The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.

Lichens are curious organisms comprising a stable symbiosis between a fungus and one or more photosynthetic organisms, for example green algae and/or cyanobacteria. Once the symbiosis is established, the new composite organism starts to function as a whole new one, which can now convert sunlight into essential nutrients and resist ultraviolet light at the same time.

A common fruticose lichen in the Alps (Flavocetraria nivalis). Photo: Dr Peter O. Bilovitz
A common fruticose lichen in the Alps (Flavocetraria nivalis).
Photo: Dr Peter O. Bilovitz

Being able to grow on a wide range of surfaces – from tree bark to soil and rock, lichens are extremely useful as biomonitors of air quality, forest health and climate change.

Nevertheless, while the Alps are one of the best studied parts of the world in terms of their biogeography, no overview of the Alpine lichens had been provided up until recently, when an international team of lichenologists, led by Prof. Pier Luigi Nimis, University of Trieste, Italy, concluded their 15-year study with a publication in the open access journal MycoKeys.

Sunrise in the Julian Alps. Photo: Dr Pier Luigi Nimis
Sunrise in the Julian Alps.
Photo: Dr Pier Luigi Nimis

The scientists’ joint efforts produced the first ever checklist to provide a complete critical catalogue of all lichens hitherto reported from the Alps. It comprises a total of 3,138 entries, based on data collected from eight countries – Austria, France, Germany, Italy, Liechtenstein, Monaco, Slovenia and Switzerland. In their research paper, the authors have also included notes on the lichens’ ecology and taxonomy.

A common lichen in the Alps (Xanthoria elegans). Photo: Dr Tomi Trilar
A common lichen in the Alps (Xanthoria elegans).
Photo: Dr Tomi Trilar

They point out that such catalogue has been missing for far too long, hampering research all over the world. The scientists point out that this has been “particularly annoying”, since the data from the Alps could have been extremely useful for comparisons between mountainous lichen populations from around the globe. It turns out that many lichens originally described from the Alps have been later identified in other parts of the world.

It was a long and painstaking work, which lasted almost 15 years, revealing a surprisingly high number of yet to be resolved taxonomic problems that will hopefully trigger further research in the coming years,” say the authors.

We think that the best criterion to judge whether a checklist has accomplished its task for the scientific community is the speed of it becoming outdated,” they conclude paradoxically.

The new checklist is expected to serve as a valuable tool for retrieving and accessing the enormous amount of information on the lichens of the Alps

A widespread alpine lichen (Thamnolia vermicularis). Photo: Dr Peter O. Bilovitz
A widespread alpine lichen (Thamnolia vermicularis).
Photo: Dr Peter O. Bilovitz

that has accumulated over centuries of research. It offers a basis for specimen revisions, critical re-appraisal of poorly-known species and further exploration of under-explored areas. Thus, it could become a catalyst for new, more intensive investigations and turn into a benchmark for comparisons between mountains systems worldwide.

###

Original source:

Nimis PL, Hafellner J, Roux C, Clerc P, Mayrhofer H, Martellos S, Bilovitz PO (2018) The lichens of the Alps – an annotated checklist. MycoKeys 31: 1-634. https://doi.org/10.3897/mycokeys.31.23568

Lichenologists at work in the Carnic Alps. Photo: Dr Pier Luigi Nimis
Lichenologists at work in the Carnic Alps.
Photo: Dr Pier Luigi Nimis

Double trouble: Invasive insect species overlooked as a result of a shared name

An invasive leaf-mining moth, feeding on cornelian cherry, has been gradually expanding its distributional range from its native Central Europe northwards for a period likely longer than 60 years. During that period, it has remained under the cover of a taxonomic confusion, while going by a name shared with another species that feeds on common dogwood.

To reproduce, this group of leaf-mining moths lay their eggs in specific plants, where the larvae make tunnels or ‘mines’, in the leaves. At the end of these burrows, they bite off an oval section, in which they can later pupate. These cutouts are also termed ‘shields’, prompting the common name of the family, the shield-bearer moths.

During a routine study into the DNA of leaf-mining moths, Erik van Nieukerken, researcher at Naturalis Biodiversity Center, Leiden, the Netherlands, discovered that the DNA barcodes of the species feeding on common dogwood and cornelian cherry were in fact so different that they could only arise from two separate species. As a result, Erik teamed up with several other scientists and amateur entomologists to initiate a more in-depth taxonomic study.

Curiously, it turned out that the two species had been first identified on their own as early as in 1899, before being described in detail by a Polish scientist in the 50s. Ironically, it was another Polish study, published in the 70s, that regarded the evidence listed in that description as insufficient and synonymised the two leaf-miners under a common name (Antispila treitschkiella).

Now, as a result of the recent study undertaken by van Nieukerken and his collaborators, the two moth species – Antispila treitschkiella and Antispila petryi – have their diagnostic features listed in a research article published in the open access journal Nota Lepidopterologica.

“We now establish that the species feeding on common dogwood, A. petryi, does not differ only in its DNA barcode, but also in characters of the larva, genitalia and life history,” explains Erik van Nieukerken. “A. petryi has a single annual generation, with larvae found from August to November, whereas A. treitschkiella, which feeds on cornelian cherry, has two generations, with larvae occurring in June-July and once again between September and November.”

While van Nieukerken and his team were working on the taxonomy of the moths, David C. Lees of the Natural History Museum, London, spotted a female leaf-miner in the Wildlife Garden of the museum. Following consultation with van Nieukerken, it turned out that the specimen in question was the first genuine A. treitschkiella ever to be found in Britain. Subsequently, the research groups decided to join forces, leading to the present discovery.

Despite the lack of data for the British Isles, it is already known that, in continental Europe, the cornelian cherry-feeding species had established in the Netherlands and much of Germany in the 1990s.

0.6 x 1.0

With common dogwood being widely planted, it is now suspected that A. petryi has recently reached Sweden and Estonia, even though there was no previous evidence of the leaf-miner expanding its range.

“This discovery should provoke the attention of gardeners and other members of the public alike to the invasive leafminers attacking some of our much admired trees and shrubs, as we have demonstrated for the cornelian cherry – a species well-known for its showy red berries in the autumn,” says David Lees.

“Especially in Britain, we hope that they check their photos for the conspicuous leaf mines, recognisable by those oval cutouts, to see if they can solve the mystery of when the invasion, which is now prominent on cornels around London, actually started, and how fast it progresses. Citizen scientists can help.”

###

Original source:

van Nieukerken EJ, Lees DC, Doorenweerd C, Koster S(JC), Bryner R, Schreurs A, Timmermans MJTN, Sattler K (2018) Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion. Nota Lepidopterologica 41(1): 39-86. https://doi.org/10.3897/nl.41.22264

Pan-European sampling campaign sheds light on the massive diversity of freshwater plankton

In a major pan-European study, a research team from Germany have successfully extracted environmental DNA (eDNA) from as many as 218 lakes to refute a long-year belief that vital microorganisms do not differ significantly between freshwater bodies and geographic regions the way plants and animals do.

Their new-age approach to biodiversity studies resulted in the largest freshwater dataset along with a study published in the open access journal Metabarcoding and Metagenomics.

Surface freshwaters are of critical importance for terrestrial life and, in particular, human life and welfare. However, these vital ecosystems are severely understudied, as compared to terrestrial or oceanic biomes, and so are the microbial organisms living in them.

Image 2On the other hand, it is these invisible to the naked eye creatures, called protists, that are responsible for keeping our ecosystems running. Their diversity and their high metabolic rates maintain ecosystem stability. In fact, microbes are the major source of the worlds oxygen.

In 2012, the team of Prof. Jens Boenigk, University of Duisburg-Essen, undertook the sampling campaign to study the distribution pattern of microbial organisms on a continental scale and the impact of Europe’s climatic history on their present-day whereabouts.

They sampled freshwater lakes and ponds from sites in Norway, Sweden, Germany, Poland, the Czech Republic, Slovakia, Hungary, Romania, Austria, Italy, France, Spain and Switzerland. Site selection focused on the European orogens, specifically the Alps, the Pyrenees, the Apennine, the High Tatras, the southern Scandinavian mountains and the connecting flatlands.

Thanks to the excellent collaboration both within the team and with a number of scientific institutions across Europe, which gave their support as access points for re-stocking sampling equipment and immediate sample preservation, the campaign delivered groundbreaking results illuminating the hidden diversity of the microbial biosphere.

The scientists reported that plankton diversity was highly partitioned between lakes which bear distinct biological fingerprints. In particular, high mountain ranges imprinted the microbial communities on both regional and continental scale. Ecological factors, such as temperature and nutrient concentrations, are well accepted factors structuring plankton communities.

Beyond the high plankton diversity and the associated highly specific community composition in distinct lakes, the plankton community composition revealed signals of the past, i.e. since the last glaciation some 12,000 years ago.

While this expedition yielded many new scientific findings, the scientists note that these are only the first results of this continental survey.

“We are well aware that we have only just begun our exploration of the hidden diversity of plankton diversity,” they conclude.

###

Original source:Probennahme

Boenigk J, Wodniok S, Bock C, Beisser D, Hempel C, Grossmann L, Lange A, Jensen M (2018) Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding and Metagenomics 2: e21519. https://doi.org/10.3897/mbmg.2.21519

Special issue: Natura 2000 appropriate assessment and derogation procedure

The focus is on the case-law of the European Court of Justice and the German Federal Administrative Court

With over 27,500 sites, Natura 2000 is the greatest nature conservation network in the world. It covers more than 18 percent of the land area in the European Union and around 395,000 km2 of its marine territory.

Projects and plans within those sites or in their vicinity require an appropriate assessment to ensure that they will not have a significant impact on the integrity of a Natura 2000 site, according to Article 6(3) of the Habitats Directive 92/43/EEC. The Natura 2000 appropriate assessment is the central statutory instrument for the protection of the network, in addition to the general prohibition of deterioration.

An assessment must take place prior to the authorisation and implementation of a project or a plan. As a result of the European Court of Justice (ECJ) having maximised the effectiveness of the assessment by a stringent legal interpretation, a project or a plan must be rejected by the competent authorities if there is any remaining reasonable scientific doubt that it might adversely affect the integrity of the site.

Nevertheless, in accordance with the European principle of proportionality, the Habitats Directive does not intend to ban all human activity in Natura 2000 sites. This is the reason why, on the one hand, only significant adverse impacts on the integrity of a Natura 2000 site are relevant and, on the other, according to Article 6(4) Habitats Directive, a derogating authorisation is possible in favour of public interests.

However, numerous questions, which are relevant in practice, have so far only been considered by national courts. A special issue recently published with the open access journal Nature Conservation features a comprehensive review of the relevant case-law of the German Federal Administrative Court (BVerwG), which has thoroughly dealt with the Natura 2000 regime in a long series of judgements.

The author, Dr. Stefan Möckel of the Helmholtz-Centre for Environmental Research GmbH, Germany, is a long standing specialist in European and German nature conservation law. Within the four articles comprising the issue, he analyses the scope, procedural steps and requirements of the appropriate assessment and the derogation procedure. He also comments on the interpretations and practical solutions found by the ECJ and the BVerwG.

The first article explains the main steps and demands of the appropriate assessment. Questions on the scope of the terms “project” and “plan”, as well as determining significant impacts are discussed in greater detail in the second and third article. The fourth paper explores the requirements needed for a derogation to be approved.

###

Original source:

Möckel S (2017) The European ecological network “Natura 2000” and the appropriate assessment for projects and plans under Article 6(3) of the Habitats Directive. In: Möckel S (Ed.) Natura 2000 appropriate assessment and derogation procedure – legal requirements in the light of European and German case-law. Nature Conservation 23: 1-29. https://doi.org/10.3897/natureconservation.23.13599

Möckel S (2017) The terms “project” and “plan” in the Natura 2000 appropriate assessment. In: Möckel S (Ed.) Natura 2000 appropriate assessment and derogation procedure – legal requirements in the light of European and German case-law. Nature Conservation 23: 31-56. https://doi.org/10.3897/natureconservation.23.13601

Möckel S (2017) The assessment of significant effects on the integrity of “Natura 2000” sites under Article 6(2) and 6(3) of the Habitats Directive. In: Möckel S (Ed.) Natura 2000 appropriate assessment and derogation procedure – legal requirements in the light of European and German case-law. Nature Conservation 23: 57-85. https://doi.org/10.3897/natureconservation.23.13602

Möckel S (2017) The European ecological network “Natura 2000” and its derogation procedure to ensure compatibility with competing public interests. In: Möckel S (Ed.) Natura 2000 appropriate assessment and derogation procedure – legal requirements in the light of European and German case-law. Nature Conservation 23: 87-116. https://doi.org/10.3897/natureconservation.23.13603

Rare footage of a new clearwing moth species from Malaysia reveals its behavior

Unique footage of a new species of clearwing moth has been recorded in a primeval rainforest in Peninsular Malaysia revealing the behaviour of this elusive insect.

Clearwing moths, which are day-flying insects belonging to the Sesiidae family, imitate bees and wasps. Apart from the common species considered as agricultural pests, these moths are known mainly from old museum specimens, stored on pins in forgotten drawers. In the wild, they are elusive creatures, rarely spotted and, hence, poorly studied.

Marta Skowron Volponi from the University of Gdansk, Poland, a PhD student specialising in entomology, teamed up with nature filmmaker and photographer Paolo Volponi, associated with the ClearWing Foundation for Biodiversity, to find these intriguing insects. The results of their studies were recently published in ZooKeys.

In their search for clearwing moths, they went deep into the virgin Malaysian jungle, where elephants, tigers, tapirs and other charismatic Southeast Asian animals roam, while dealing with the intense heat, humidity and countless blood-suckers.

In the end, however, their effort was worth it: on a bank of a crystal clear river, during the hottest hours of the day, the researchers discovered a new species of clearwing moth displaying behaviour known as mud-puddling.

“Mud-puddling is the process of sucking-up liquids in order to gain essential nutrients, such as salt or proteins”, explains Marta. “It has only recently been observed in clearwing moths and, similarly as in other Lepidopterans, it seems to be restricted to males”.

The newly discovered species was named Pyrophleps ellawi in honour of Marta and Paolo’s Malaysian friend EL Law who supported the team during their expeditions and who has a deep affinity for nature.

Curiously, rather than resembling a butterfly’s relative, the new moth looks like an insect from a whole different order. It mimics potter wasps.

“It has a slender body, long legs and transparent wings with a blue sheen in sunlight, similarly to some species of potter wasps”, says Marta.

Furthermore, while observing the moth in the wild, the authors noticed that it does not only look like a wasp – it also flies like one.

“There were potter wasps in the same area. In flight, the two insects were impossible to distinguish, they would always confuse us!”

The new species seems to be quite rare. During the authors’ three expeditions to Malaysia, they managed to see only eight individuals with each of them seen on a different day.

“So there we were: on our knees on a sandy beach, in the middle of the jungle, trying to film the 1.5 cm moth”, Marta recalls. “We didn’t have much time: a single clearwing would come around 2:00 PM and stay for several minutes only. We knew that once it flew away, we would not get another shot”.

“Could it be that their rarity is the reason why the behaviour of clearwing moths is practically unknown and why there are still new species waiting to be discovered?” the researchers wonder.

###

Original source:

Skowron Volponi MA, Volponi P (2017) A new species of wasp-mimicking clearwing moth from Peninsular Malaysia with DNA barcode and behavioural notes (Lepidoptera, Sesiidae). ZooKeys692: 129-139. Doi: 10.3897/zookeys.692.13587

 

Do squirrels teach bears to cross the railroad? Grizzlies dig squirrel middens for grains

Grains have been reported to regularly trickle from hopper cars travelling via the railway located within the Canadian Banff and Yoho National Parks, attracting the local red squirrels.

As a result, the rodents have grown used to foraging on the spilled seeds, which they collect in underground storage areas where they can be discovered and dug up by grizzly bears. Grain-conditioned bears may frequent the railway more often than usual, resulting in increased mortality by trains strikes.

Furthermore, the dispersal, following caching and digestion of such seeds by both squirrels and bears, could lead to the spread and establishment of those agricultural plants in the area.

Figure1B

The case is investigated and discussed by members of the University of Alberta‘s research team of Julia Elizabeth Put, Laurens Put and Dr. Colleen Cassady St. Clair. Their study is published in the open access journal Nature Conservation.

It all began when members of the team found a grain-filled midden that was visited by a bear near where the same bear had bluff-charged Parks Canada employees. At the time, the researchers were investigating possible explanations for causes of grizzly bear mortality on the adjacent railway. Thus, an unexpected opportunity to document interactions between species and how those can lead to human-wildlife conflicts presented itself to the scientists.

The three basic questions brought up by Julia and her team were whether spilled grain could increase the number of squirrels near the rail; if other middens contained grain; and if other bears accessed grain in middens. Eventually, their data provided a resounding ‘yes’ to all of them.

In some mountain parks in North America, including Banff, grizzly bears are known to excavate squirrel middens to access whitebark pine seeds. The tree, however, is only found at high elevations far from the valley bottom where the railway is located. Nevertheless, this behaviour may easily translate to targeting other food items in middens, such as grain, speculate the researchers.

Once a bear consumes grain from a squirrel midden, it could initiate or reinforce a tendency to seek grain on the rail, where it is generally less concentrated. Such conditioning of food rewards could lead to grizzly bears spending more time in the area around or on the rails, where they would be at risk of being struck by trains.

“The only feasible mitigation for these effects is to reduce spillage from hopper cars via careful attention to loading and gate maintenance,” conclude the authors.

###

Original source:

Put JE, Put L, St. Clair CC (2017) Caching behaviour by red squirrels may contribute to food conditioning of grizzly bears. Nature Conservation 21: 1-14. https://doi.org/10.3897/natureconservation.21.12429

Saving the Underworld: Clarifying the subterranean fauna classification for improved conservation

Inevitably, many habitats, including the particularly vulnerable subterranean ones, will continue being erased from our planet as a result of human activities and interests. The challenge is to protect the ones that are the sole habitats to certain organisms, so that their species are safe from extinction. Hence, it is essential that the distribution of every each one of them is clearly defined.

Brazilian scientists Prof. Eleonora Trajano, Universidade Federal de São Carlos, and Prof. Dr. Marcelo Rodrigues de Carvalho, Universidade de São Paulo, discuss the current classification system, its application and complexities in a paper published in the open access Subterranean Biology.

9759_Image 2Nowadays, there are three categories of subterranean fauna accepted. Troglobites live exclusively underground and are usually characterised with reduced or lacking eyes and pale or transparent colors; troglophiles may live both in caves and on the surface, with individuals commuting between these habitats and promoting genetic interchange between subterranean and surface populations; trogloxenes use caves regularly, but must leave them periodically in order to complete their life cycle.

Throughout the years, many alterations and subdivisions have been applied to the classification used when determining whether a cave organism belongs exclusively to the subterranean habitat, or not, before concluding these three groups, also known as the Schiner-Racovitza system. It is important to separate them properly, since the destruction of a habitat to an endemic troglobite, for instance, would immediately wipe out its whole species, as it would be impossible for the animals to move away.

However, many historic publications do not feature enough details about the described species’ distribution, nor identification of the used classification, so that the information is unreliable. Furthermore, there have been times, when people have been even afraid to survey the underground habitats, led by beliefs and associations linking caves to the “World of the Dead”.

In their paper, the authors conclude that the only way to define the species status of subterranean organisms with certainty is to study each species’ dynamics over a period of at least three years, since animals may migrate on a seasonal and/or non-seasonal basis. Also, scientists need to study thoroughly the area outside the surveyed cave, while testing for sampling sufficiency at all times.oo_124566

“When employing classifications of subterranean organisms, especially for conservation purposes, these conditions should be checked for reliability of the status attributed to them,” say the authors. “Misplacing these organisms within the Schiner-Racovitza categories impairs the efficiency of such policies.”

###

Original source:

Trajano E, Carvalho MR (2017) Towards a biologically meaningful classification of subterranean organisms: a critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterranean Biology 22: 1-26. https://doi.org/10.3897/subtbiol.22.9759

Bee species with little known nesting-behavior observed to use plastic instead of leaves

Little is known about the nesting activities of some lineages of megachiline bees. Dr. Sarah Gess, affiliated with both Albany Museum and Rhodes University, South Africa, and Peter Roosenschoon, Conservation Officer at the Dubai Desert Conservation Reserve, United Arab Emirates, made use of their earlier observations gathered during a survey on flower visitation in the spring of 2015, to fill some gaps in the knowledge of of three species from such lineages.

Among their findings, published in the open access Journal of Hymenoptera Research, is a curious instance of a bee attempting to build brood cells using green pieces of plastic. Having examined two nests of the leafcutter bee species Megachile (Eurymella) patellimana, they report that one of the females nested in burrows in compacted sandy ground beneath a plant, and the other – in the banks of an irrigation furrow.

11290_Nest of P. grandiceps after emergence of imagines, visible trapped between their natal nest and a nest of Megachile maxillosa

However, while the former was seen carrying a freshly cut leaf, the latter seemed to have discovered a curious substitute in the form of green plastic. Later on, upon checking the nest, the researchers found that the phenomenon they had observed was no isolated incident – at least six identical pieces of narrow, tough, green plastic were grouped together in an apparent attempt to construct a cell. It turns out that the bee had been deliberately cutting off approximately 10-milimetre-long pieces with its large and strong toothed mandibles, before bringing them back to the nest.

“Although perhaps incidentally collected, the novel use of plastics in the nests of bees could reflect ecologically adaptive traits necessary for survival in an increasingly human-dominated environment,” the authors quote an earlier study.

The two studied mason bee species (Megachile (Maximegachile) maxillosa and Pseudoheriades grandiceps) were seen to construct their nests using a mixture of resin and sand in pre-existing cavities, such as trap-nests, above the ground. The researchers note that resin is a common nest-building material among numerous species of mason bees, also known as resin bees. Previously, it has been suggested that apart from making the nest waterproof, the plant secretions may contain substances that fend off parasites.

The authors’ earlier paper exploring the flower visitation by bees and wasps in the Dubai Desert Conservation Reserve is also published in the open-access Journal of Hymenoptera Research.

###

Original source:

Gess SK, Roosenschoon PA (2017) Notes on the nesting of three species of Megachilinae in the Dubai Desert Conservation Reserve, UAE. Journal of Hymenoptera Research 54: 43-56. https://doi.org/10.3897/jhr.54.11290

New species of moth named in honor of Donald Trump ahead of his swearing-in as president

Days before Donald J. Trump steps forward on the Inaugural platform in Washington to assume the role of the 45th President of the United States of America, evolutionary biologist and systematist Dr. Vazrick Nazari named a new species in his honour. The author, whose publication can be found in the open access journal ZooKeys, hopes that the fame around the new moth will successfully point to the critical need for further conservation efforts for fragile areas such as the habitat of the new species.

While going through material borrowed from the Bohart Museum of Entomology, University of California, Davis, Dr. Vazrick Nazari stumbled across a few specimens that did not match any previously known species. Following thorough analysis of these moths, as well as material from other institutions, the scientist confirmed he had discovered the second species of a genus of twirler moths.

image 2While both species in the genus share a habitat, stretching across the states of California, USA, and Baja California, Mexico, one can easily tell them apart. The new moth, officially described as Neopalpa donaldtrumpi, stands out with yellowish-white scales present on the head in adults. In fact, it was in these scales that the author found an amusing reference to Mr. Trump’s hairstyle and turned it into an additional justification for its name.

Donald Trump’s flying namesake is announced only a month following the recently described species of basslet named after predecessor President Barack Obama, also published in ZooKeys. The fish is only known from coral reefs in the Papahānaumokuākea Marine National Monument, Northwestern Hawaii, a nature reserve which the 44th President of the United States of America expanded to become the largest protected marine area in the world.

Being a substantially urbanized and populated area, the habitat of N. donaldtrumpi is also under serious threat.

“The discovery of this distinct micro-moth in the densely populated and otherwise zoologically well-studied southern California underscores the importance of conservation of the fragile habitats that still contain undescribed and threatened species, and highlights the paucity of interest in species-level taxonomy of smaller faunal elements in North America,” says discoverer Dr. Vazrick Nazari. “By naming this species after the 45th President of the United States, I hope to bring some public attention to, and interest in, the importance of alpha-taxonomy in better understanding the neglected micro-fauna component of the North American biodiversity.”

###

Original source:

Nazari V (2017) Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae). ZooKeys 646: 79-94. https://doi.org/10.3897/zookeys.646.11411

Robust rattan palm assessed as Endangered, new Species Conservation Profile shows

An African rattan palm species has recently been assessed as Endangered, according to the IUCN Red List criteria. Although looking pretty robust at height of up to 40 m, the palm is restricted to scattered patches of land across an area of 40 km². It grows in reserves and conservation areas in Ghana and a single forest patch in Côte d’Ivoire. Its Species Conservation Profile is published in the open access Biodiversity Data Journal by an international research team, led by Thomas Couvreur, Institut de Recherche pour le Développement (IRD), France, in collaboration with the University of Yaoundé, Cameroon, Royal Botanic Gardens, Kew, UK, and the Conservatoire et jardin botaniques, Geneva, Switzerland.

oo_106255The rattan palm is confined to moist evergreen forests with high rainfall, located at 100 to 200 meters above sea level. The species is poorly known, yet it is likely very rare judging from the limited amount of forest habitat remaining across its range. Furthermore, the known populations are isolated from each other by large distances, which makes them particularly vulnerable.

Even though there are gaps of knowledge concerning the rattan palm species, the research team conclude that it is most likely currently declining, due to habitat loss, fragmentation and over-harvesting. Often mistaken for a sister species, commonly used in trade, the stems of the endangered species are largely used in furniture production. When longitudinally split into ribbons, the canes are also used as ropes for thatching, for making baskets and sieves, and to make traps.

“As with most African rattan species, there is inadequate information on the international trade, but it is likely to be negligible,” explain the scientists.

“Conservation measures are urgently needed to protect the habitat of this species and to control the unsustainable harvest of the stems. A promising solution might be sustainable cultivation of rattans to avoid the exploitation of wild populations,” suggests Ariane Cosiaux (IRD), the lead author of the study currently based in Cameroon.

With their present paper, the authors make use of a specialised novel publication type feature, called Species Conservation Profile, created by Biodiversity Data Journal, to provide scholarly credit and citation for the IUCN Red List species page, as well as pinpoint the population trends and the reasons behind them.

###

Original source:

Cosiaux A, Gardiner L, Ouattara D, Stauffer F, Sonké B, Couvreur T (2017) An endangered West African rattan palm: Eremospatha dransfieldii. Biodiversity Data Journal 5: e11176. https://doi.org/10.3897/BDJ.5.e11176