It was discovered while working on the 1001 Seaforest Species project, which focuses on raising awareness about the rich kelp bed ecosystems of South Africa.
Published in the scientific journal ZooKeys, the study focuses on four species of galeommatoidean bivalves collected from the Western Cape region of South Africa. Among these is one new species, Brachiomya ducentiunus. This small clam, which is only 2 mm (less than 1/8th inch) in length, spends its life crawling between the spines of sea urchins.
The new species has so far only been found in one locality in False Bay, South Africa, where it was found attached to the burrowing sea urchin Spatagobrissus mirabilis in coarse gravel at a depth of about 3 m. It has not been observed free-living, without the host urchin.
Brachiomya ducentiunus was discovered while preparing and working on the 1001 Seaforest Species project, a research and storytelling program aimed at increasing awareness of regional kelp bed ecosystems colloquially referred to as ‘the Great African Seaforest’.
“This study marks a significant advancement in our understanding of the biodiversity and ecological interactions of galeommatoidean bivalves,” says lead author Paul Valentich-Scott. “By uncovering the hidden lives of these small but ecologically important organisms, we hope to contribute to the broader knowledge of marine biodiversity and the conservation of these unique habitats.”
Co-author Charles L. Griffiths, emeritus professor at the University of Cape Town, says, “A large proportion of smaller marine invertebrates remain undescribed in western South Africa and almost any project that samples specialized habitats turns up many new records and species.”
In a similar vein, co-author Jannes Landschoff, marine biologist at the Sea Change Trust, says “Creating foundational biodiversity knowledge is a most important step to the humbling realization of how fascinating and uniquely diverse a place is. I see this every day through our work in the rich coastal waters of Cape Town, where an extensive underwater kelp forest, the ‘Great African Seaforest,’ grows.”
Research article:
Valentich-Scott P, Griffiths C, Landschoff J, Li R, Li J (2024) Bivalves of superfamily Galeommatoidea (Mollusca, Bivalvia) from western South Africa, with observations on commensal relationships and habitats. ZooKeys 1207: 301-323. https://doi.org/10.3897/zookeys.1207.124517
The demand for the digitization of natural history collections has increased with the advancement of imaging technologies. Large collections composed of millions of insect specimens are exploring efficient strategies and new technologies to digitize them. However, many of these new systems are quite elaborate and expensive, creating a need for more affordable and easy-to-use equipment.
Creating a digital image for every specimen is an essential part of the DNA barcoding workflow at the Centre for Biodiversity Genomics (CBG). A newly designed imaging rig has enabled the CBG to quickly and efficiently image specimens at high quality while controlling the specimen’s orientation to emphasize key morphological characters. This system allowed the CBG to take some 190,000 images over the past year.
Our new ZooKeys study describes this imaging rig, which was mainly created for pinned specimens. It is inexpensive and easy to install as it uses a camera mounted to a CNC machine rig to photograph specimens at high capacity. By using a foam board to array specimens, the user can choose their orientation, which contrasts some existing methods that do not provide such flexibility. This setup produces 95 high quality images within half an hour.
The flexibility of the imaging rig could benefit many potential users who are looking for an accessible method for larger collections of specimens. By alternating various parameters, such as the distance between the camera and specimens or the type of camera and lens used, users can adapt their system to specimens of varying sizes. With further changes to the array, the imaging rig can also be adapted to support imaging specimens on slides, within vials, or other storage solutions.
Rafael Nadal and Roger Federer will go down in history as two of the greatest tennis players of our time, but their names have also been immortalized in science, as two new insect species were just named in honor of the athletes.
A team of insect scientists from the Integrative Insect Ecology Research Unit in Thailand’s Chulalongkorn University described two new wasp species named Troporhogas rogerfedereri and Troporhogas rafaelnadali in a tribute to the two tennis legends.
Troporhogas rafaelnadali. Photo by Marisa Loncle
“T. rogerfedereri and T.rafaelnadali are parasitoid wasps, whose larvae devour their hosts from the inside,” says Buntika Areekul Butcher, who led the study to describe the new insects. “As their names proclaim, they honour the tennis greats Roger Federer and Raphael Nadal, who although competitors on the court have been on the same doubles team too. Also, two of the authors are huge fans of both Roger and Rafa.”
Troporhogas rogerfedereri. Photo by Marisa Loncle
Both of the new wasps are 6 mm long, with black, white and orange colour patterns. They were found in two major Thai national parks, Khao Yai and Khao Sok, both of which are popular attractions for natural history tourists.
The scientists published their discoveries in a research article in the open-access zoology journal ZooKeys.
Research article:
Quicke DLJ, Ranjith AP, Loncle MK, Van Achterberg C, Long KD, Butcher BA (2024) Revision of Troporhogas Cameron (Hymenoptera, Braconidae, Rogadinae) with six new species from India and Thailand. ZooKeys 1206: 99-136. https://doi.org/10.3897/zookeys.1206.120824
At the Pensoft’s stand, delegates learned about the scientific publisher’s versatile open-access journal portfolio, as well as related publishing services and the Horizon project where Pensoft is a partner.
Here’s a fun fact: the University of Bologna is the oldest one still in operation in the world. It is also etched in history for being the first institution to award degrees of higher learning.
This year, the annual event themed “Biodiversity positive by 2030” took place in the stunning Italian city of Bologna famous for its historical and cultural heritage, in a way building a bridge between the past of European civilisation and the future, which is now in our hands.
***
At the Pensoft’s stand, delegates learned about the scientific publisher’s versatile open-access journal portfolio of over 30 journals covering the fields of ecology and biodiversity, as well as other related services and products offered by Pensoft, including the end-to-end full-featured scholarly publishing platform ARPHA, which hosts and powers all Pensoft journals, in addition to dozens other academic outlets owned by learned societies, natural history museums and other academic institutions.
In addition to its convenient collaborative online environment, user interface and automated export/import workflows, what ARPHA’s clients enjoy perhaps the most, are the various human-provided services that come with the platform, including graphic and web design, assistance in journal indexing, typesetting, copyediting and science communication.
Visitors at the stand could also be heard chatting with Pensoft’s Head of Journal development, Marketing and PR: Iva Boyadzhieva about the publisher’s innovative solutions for permanent preservation and far-reaching dissemination and communication of academic outputs that do not match the traditional research article format.
For example, the Research Ideas and Outcomes (RIO) journal was launched in 2015 by Pensoft as an open-science journal that would publish ‘unconventional’ research outputs, such as Grant proposals, Policy briefs, Project reports, Data management plans, Research ideas etc. Its project-branded open-science collections are in fact one of the Pensoft’s products that enjoys particular attention to participants in scientific projects funded by the likes of the European Commission’s Horizon programme.
Another innovation by Pensoft that easily becomes a talking point at forums like ECCB, is the ARPHA Conference Abstract (ACA) platform, which is basically a journal for conference abstracts, where abstracts are treated and published much like regular journal articles (a.k.a. ‘mini papers’) to enable permanent preservation, but also accessibility, discoverability and citability. Furthermore, ACA has been designed to act as an abstracts submission portal, where the abstracts undergo review and receive feedback before being published and indexed at dozens of relevant scientific databases.
On Wednesday, delegates also got a chance to hear the talk by renowned vegetation ecologist at the ZHAW Zurich University of Applied Sciences and Editor-in-Chief at the Vegetation Classification and Survey journal: Prof. Dr. Jürgen Dengler. He presented findings and conclusions concerning neophytes in Switzerland, while drawing comparisons with other European countries and regions.
🌱 Presence of #neophytes is not necesarily problematic, and can actually have positive effect, concludes recent research on 🇨🇭Swiss #grasslands diversity.
At this year’s ECCB, Pensoft took a stand as an active Horizon project participant too. At the publisher’s booth, the delegates could explore various project outputs produced within REST-COAST, SpongeBoost and BioAgora. Each of these initiatives has been selected by the European Commission to work on the mitigation of biodiversity decline, while aiming for sustainable ecosystems throughout the Old continent.
In all three projects, Pensoft is a consortium member, who contributes with expertise in science communication, dissemination, stakeholder engagement and technological development.
Having started earlier this year, SpongeBoost is to build upon existing solutions and their large-scale implementation by implementing innovative approaches to improve the functional capacity of sponge landscapes. The project is coordinated by the Helmholtz Centre for Environmental Research (UFZ) and will be developed with the active participation of 10 partnering institutions from seven countries across Europe.
In the meantime, since 2022, the five-year BioAgora project has been working towards setting up the Science Service for Biodiversity platform, which will turn into an efficient forum for dialogue between scientists, policy actors and other knowledge holders. BioAgora is a joint initiative, which brings together 22 partners from 13 European countries led by the Finnish Environment Institute (SYKE).
4/🧵 The @HorizonEU project @BioAgoraEU is to create an efficient platform for dialogue between #scientists, policy actors & other knowledge holders.
Still, REST-COAST, SpongeBoost and BioAgora were not the only Horizon projects involving Pensoft that made an appearance at ECCB this year thanks to the Pensoft team.
On behalf of OBSGESSION – another Horizon-funded project, Nikola Ganchev, Communications officer at Pensoft, presented a poster about the recently started project. Until the end of 2027, the OBSGESSION project, also led by the Finnish Environment Institute (SYKE) and involving a total of 12 partnering organisations, will be tasked with the integration of different biodiversity data sources, including Earth Observation, in-situ research, and ecological models. Eventually, these will all be made into a comprehensive product for biodiversity management in both terrestrial and freshwater ecosystems.
On Tuesday evening, the CO-OP4CBD (abbreviation for Co-operation for the Convention on Biological Diversity) team: another Horizon Europe project, where Pensoft contributes with expertise in science communication and dissemination, held a workshop dedicated to what needs to be done to promote CBD activities in Central and Eastern Europe.
On the next day, scientists from the EuropaBON consortium: another project involving Pensoft that had concluded only about a month ago, held a session to report on the final conclusions from the project concerning the state and progress in biodiversity monitoring.
📌Eastern Europe and countries outside Europe underrepresented in the @EuropaBon_H2020 network, reports Christian Langer at #eccb2024bologna.
Ovophis jenkinsi is dark brownish-grey, with trapezoidal patches on its back. It is endemic to China’s Yingjiang County and is not difficult to find in the wild.
Yunnan, China is a biodiversity hotspot, with many new reptile species discovered in the region in recent years. It is also where a research team from China found a new species of medium-sized venomous snake, known as a mountain pit viper.
Ovophis jenkinsi. Photo by Xianchun Qiu
“We checked specimens of the [snake] genus Ovophis collected by Institute of Zoology, Chinese Academy of Sciences and Beijing Forestry University in Yingjiang, Yunnan in 2008, and found that these specimens were different from all known similar species. We collected some new specimens from Yingjiang in 2023 and finally determined that this population represents a new species!” the researchers explained.
The new species was named Ovophis jenkinsi in honour of herpetologist Robert “Hank” William Garfield Jenkins AM (September 1947−September 2023), who had “a passion for snakes, especially pit vipers, and helped China, along with many Asian countries, complete snake census, conservation, and management projects,” the team writes in their study, which was published in the open-access journal ZooKeys.
A specimen of Ovophis jenkinsi from Yingjiang, Yunnan, China. Photo by Xianchun Qiu
Ovophis jenkinsi is generally dark brownish-grey, but some individuals can be deep orange-brown, and has trapezoidal patches on its back. “It is usually slow-moving but shows great aggression when disturbed,” the researchers explain after observing the snake’s behaviour. “When threatened, these snakes inflate their bodies to make themselves appear larger and strike quickly.”
There are no records to date of humans being bitten by this species.
The only known habitat of Ovophis jenkinsi, the tropical montane rainforest in Yingjiang, Yunnan, China. Photo by Xiaojun Gu
Like many other species, this snake is endemic to China’s Yingjiang County, which means it is currently found only there. “It is not difficult to find this species in the wild, they are active mainly in the autumn and prefer cool, humid, and even rainy nights, probably to avoid competition with other snakes,” the researchers say, suggesting it might feed on small mammals.
“We will be collecting more information about O. jenkinsi in the future, including their appearance, distribution, and habits, to improve our understanding of this species,” the researchers say in conclusion.
Research article:
Qiu X-C, Wang J-Z, Xia Z-Y, Jiang Z-W, Zeng Y, Wang N, Li P-P, Shi J-S (2024) A new mountain pitviper of the genus Ovophis Burger in Hoge & Romano-Hoge, 1981 (Serpentes, Viperidae) from Yunnan, China. ZooKeys 1203: 173-187. https://doi.org/10.3897/zookeys.1203.119218
Scholarly publisher Pensoft is excited to announce it is now on Chinese social media platform Weibo. The move is aimed at fostering stronger connections with researchers, academics, and enthusiasts in China, which in turn will enhance the dissemination of scientific knowledge and facilitate international collaboration.
With over half a billion active users, Weibo is a powerful social media platform that combines the functionalities of microblogging and social networking. The Pensoft team is looking forward to engaging in real-time conversations with its Chinese audience, sharing insights, and receiving their feedback.
The launch coincides with the Dragon Boat Festival, a significant cultural event in China that commemorates the ancient poet Qu Yuan and symbolizes unity and teamwork.
The move aims to make Pensoft’s publications and updates more accessible to Chinese researchers, allowing them to stay informed about the latest scientific discoveries and advancements. In addition, it offers an excellent opportunity for Pensoft to foster collaborations with Chinese institutions, researchers, and academic societies.
As a pioneer in open-access publishing, Pensoft will also use its Weibo account to promote the benefits of open access, making sure Chinese research reaches a global audience without paywalls.
“China, with its rapidly growing research output and a burgeoning community of scholars, represents a significant segment of the global academic landscape. Recognizing the importance of engaging with this vibrant community, Pensoft’s decision to establish a presence on Weibo underscores its commitment to inclusivity and accessibility in scientific publishing,” says Lyubomir Penev, CEO and founder of Pensoft.
We invite you to join Pensoft’s Weibo account to learn all about our latest scientific discoveries and publishing updates.
Nothing like the common red, black, or brown ants, a stunning blue ant has been discovered from Yingku village in Arunachal Pradesh, northeastern India. This new species belongs to the rare genus Paraparatrechina and has been named Paraparatrechinaneela. The word “neela” signifies the color blue in most Indian languages – a fitting tribute to the ant’s unique coloration.
Entomologists Dr. Priyadarsanan Dharma Rajan and Sahanashree R, from Ashoka Trust for Research in Ecology and the Environment (ATREE) in Bengaluru, along with Aswaj Punnath from the University of Florida, collaborated to describe the remarkable new species. Their scientific description of the ant is published in the open-access journal ZooKeys.
Paraparatrechinaneela. Photo by Sahanashree R
“While exploring a tree hole about 10 feet up in a steep cattle track in the remote Yinku village one evening, something sparkled in the twilight. With the dim light available, two insects were sucked into an aspirator. To our surprise, we later found they were ants” said the researchers.
The ant was found during an expedition to Siang valley in Arunachal Pradesh to resurvey its biodiversity after the century-old ‘Abhor expedition’. The original Abor expedition from the period of colonial rule in India was a punitive military expedition against the indigenous people there in 1911-1912. A scientific team also accompanied the military expedition, to document the natural history and geography of the Siang Valley. Тhis expedition encountered several challenges, including hostile terrain, difficult weather conditions, and resistance from local tribes. Despite the challenges, it managed to explore and map large parts of the Siang Valley region, cataloguing every plant, frog, lizard, fish, bird & mammal and insects they found, with the discoveries published in several volumes from 1912 to 1922 in the Records of the Indian Museum.
A view of Suabg Valley. Photo by Ranjith AP
Now, a century later, a team of researchers from ATREE and a documentation team from Felis Creations Bangalore have embarked on a series of expeditions under the banner “Siang Expedition”, to resurvey and document the biodiversity of the region. This expedition was funded by the National Geographic Society through the wildlife-conservation expedition grant.
“Nestled within a Himalayan biodiversity hotspot, Arunachal Pradesh’s Siang Valley presents a world of unparalleled diversity, much of it yet to be explored. However, this very richness, both cultural and ecological, faces unprecedented threats. Large-scale infrastructure projects like dams, highways, and military installations, along with climate change, are rapidly altering the valley. The impact extends beyond the valley itself, as these mountains play a critical role not only in sustaining their own diverse ecosystems but also in ensuring the well-being of millions of people living downstream”, said Priyadarsanan Dharma Rajan, corresponding author of the paper.
Paraparatrechina neela is a small ant with a total length of less than 2mm. Its body is predominantly metallic blue, except for the antennae, mandibles, and legs. The head is subtriangular with large eyes, and has a triangular mouthpart (mandible) featuring five teeth. This species has a distinct metallic blue colour that is different from any other species in its genus.
Paraparatrechinaneela. Photo by Sahanashree R
Blue is relatively rare in the animal kingdom. Various groups of vertebrates, including fish, frogs, and birds, as well as invertebrates such as spiders and flies and wasps, showcase blue coloration. In insects, it is often produced by the arrangement of biological photonic nanostructures, which create structural colours rather than being caused by pigments. While blue coloration is commonly observed in some insects like butterflies, beetles, bees, and wasps, it is relatively rare in ants. Out of the 16,724 known species and subspecies of ants worldwide, only a few exhibit blue coloration or iridescence.
The discovery of Paraparatrechina neela contributes to the richness of ant diversity and represents the unique biodiversity of the Eastern Himalayas, and its blue coloration raises intriguing questions. Does it help in communication, camouflage, or other ecological interactions? Delving into the evolution of this conspicuous coloration and its connections to elevation and the biology of Paraparatrechina neela presents an exciting avenue for research.
Research article: Sahanashree R, Punnath A, Rajan Priyadarsanan D (2024) A remarkable new species of Paraparatrechina Donisthorpe (1947) (Hymenoptera, Formicidae, Formicinae) from the Eastern Himalayas, India. ZooKeys 1203: 159-172. https://doi.org/10.3897/zookeys.1203.114168
Within theBiodiversity Community Integrated Knowledge Library (BiCIKL) project, 14 European institutions from ten countries, spent the last three years elaborating on services and high-tech digital tools, in order to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of various types of data about the world’s biodiversity. These types of data include peer-reviewed scientific literature, occurrence records, natural history collections, DNA data and more.
By ensuring all those data are readily available and efficiently interlinked to each other, the project consortium’s intention is to provide better tools to the scientific community, so that it can more rapidly and effectively study, assess, monitor and preserve Earth’s biological diversity in line with the objectives of the likes of the EU Biodiversity Strategy for 2030 and the European Green Deal. Their targets require openly available, precise and harmonised data to underpin the design of effective measures for restoration and conservation, reminds the BiCIKL consortium.
Since 2021, the project partners at BiCIKL have been working together to elaborate existing workflows and links, as well as create brand new ones, so that their data resources, platforms and tools can seamlessly communicate with each other, thereby taking the burden off the shoulders of scientists and letting them focus on their actual mission: paving the way to healthy and sustainable ecosystems across Europe and beyond.
Now that the three-year project is officially over, the wider scientific community is yet to reap the fruits of the consortium’s efforts. In fact, the end of the BiCIKL project marks the actual beginning of a European- and global-wide revolution in the way biodiversity scientists access, use and produce data. It is time for the research community, as well as all actors involved in the study of biodiversity and the implementation of regulations necessary to protect and preserve it, to embrace the lessons learned, adopt the good practices identified and build on the knowledge in existence.
This is why amongst the BiCIKL’s major final research outputs, there are two Policy Briefs meant to summarise and highlight important recommendations addressed to key policy makers, research institutions and funders of research. After all, it is the regulatory bodies that are best equipped to share and implement best practices and guidelines.
Most recently, the BiCIKL consortium published two particularly important policy briefs, both addressed to the likes of the European Commission’s Directorate-General for Environment; the European Environment Agency; the Joint Research Centre; as well as science and policy interface platforms, such as the EU Biodiversity Platform; and also organisations and programmes, e.g. Biodiversa+ and EuropaBON, which are engaged in biodiversity monitoring, protection and restoration. The policy briefs are also to be of particular use to national research funds in the European Union.
One of the newly published policy briefs, titled “Uniting FAIR data through interlinked, machine-actionable infrastructures”, highlights the potential benefits derived from enhanced connectivity and interoperability among various types of biodiversity data. The publication includes a list of recommendations addressed to policy-makers, as well as nine key action points. Understandably, amongst the main themes are those of wider international cooperation; inclusivity and collaboration at scale; standardisation and bringing science and policy closer to industry. Another major outcome of the BiCIKL project: the Biodiversity Knowledge Hub portal is noted as central to many of these objectives and tasks in its role of a knowledge broker that will continue to be maintained and updated with additional FAIR data-compliant services as a living legacy of the collaborative efforts at BiCIKL.
The second policy brief, titled “Liberate the power of biodiversity literature as FAIR digital objects”, shares key actions that can liberate data published in non-machine actionable formats and non-interoperable platforms, so that those data can also be efficiently accessed and used; as well as ways to publish future data according to the best FAIR and linked data practices. The recommendations highlighted in the policy brief intend to support decision-making in Europe; expedite research by making biodiversity data immediately and globally accessible; provide curated data ready to use by AI applications; and bridge gaps in the life cycle of research data through digital-born data. Several new and innovative workflows, linkages and integrative mechanisms and services developed within BiCIKL are mentioned as key advancements created to access and disseminate data available from scientific literature.
While all policy briefs and factsheets – both primarily targeted at non-expert decision-makers who play a central role in biodiversity research and conservation efforts – are openly and freely available on the project’s website, the most important contributions were published as permanent scientific records in a BiCIKL-branded dedicated collection in the peer-reviewed open-science journal Research Ideas and Outcomes (RIO). There, the policy briefs are provided as both a ready-to-print document (available as supplementary material) and an extensive academic publication.
Currently, the collection: “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” in the RIO journal contains 60 publications, including policy briefs, project reports, methods papers, conference abstracts, demonstrating and highlighting key milestones and project outcomes from along the BiCIKL’s journey in the last three years. The collection also features over 15 scientific publications authored by people not necessarily involved in BiCIKL, but whose research uses linked open data and tools created in BiCIKL. Their publications were published in a dedicated article collection in the Biodiversity Data Journal.
Today, Pensoft celebrates one of its most distinguished editors and the world’s leading authority on thrips: Dr. Laurence Mound on the occasion of his 90th birthday.
Born in Willesden, London, on 22 April 1934, Dr. Mound is considered a world authority in the field. Having received his PhD from the University of London, he has been studying the biology and systematics of the order Thysanoptera for more than six decades. His academic recognitions include honorary membership at both the Royal and the Australian Entomological societies.
To date, Dr. Laurence Mound is the most prolific thrips researcher in history and has made monumental contributions to the field as the author of 500 publications, including landmark papers that have since shaped our understanding of the taxonomy and evolution of thrips. He has also published a number of books on thrip identification and control.
Having worked with admirable devotion and persistence to advance the knowledge of thrips on a global scale, Dr. Mound has described over 700 species and 100 genera. His studies have helped with species identifications in important pest groups, which in turn has had a pivotal role in the management of pests and the prevention of the establishment of new pest species.
One of the first-ever entomologists to join the ZooKeys editorial team, Mound has been the journal’s go-to editor for the order Thysanoptera for more than a decade. He oversaw the publication of 18 research papers at ZooKeys. He has also authored 11 articles in the journal, including especially valuable identification keys of different taxa from across the globe. He has also been one of the journal’s active reviewers.
“As a founder of ZooKeys, I’d like to specially congratulate Laurence on his 90th anniversary and personally thank him for his admirable involvement in our beloved journal. I cannot stress it enough how central dedicated and passionate scientists like him are to have a journal establish itself as a top-quality community-led resource of knowledge. As a fellow entomologist, I’d like to wish him health and good fortune for many years to come; and may the devotion and fascination you have invested in the field extend to each and every aspect of your life!”
says Prof. Dr. Lyubomir Penev, founder/CEO of Pensoft and founding editor of ZooKeys.
“As Editor-in-Chief of ZooKeys, I wish you a ‘Happy 90th birthday!’ and thank you for your dedication and support of the journal since its very early days,”
“It was Laurence Mound who suggested my name to replace him as subject editor for Thysanoptera at ZooKeys five years ago. Since then, Laurence has actively continued to be a major contributor of both papers and reviews to the journal. It is an honour to share his friendship and to be able to continually receive his support, encouragement and guidance over the years. I would like to express my gratitude and wish an excellent birthday to this researcher who inspires all of us who study Thysanoptera and entomology in general,”
“We are truly honoured to have been working with Laurence all these years! His passion and dedication have left a permanent mark on the field of entomology. We toast to the future success and happiness of a dear friend, editor, and author. May his work continue to inspire many more generations of entomologists and conservationists,”
Its name pays homage to the dark wizard Lord Voldemort, the fearsome antagonist of the Harry Potter series, drawing parallels with the ant’s ghostly appearance.
In the sun-scorched Pilbara region of north-western Australia, scientists have unearthed a mysterious creature from the shadows – a new ant species of the elusive genus Leptanilla.
The new species, Leptanilla voldemort – L. voldemort for short – is a pale ant with a slender build, spindly legs, and long, sharp mandibles. The species name pays homage to the dark wizard Lord Voldemort, the fearsome antagonist of the Harry Potter series, drawing parallels with the ant’s ghostly and slender appearance, and the dark underground environment, from which it has emerged.
Leptanilla voldemort was discovered during an ecological survey to document animals living belowground in the arid Pilbara region of north-western Australia. Only two specimens of the bizarre new ant species were found. Both were collected in a net that was lowered down a 25-metre drill hole and skilfully retrieved while scraping against the hole’s inner surface – an innovative technique for collecting underground organisms known as ‘subterranean scraping’.
A general landscape of the Pilbara region.
Compared to other Leptanilla antspecies, L. voldemort has an extremely slender body as well as long, spindly antennae and legs. Together with its collection from a 25-metre-deep drill hole, this unusual morphologyhas left experts speculating as to whether it truly dwells in soil like other Leptanilla species, or exploits a different subterranean refuge, such as the air-filled voids and cracks that form within layers of rock deeper underground.
Leptanilla voldemort.
The long, sharp jaws of L. voldemort, however, leave little to the imagination.
“Leptanilla voldemort is almost surely a predator, a fearsome hunter in the dark. This is backed up by what we know from the few observations of specialised hunting behaviours in other Leptanilla antspecies, where the tiny workers use their sharp jaws and powerful stings to immobilise soil-dwelling centipedes much larger than them, before carrying their larvae over to feed on the carcass” said Dr Wong, lead author of the study.
A full-face view of Leptanilla voldemort, showing its sharp mandibles.
The exact prey of L. voldemort, however, is not known, though a variety of other subterranean invertebrates, including centipedes, beetles and flies, were collected from the same locality.
There are over 14,000 species of ants worldwide, but only about 60 belong to the enigmatic genus Leptanilla. Unlike most ants, all species of Leptanilla are hypogaeic – their small colonies, usually comprising a queen and only a hundred or so workers, nest and forage exclusively underground. To adapt to life in darkness, Leptanilla workers are blind and colourless. The lilliputian members of the ant world, these ants measure just 1 to 2 millimetres – not much larger than a grain of sand – allowing them to move effortlessly through the soil. Due to their miniscule size, pale colouration, and unique underground dwellings, finding Leptanilla species is a challenge even for expert ant scientists, and much of their biology remains shrouded in mystery.
While Australia boasts some of the highest levels of ant diversity in the world – with estimates ranging from 1,300 to over 5,000 species – L. voldemort is only the second Leptanilla species discovered from the continent. The first, Leptanilla swani, was described nearly a century ago – from a small colony found under a rock in 1931 – and has almost never been seen since.
With its formation beginning approximately 3.6 billion years ago, the Pilbara is one of the oldest land surfaces on Earth. Despite the scorching summers and meagre rainfall, the region harbours globally important radiations of underground invertebrates. Adding to the unique biodiversity of this ancient landscape, the discovery of the enigmatic ant L. voldemort is a testament to the wizardry of nature and the mysteries of life in the depths of darkness.
Research article:
Wong MKL, McRae JM (2024) Leptanilla voldemort sp. nov., a gracile new species of the hypogaeic ant genus Leptanilla (Hymenoptera, Formicidae) from the Pilbara, with a key to Australian Leptanilla. ZooKeys 1197: 171-182. https://doi.org/10.3897/zookeys.1197.114072