by Tobias Bauer (State Museum of Natural History Karlsruhe), Stephan Feldmeier (Trier University), Henrik Krehenwinkel (Trier University and University of California Berkeley), Rainer Breitling (University of Manchester) and citizen scientists Carsten Wieczorrek and Nils Reiser, is published in the open-access journal Neobiota.

While it had largely been assumed that the Noble False Widow turned up in Europe along with bananas traded from the Canary Islands, a new look at the data revealed that the spiders have most likely been transported via imports of ornamental plants. Further, rather than the result of climate change, the establishment of the species across new, large territories is rather linked to the fact that these habitats all share similar conditions to the spider’s native localities.

“Similar suitable False Widow habitats occur in quite specific regions all around the globe,” explain the researchers. “Most importantly, South Africa, some areas in southern Australia, and a large part of New Zealand turn out to be highly likely targets for future invasions, unless appropriate import control measures are implemented.”

Global prediction of suitable regions for the Noble False Widow (Steatoda nobilis). Image by Stephan Feldmeier & Tobias Bauer.

In conclusion, the authors call for enhanced monitoring of the Noble False Widow as well as its still little known ecological impact on the environment in newly colonised areas. They also urge scientists in the predicted potential invasion target regions to search for specimens, especially in coastal cities.

 

Original source:

Bauer T, Feldmeier S, Krehenwinkel H, Wieczorrek C, Reiser N, Breitling R (2019) Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota 42: 19-43. https://doi.org/10.3897/neobiota.42.31582

Scientists discover over 450 fossilised millipedes in 100-million-year-old amber

Since the success of the Jurassic Park film series, it is widely known that insects from the Age of the Dinosaurs can be found exceptionally well preserved in amber, which is in fact fossilised tree resin.

Especially diverse is the animal fauna preserved in Cretaceous amber from Myanmar (Burma). Over the last few years, the almost 100-million-year-old amber has revealed some spectacular discoveries, including dinosaur feathers, a complete dinosaur tail, unknown groups of spiders and several long extinct groups of insects.

However, as few as three millipede species, preserved in Burmese amber, had been found prior to the study of Thomas Wesener and his PhD student Leif Moritz at the Zoological Research Museum Alexander Koenig – Leibniz Institute for Animal Biodiversity (ZFMK). Their research was recently published in the open-access journal Check List.

One of the newly discovered fossilised millipedes. Photo by Dr Thomas Wesener.

Having identified over 450 millipedes preserved in the Burmese amber, the scientists confirmed species representing as many as 13 out of the 16 main orders walking the Earth today. The oldest known fossils for half of these orders were found within the studied amber.

The researchers conducted their analysis with the help of micro-computed tomography (micro-CT). This scanning technology uses omni-directional X-rays to create a 3D image of the specimen, which can then be virtually removed from the amber and digitally examined.

The studied amber is mostly borrowed from private collections, including the largest European one, held by Patrick Müller from Käshofen. There are thought to be many additional, scientifically important specimens, perhaps even thousands of them, currently inaccessible in private collections in China.

Over the next few years, the newly discovered specimens will be carefully described and compared to extant species in order to identify what morphological changes have occurred in the last 100 million years and pinpoint the speciation events in the millipede Tree of Life. As a result, science will be finally looking at solving long-standing mysteries, such as whether the local millipede diversity in the southern Alps of Italy or on the island of Madagascar is the result of evolutionary processes which have taken place one, ten or more than 100-million years ago.

According to the scientists, most of the Cretaceous millipedes found in the amber do not differ significantly from the species found in Southeast Asia nowadays, which is an indication of the old age of the extant millipede lineages.

On the other hand, the diversity of the different orders seems to have changed drastically. For example, during the Age of the Dinosaurs, the group Colobognatha – millipedes characterised by their unusual elongated heads which have evolved to suck in liquid food – used to be very common. In contrast, with over 12,000 millipede species living today, there are only 500 colobognaths.

Another curious finding was the discovery of freshly hatched, eight-legged juveniles, which indicated that the animals lived and reproduced in the resin-producing trees.

“Even before the arachnids and insects, and far ahead of the first vertebrates, the leaf litter-eating millipedes were the first animals to leave their mark on land more than 400-million-years ago,” explain the scientists. “These early millipedes differed quite strongly from the ones living today – they would often be much larger and many had very large eyes.”

The larger species in the genus Arthropleura, for example, would grow up to 2 m (6.5 ft) long and 50-80 cm (2-3 ft) wide – the largest arthropods to have ever crawled on Earth. Why these giants became extinct and those other orders survived remains unknown, partly because only a handful of usually badly preserved fossils from the whole Mesozoic era (252-66-million years ago) has been retrieved. Similarly, although it had long been suspected that the 16 modern millipede orders must be very old, a fossil record to support this assumption was missing.

###

Original source:

Wesener T, Moritz L (2018) Checklist of the Myriapoda in Cretaceous Burmese amber and a correction of the Myriapoda identified by Zhang (2017). Check List 14(6): 1131-1140. https://doi.org/10.15560/14.6.1131

Austrian-Danish research team discover as many as 22 new moth species from across Europe

The last time so many previously unknown moths have been discovered at once in the best-studied continent was in 1887

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

Following a long-year study of the family of twirler moths, an Austrian-Danish research team discovered a startling total of 44 new species, including as many as 22 species inhabiting various regions throughout Europe.

Given that the Old Continent is the most thoroughly researched one, their findings, published in the open access journal ZooKeys, pose fundamental questions about our knowledge of biodiversity. Such wealth of new to science European moths has not been published within a single research article since 1887.

“The scale of newly discovered moths in one of the Earth’s most studied regions is both sensational and completely unexpected,” say authors Dr Peter Huemer, Tyrolean State Museum, and Ole Karsholt of the University of Copenhagen‘s Zoological Museum. To them, the new species come as proof that, “despite dramatic declines in many insect populations, our fundamental investigations into species diversity are still far from complete”.

 

The challenge of taxonomy

Type locality of the new moth species Megacraspedus faunierensis, Cottian Alps, Italy.

For the authors, it all began when they spotted what seemed like an unclassifiable species of twirler moth in the South Tyrolean Alps. In order to confirm it as a new species, the team conducted a 5-year study into the type specimens of all related species spread across the museum collections of Paris, London, Budapest and many in between.

To confirm the status of all new species, the scientists did not only look for characteristic colouration, markings and anatomical features, but also used the latest DNA methods to create unique genetic fingerprints for most of the species in the form of DNA barcodes.

 

What’s in a name?

A particular challenge for the researchers was to choose as many as 44 names for the new species. Eventually, they named one of the species after the daughter of one of the authors, others – after colleagues and many others – after the regions associated with the particular species. Megacraspedus teriolensis, for example, is translated to “Tyrolean twirler moth”.

Amongst the others, there is one which the scientists named Megacraspedus feminensisbecause they could only find the female, while another – Megacraspedus pacificus, discovered in Afghanistan – was dubbed “an ambassador of peace”.

 

Mysterious large twirler moths

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

All new moths belong to the genus of the large twirler moths (Megacraspedus) placed in the family of twirler moths (Gelechiidae), where the common name refers to their protruding modified mouthparts (labial palps).

The genus of the large twirler moths presents an especially interesting group because of their relatively short wings, where their wingspan ranges between 8 and 26 millimetres and the females are often flightless. While it remains unknown why exactly their wings are so reduced, the scientists assume that it is most likely an adaptation to the turbulent winds at their high-elevation habitats, since the species prefer mountain areas at up to 3,000 metres above sea level.

Out of the 85 documented species, however, both sexes are known in only 35 cases.

The scientists suspect that many of the flightless females are hard to spot on the ground. Similarly, caterpillars of only three species have been observed to date.

While one of the few things we currently know about the large twirler moths is that all species live on different grasses, Huemer and Karsholt believe that it is of urgent importance to conduct further research into the biology of these insects, in order to identify their conservation status and take adequate measures towards their preservation.

###

Original source:

Huemer P, Karsholt O (2018) Revision of the genus Megacraspedus Zeller, 1839, a challenging taxonomic tightrope of species delimitation (Lepidoptera, Gelechiidae). ZooKeys 800: 1-278. https://doi.org/10.3897/zookeys.800.26292

The first cave-dwelling centipede from southern China

Chinese scientists recorded the first cave-dwelling centipede known so far from southern China. To the amazement of the team, the specimens collected during a survey in the Gaofeng village, Guizhou Province, did not only represent a species that had been successfully hiding away from biologists in the subterranean darkness, but it also turned out to be the very first amongst the order of stone centipedes to be discovered underground in the country.

Found by the team of Qing Li, Xuan Guo and Dr Hui-ming Chen of the Guizhou Institute of Biology, and Su-jian Pei and Dr Hui-qin Ma of Hengshui University, the new cavedweller is described under the name of Australobius tracheoperspicuus in the open-access journal ZooKeys.

The new centipede is quite tiny, measuring less than 20 mm in total body length. It is also characterised with pale yellow-brownish colour and antennae comprised of 26 segments each. Similar to other cave-dwelling organisms which have evolved to survive away from sunlight, it has no eyes.

In their paper, the authors point out that Chinese centipedes and millipedes remain poorly known, where the statement holds particularly true for the fauna of stone centipedes: the members of the order Lithobiomorpha. As of today, there are only 80 species and subspecies of lithobiomorphs known from the country. However, none of them lives underground.

In addition, the study provides an identification key for all six species of the genus Australobius recorded in China.

###

Original source:

Li Q, Pei S-j, Guo X, Ma H-q, Chen H-m (2018) Australobius tracheoperspicuus sp. n., the first subterranean species of centipede from southern China (Lithobiomorpha, Lithobiidae). ZooKeys 795: 83-91. https://doi.org/10.3897/zookeys.795.28036

Newly discovered moth named Icarus sports a flame-shaped mark and prefers high elevations

The paper describing the new species is part of a special issue dedicated to macro moths of the New World published in the open-access journal ZooKeys

Newly-recognized species of owlet moth recently discovered to inhabit high-elevation mountains in western North America was named after the Greek mythological character Icarus. From now on, scientists will be referring to the new insect as Admetovis icarus.

In their paper, Dr Lars Crabo, Washington State University, USA, and Dr Christian Schmidt, Agriculture and Agri-Food Canada, explain that the combination of the distinct flame-shaped mark on the moth’s forewing and its high-elevation habitat were quick to remind them of Icarus, who is said to have died after flying so close to the sun that his wings made of wax and feathers caught fire.

The study is part of the seventh volume of the “Contributions to the systematics of New World macro-moths” series, where all previous volumes have also been published as special issues in ZooKeys.

Found in the town of Nederland, Colorado, the moth was collected at an elevation of 2,896 m above sea level. The species has also been recorded all the way from central Utah and central Colorado to the Selkirk Mountains of southeastern British Columbia, including a record from northeastern Oregon. It can be spotted between June and August at night.

In fact, it turns out that the moth has been collected during surveys in the past on multiple occasions, but has been misidentified with another closely related species: Admetovis oxymorus.

While the flame mark is a characteristic feature in all three species known in the genus (Admetovis), in the newly described species it is darker. When compared, the wings of the Icarus moth are also more mottled.

Despite the biology of the larvae being currently unknown, the scientists believe they are climbing cutworms and feed on woody shrubs, similarly to the species Admetovis oxymorus.

“Finding undiscovered moths is not that unusual, even though scientists have been naming insects since the eighteenth century,” says lead author Dr Lars Crabo.

“The Contributions series, edited by Don Lafontaine and Chris Schmidt, in which this discovery is published, really encourages professional and citizen scientists alike to go through the steps necessary to properly name the species that they have discovered. This series of seven volumes also includes a new check list for the United States and Canada, which has led to a re-kindling of interest in moths during the last decade.”

###

Original source:

Crabo LG, Schmidt BC (2018) A revision of Admetovis Grote, with the description of a new species from western North America (Noctuidae, Noctuinae, Hadenini). In: Schmidt BC, Lafontaine JD (Eds) Contributions to the systematics of New World macro-moths VIIZooKeys788: 167-181. https://doi.org/10.3897/zookeys.788.26480

New light on the controversial question of species abundance and population density

Inspired by the negative results in the recently published largest-scale analysis of the relation between population density and positions in geographic ranges and environmental niches, Drs Jorge Soberon and Andrew Townsend Peterson of the University of Kansas, USA, teamed up with Luis Osorio-Olvera, National University of Mexico (UNAM), and identified several issues in the methodology used, able to turn the tables in the ongoing debate. Their findings are published in the innovative open access journal Rethinking Ecology.

Both empirical work and theoretical arguments published and cited over the last several years suggest that if someone was to take the distributional range of a species – be it animal or plant – and draw lines starting at the edges of the space inwards, they would find the species’ populations densest at the intersection of those lines. However, when the team of Tad Dallas, University of Helsinki, Finland, analysed a large dataset of 118,000 populations, equating to over 1,400 species of birds, mammals, and trees, they found no such relationship.

Having analysed the analysis, the American-Mexican team concluded that despite being based on an unprecedented volume of data, the earlier study was missing out some important points.

Firstly, the largest dataset used by Tad and his team comprises observational data which had not required a certain sampling protocol or a plan. Without any standard in use, it is easy to imagine that the observations would be predominantly coming from people around and near cities, hence strongly biased.

Additionally, the scientists note that the analysis largely disregards parts of species’ geographic distributions for which there were no abundant data. As a result, the range of a species could be narrowed down significantly and its centroid – misplaced. Meanwhile, the population would appear denser on what appears to be the periphery of the area.

Similar issue is identified in the localisation of populations in the environmental space, where once again their range turned out to have been represented as significantly smaller, when compared to data available from the International Union for Conservation of Nature (IUCN) and the Global Biodiversity Information Facility (GBIF).

Further, a closer look into the supplementary materials provided revealed that the precision of the population-density data was not scalable with the climate data. As a result, it is likely that multiple abundance data falls within a single climate pixel.

In conclusion, the authors note that in order to comprehensively study the abundance of a species’ populations, one needs to take into consideration a number of factors lying beyond the scope of either of the papers, including human impact.

“We suggest that this important question remains far from settled,” they say.

###

Original source:

Soberón J, Peterson TA, Osorio-Olvera L (2018) A comment on “Species are not most abundant in the centre of their geographic range or climatic niche”. Rethinking Ecology 3: 13-18. https://doi.org/10.3897/rethinkingecology.3.24827

Tiny moth from Asia spreading fast on Siberian elms in eastern North America

In 2010, moth collector James Vargo began finding numerous specimens of a hitherto unknown pygmy moth in his light traps on his property in Indiana, USA. When handed to Erik van Nieukerken, researcher at Naturalis Biodiversity Center (Leiden, the Netherlands) and specialist in pygmy moths (family Nepticulidae), the scientist failed to identify it as a previously known species.

These are male specimens of the studied leaf mining moth Stigmella multispicata collected from Iowa, USA.

Then, Erik found a striking similarity of the DNA barcodes with those of a larva he had recently collected on Siberian elm in Beijing’s botanical garden. At the time, the Chinese specimen could not be identified either.

In October 2015, Daniel Owen Gilrein, entomologist at Cornell Cooperative Extension of Suffolk County (New York, USA), received samples of green caterpillars seen to descend en masse from Siberian elm trees in Sagaponack, New York. He also received leafmines from the same trees.

Once they joined forces, the researchers did not take long to find out that the specimens from James Vargo and the caterpillars from New York belonged to one and the same species. The only thing left was its name.

Following further investigation, the scientists identified the moth as Stigmella multispicata – a pygmy moth described in 2014 from Primorye, Russia, by the Lithuanian specialists Agne Rociene and Jonas Stonis.

“Apparently, this meant that we were dealing with a recent invasion from East Asia into North America,” explains Erik.

Once the researchers had figured out how to identify the leafminer, they were quick to spot its existence in plenty of collections and occurrence reports from websites, such as BugGuide and iNaturalist.

With the help of Charley Eiseman, a naturalist from Massachusetts specializing in North American leafminers, the authors managed to conclude the moth’s existence in ten US states and two Canadian provinces. In most cases, the species was found on or near Siberian elm – another species transferred from Asia to North America.

Their study is published in the open access journal ZooKeys.

Despite the oldest records dating from 2010, it turned out that the species had already been well established at the time. The authors suspect that the spread has been assisted by transport of plants across nurseries.

“Even though Stigmella multispicata does not seem to be a real problem, it would be a good idea to follow its invasion over North America, and to monitor whether the species may also attack native elm species,” the researchers point out.

Distribution in North America.

Interestingly, in addition to the newly identified moth, the Siberian elms in North America have been struggling with another, even more common, invasive leafminer from Asia: the weevil species Orchestes steppensis. The beetle had been previously misnamed as the European elm flea weevil.

###

Original source:

van Nieukerken EJ, Gilrein DO, Eiseman CS (2018) Stigmella multispicata Rociene & Stonis, an Asian leafminer on Siberian elm, now widespread in eastern North America (Lepidoptera, Nepticulidae). ZooKeys 784: 95-125. https://doi.org/10.3897/zookeys.784.27296

Total of 21 new parasitoid wasps following the first ever revision of their genus

As many as twenty-one species of parasitoid wasps are described as new to science, following the first ever revision of their genus since its establishment back in 1893.

The study simultaneously updates the count of species within the genus (Chromoteleia) to 27 in total, produces a systematic revision of the world’s representatives of this group of wasps, expands their biogeographic knowledge, and clarifies their generic concept.

The monograph is published in the open access journal ZooKeys by a team of US and Canadian scientists, led by Hua-yan Chen, graduate student at the Ohio State University.

The wasps in the genus Chromoteleia are easily distinguished thanks to their large size in combination with their vivid colouration. Compared to other species in the family of platygastrid wasps, which normally measure merely 1 – 2 mm in length, the species in the studied genus range between 3 and 9 mm. Their uncommonly large, robust and elongated bodies is why the scientists assume that these wasps likely parasitise the eggs of orthopterans, such as grasshoppers, crickets and katydids.

A focal point in the study is the intriguing distribution of the wasps. While the genus is widespread throughout continental Mesoamerica, Central America and South America, and its distribution ranges from the Mexican state of Jalisco in the north all the way to Itapúa Department in Paraguay and Paraná in southern Brazil, the species C. congoana is a lone representative of the genus in Africa.

The ‘lone’ African representative of the genus, Chromoteleia congoana.

While dispersal from South America to Africa has been observed in the past in another genus of parasitoid wasps (Kapala), the scientists are not willing to reject the possibility of Chromoteleia wasps having been widely distributed across the Old World during a previous geological epoch. Such phenomenon, also known as a relict population, would not mean that the wasp group has subsequently ‘conquered’ the Neotropics and current species inhabiting the New World are rather remainders of once widespread insects.

To conclude their findings, the scientists examined specimens hosted in collections at twenty natural history institutions from around the globe, including the American Entomological InstituteAmerican Museum of Natural HistoryBernice P. Bishop MuseumCalifornia Academy of SciencesCanadian National Collection of InsectsCalifornia State Collection of ArthropodsFlorida State Collection of ArthropodsInstituto Alexander von HumboldtIllinois Natural History SurveyKansas University’s Natural History MuseumMuseo del Instituto de Museo del Instituto de Zoologia AgricolaMuseum National d’Histoire NaturelleMuseu Paraense Emílio GoeldiLund Museum of Zoology at Lund UniversityTriplehorn Insect Collection at the Ohio State UniversitySouth African MuseumTexas A&M University’s Insect CollectionBohart Museum of EntomologyUniversity of Colorado; and Smithsonian National Museum of Natural History.

###

Original source:

Chen H-y, Talamas EJ, Valerio AA, Masner L, Johnson NF (2018) Revision of the World species of the genus Chromoteleia Ashmead (Hymenoptera, Platygastridae, Scelioninae). ZooKeys 778: 1-95. https://doi.org/10.3897/zookeys.778.25775

Right under our noses: A novel lichen-patterned spider found on oaks in central Spain

It happened again, a previously unknown spider species, whose home is a strongly humanised European country, appears to have been quietly and patiently waiting to get noticed until very recently.

Living on the trunks of oaks in Spain, the new species would have probably been spotted decades ago, had it not been for its sophisticated camouflage, which allows the small arachnid to perfectly blend with the lichens naturally growing on the tree.

Going by the name Araneus bonali, the new species was discovered on isolated trees at the borders of cereal fields by the scientists Eduardo Morano, University of Castilla-La Mancha, and Dr Raul Bonal, University of Extremadura. Their study is published in the open access journal ZooKeys.

Curiously enough, this is the same habitat, where the team found another new spider in 2016.

“How many new species remain unknown in these isolated oaks that once formed vast forests now becomes one even more intriguing question,” say the researchers.

“Anyone going for a walk around any village or park in central Spain would have been close to the new species. However, noticing it requires not only curiosity, but also a good sight, as its lichen-like colours make up an excellent mimicry.”

Lichens growing on an oak trunk at the study site in central Spain.

The similarity between the adults and the lichens that cover the oak trunks they inhabit is remarkable. Meanwhile, the greenish juveniles live amongst the green new shoots in the oak canopy until they reach maturity.

Whether the spider uses its mimicry to avoid predators or rather surprise its prey remains open for further investigation.

The description of this new species that belongs to the popular group of orb-weavers once again stresses the need of working harder on completing the list of spiders living in the Old World, such as the countries in the Mediterranean basin – a region that certainly keeps more taxonomic surprises up his sleeve.

***

Original source:

Morano E, Bonal R (2018) Araneus bonali sp. n., a novel lichen-patterned species found on oak trunks (Araneae, Araneidae). ZooKeys 779: 119-145. https://doi.org/10.3897/zookeys.779.26944