During an expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot, a new species of green pit viper Trimeresurus salazar with unique stripes and colouration patterns was discovered near Pakke Tiger Reserve. Scientists named the snake after J.K. Rowling’s fictional character, the Parselmouth wizard and the founder of one of the houses in the magical school Hogwarts, Salazar Slytherin. The discovery is published in the open-access journal Zoosystematics and Evolution.
A new green pit viper species of the genus Trimeresurus was discovered during the herpetological expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot. The scientists named the newly-discovered snake Trimeresurus salazar after a Parselmouth (able to talk with serpents) wizard, co-founder of Hogwarts School of Witchcraft and Wizardry and the founder of the House of Slytherin – Salazar Slytherin, the fictional character of J.K. Rowling’s saga “Harry Potter”. The discovery is published in the open-access journal Zoosystematics and Evolution.
The pit vipers in the genus Trimeresurus are charismatic venomous serpents, distributed widely across east and southeast Asia. In total, the genus includes at least 48 species, with fifteen representatives occurring in India. The species belonging to the genus are morphologically cryptic, which makes it difficult to distinguish them in the field. As a result, their real diversity could be underestimated.
Arunachal Pradesh, where the new species was found, belongs to the Himalayan biodiversity hotspot, which explains the diverse flora and fauna being continuously discovered there.
The new green pit viper demonstrates a unique orange to reddish stripe, present on the head and body in males.
Explaining the name of the new species, the scientists suggest that it is colloquially referred to as the Salazar’s pit viper.
This is already the second species discovered within the course of the expedition to Arunachal Pradesh, which reflects the poor nature of biodiversity documentation across north-eastern India.
“Future dedicated surveys conducted across northeastern India will help document biodiversity, which is under threat from numerous development activities that include road widening, agriculture, and hydro-electric projects”, shares the lead researcher Dr. Zeeshan A. Mirza from National Centre for Biological Science of Bangalore, India.
Mirza ZA, Bhosale HS, Phansalkar PU, Sawant M, Gowande GG, Patel H (2020) A new species of green pit vipers of the genus Trimeresurus Lacépède, 1804 (Reptilia, Serpentes, Viperidae) from western Arunachal Pradesh, India. Zoosystematics and Evolution 96(1): 123-138. https://doi.org/10.3897/zse.96.48431
For 157 years, scientists have wished they could understand the evolutionary relationships of a curious South American ground beetle that was missing a distinctive feature of the huge family of ground beetles (Carabidae). Could it be that this rare species was indeed lacking a characteristic trait known in over 40,000 species worldwide and how could that be? Was that species assigned to the wrong family from the very beginning?
The species, Nototylus fryi,or Fry’s strange-combed beetle, is known so far only from a single, damaged specimen found in 1863 in the Brazilian State of Espíritu Santo, which today is kept in the Natural History Museum of London. So rare and unusual, due to its lack of “antennal cleaners” – specialised “combing” structures located on the forelegs and used by carabids to keep their antennae clean, it also prompted the description of its own genus: Nototylus, now colloquially called strange-combed beetles.
No mention of the structure was made in the original description of the species, so, at one point, scientists even started to wonder whether the beetle they were looking at was in fact a carabid at all.
Because the area where Fry’s strange-combed beetle had been found was once Southern Atlantic Forest, but today is mostly sugar cane fields, cacao plantations, and cattle ranches, scientists have feared that additional specimens of strange-combed beetles might never be collected again and that the group was already extinct. Recently, however, a US team of entomologists have reported the discovery of a second specimen, one also representing a second species of strange-combed beetles new to science.
Following a careful study of this second, poorly preserved specimen, collected in French Guiana in 2014, the team of Dr Terry Erwin (Smithsonian Institution), Dr David Kavanaugh (California Academy of Sciences) and Dr David Maddison (Oregon State University) described the species, Nototylus balli, or Ball’s strange-combed beetle, in a paper that they published in the open-access scholarly journal ZooKeys. The entomologists named the species in honour of their academic leader and renowned carabidologist George E. Ball, after presenting it to him in September 2016 around the time of his 90th birthday.
Despite its poor, yet relatively better condition, the new specimen shows that probable antennal grooming organs are indeed present in strange-combed beetles. However, they looked nothing like those seen in other genera of ground beetles and they are located on a different part of the front legs. Rather than stout and barely movable, the setae (hair-like structures) in the grooming organs of strange-combed beetles are slender, flexible and very differently shaped, which led the researchers to suggest that the structure had a different role in strange-combed beetles.
Judging from the shapes of the setae in the grooming organs, the scientists point out that they are best suited for painting or coating the antennae, rather than scraping or cleaning them. Their hypothesis is that these rare carabids use these grooming structures to cohabitate with ants or termites, where they use them to apply specific substances to their antennae, so that the host colony recognises them as a friendly species, a kind of behaviour already known in some beetles.
However, the mystery around the strange-combed beetle remains, as the scientists found no evidence of special secretory structures in the specimen studied. It turns out that the only way to test their hypothesis, as well as to better understand the evolutionary relationships of these beetles with other carabids is finding and observing additional, preferably live, specimens in their natural habitat. Fortunately, this new discovery shows that the continued search for these beetles may yield good results because strange-combed beetles are not extinct.
***
Original source:
Erwin TL, Kavanaugh DH, Maddison DR (2020) After 157 years, a second specimen and species of the phylogenetically enigmatic and previously monobasic genus Nototylus Gemminger & Harold, 1868 (Coleoptera, Carabidae, Nototylini). ZooKeys 927: 65-74. https://doi.org/10.3897/zookeys.927.49584
A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been described from Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with North Carolina Museum of Natural Sciences‘ Herpetologist Bryan Stuart. This new species is described in ZooKeys.
The species was discovered by Thy Neang during Wild Earth Allies field surveys in June-July 2019 on an isolated mountain named Phnom Chi in the Prey Lang Wildlife Sanctuary when he encountered an unusual species of bent-toed gecko. “It was an extremely unexpected discovery. No one thought there were undescribed species in Prey Lang,” said Neang.
The geckos were found to belong to the C. irregularis species complex that includes at least 19 species distributed in south¬ern and central Vietnam, eastern Cambodia, and southern Laos. This is the first member of the complex to be found west of the Mekong River, demonstrating how biogeographic barriers can lead to speciation. Additionally, the geckos were unique in morphological characters and mitochondrial DNA, and distinct from C. ziegleri to which they are most closely related. Researchers have named the species Cyrtodactylus phnomchiensis after Phnom Chi mountain where it was found.
Bent-toed geckos of the genus Cyrtodactylus are one of the most species-diverse genera of gekkonid lizards, with 292 recognized species. Much of the diversity within Cyrtodactylus has been described only during the past decade and from mainland Southeast Asia, and many of these newly recognized species are thought to have extremely narrow geographic ranges. As such, Cyrtodactylus phnomchiensis is likely endemic to Phnom Chi, which consists of an isolated small mountain of rocky outcrops (peak of 652 m elevation) and a few associated smaller hills, altogether encompassing an area of approximately 4,464 hectares in Kampong Thom and Kratie Provinces within the Prey Lang Wildlife Sanctuary, Cambodia.
The forest habitat in Phnom Chi remains in relatively good condition, but small-scale illegal gold extraction around its base threatens the newly discovered species. A second species of lizard, the scincid Sphenomorphus preylangensis, was also recently described from Phnom Chi by a team of researchers including Neang. These new discoveries underscore the importance of Prey Lang Wildlife Sanctuary for biodiversity conservation and the critical need to strengthen its management.
Further, an assessment of C. phnomchiensis is urgently warranted by the IUCN Red List of Threatened Species (IUCN 2020) because of its small area of occupancy, status as relatively uncommon, and ongoing threats to its habitat.
“This exciting discovery adds another reptile species to science for Cambodia and the world. It also highlights the global importance of Cambodia’s biodiversity and illustrates the need for future exploration and biological research in Prey Lang,”
said Neang.
“When [Neang] first returned from fieldwork and told me that he had found a species in the C. irregularis group so far west of the Mekong River in Cambodia, I did not believe it. His discovery underscores how much unknown biodiversity remains out there in unexpected places. Clearly, Prey Lang Wildlife Sanctuary is important for biodiversity and deserves attention,”
said Neang’s co-author Stuart of the North Carolina Museum of Natural Sciences.
###
Original source:
Neang T, Henson A, Stuart BL (2020) A new species of Cyrtodactylus (Squamata, Gekkonidae) from Cambodia’s Prey Lang Wildlife Sanctuary. ZooKeys 926: 133-158. https://doi.org/10.3897/zookeys.926.48671
Pensoft’s flagship journal ZooKeys invites free-to-publish research on key biological traits of SARS-like viruses potential hosts and vectors; Plazi harvests and brings together all relevant data from legacy literature to a reliable FAIR-data repository
To bridge the huge knowledge gaps in the understanding of how and which animal species successfully transmit life-threatening diseases to humans, thereby paving the way for global health emergencies, scholarly publisher Pensoft and literature digitisation provider Plazi join efforts, expertise and high-tech infrastructure.
By using the advanced text- and data-mining tools and semantic publishing workflows they have developed, the long-standing partners are to rapidly publish easy-to-access and reusable biodiversity research findings and data, related to hosts or vectors of the SARS-CoV-2 or other coronaviruses, in order to provide the stepping stones needed to manage and prevent similar crises in the future.
Already, there’s plenty of evidence pointing to certain animals, including pangolins, bats, snakes and civets, to be the hosts of viruses like SARS-CoV-2 (coronaviruses), hence, potential triggers of global health crises, such as the currently ravaging Coronavirus pandemic. However, scientific research on what biological and behavioural specifics of those species make them particularly successful vectors of zoonotic diseases is surprisingly scarce. Even worse, the little that science ‘knows’ today is often locked behind paywalls and copyright laws, or simply ‘trapped’ in formats inaccessible to text- and data-mining performed by search algorithms.
This is why Pensoft’s flagship zoological open-access, peer-reviewed scientific journal ZooKeysrecently announced its upcoming, special issue, titled “Biology of pangolins and bats”, to invite research papers on relevant biological traits and behavioural features of bats and pangolins, which are or could be making them efficient vectors of zoonotic diseases. Another open-science innovation champion in the Pensoft’s portfolio, Research Ideas and Outcomes (RIO Journal) launched another free-to-publish collection of early and/or brief outcomes of research devoted to SARS-like viruses.
Due to the expedited peer review and publication processes at ZooKeys, the articles will rapidly be made public and accessible to scientists, decision-makers and other experts, who could then build on the findings and eventually come up with effective measures for the prevention and mitigation of future zoonotic epidemics. To further facilitate the availability of such critical research, ZooKeys is waiving the publication charges for accepted papers.
Meanwhile, the literature digitisation provider Plazi is deploying its text- and data-mining expertise and tools, to locate and acquire publications related to hosts of coronaviruses – such as those expected in the upcoming “Biology of pangolins and bats” special issue in ZooKeys – and deposit them in a newly formed Coronavirus-Host Community, a repository hosted on the Zenodo platform. There, all publications will be granted persistent open access and enhanced with taxonomy-specific data derived from their sources. Contributions to Plazi can be made at various levels: from sending suggestions of articles to be added to the Zotero bibliographic public libraries on virus-hosts associations and hosts’ taxonomy, to helping the conversion of those articles into findable, accessible, interoperable and reusable (FAIR) knowledge.
Pensoft’s and Plazi’s collaboration once again aligns with the efforts of the biodiversity community, after the natural science collections consortium DiSSCo (Distributed System of Scientific Collections) and the Consortium of European Taxonomic Facilities (CETAF), recently announced the COVID-19 Task Force with the aim to create a network of taxonomists, collection curators and other experts from around the globe.
As part of their project BioSCAN – devoted to the exploration of the unknown insect diversity in and around the city of Los Angeles – the scientists at the Natural History Museum of Los Angeles County (USA) have already discovered numerous insects that are new to science, but they are still only guessing about the lifestyles of these species.
“Imagine trying to find a given 2 mm long fly in the environment and tracking its behavior: it is the smallest imaginable needle in the largest haystack. So when researchers discover new life histories, it is something worth celebrating,”
explains Dr. Brian Brown, lead author of a recent paper, published in the scholarly open-access Biodiversity Data Journal.
However, Brown and Maria Wong, former BioSCAN technician, while doing field work at the L.A. County Arboretum, were quick to reveal a curious peculiarity about one particular species discovered as part of the project a few years ago. They successfully lured female phorid flies by means of crushing tiny, invasive snails and using them as bait. In comparison, the majority of phorid flies, whose lifestyles have been observed, are parasitoids of social insects like ants.
Within mere seconds after the team crushed tiny invasive snails (Oxychilus draparnaudi), females representing the fly species Megaselia steptoeae arrived at the scene and busied themselves feeding. Brown and Wong then collected some and brought them home alive along with some dead snails. One of the flies even laid eggs. After hatching, the larvae were observed feeding upon the rotting snails and soon they developed to the pupal stage. However, none was reared to adulthood.
Interestingly, the host species – used by the fly to both feed on and lay eggs inside – commonly known as Draparnaud’s glass snail, is a European species that has been introduced into many parts of the world. Meanwhile, the studied fly is native to L.A. So far, it is unknown when and how the mollusc appeared on the menu of the insect.
To make things even more curious, species of other snail genera failed to attract the flies, which hints at a peculiar interaction worth of further study, point out the scientists behind the study, Brown and Jann Vendetti, curator of the NHM Malacology collection. They also hope to lure in other species of flies by crushing other species of snails.
***
In recent years, the BioSCAN project led to other curious discoveries from L.A., also published in Biodiversity Data Journal. In 2016, a whole batch of twelve previously unknown scuttle fly species was described from the heart of the city. A year later, another mysterious phorid fly was caught ovipositing in mushroom caps after Bed & Breakfast owners called in entomologists to report on what they had been observing in their yard.
Original source:
Brown BV, Vendetti JE (2020) Megaselia steptoeae (Diptera: Phoridae): specialists on smashed snails. Biodiversity Data Journal 8: e50943. https://doi.org/10.3897/BDJ.8.e50943
Accepted papers will be published free of charge in recognition of the emergency of the current global situation
Was it the horseshoe bat or could it rather be one of the most traded mammal in the world: the pangolin, at the root of the current devastating pandemic that followed the transmission of the zoonotic SARS-CoV-2 virus to a human host, arguably after infected animal products reached poorly regulated wet markets in Wuhan, China, last year?
To make matters worse, the current situation is no precedent. Looking at the not so distant past, we notice that humanity has been repeatedly falling victim to viral deadly outbreaks, including Zika, Ebola, the Swine flu, the Spanish flu and the Plague, where all are linked to an animal host that at one point, under specific circumstances transferred the virus to people.
Either way, here’s a lesson humanity gets to learn once again: getting too close to wildlife is capable of opening the gates to global disasters with horrific and irreversible damage on human lives, economics and ecosystems. What is left for us to understand is how exactly these transmission pathways look like and what are the factors making certain organisms like the bat and the pangolin particularly efficient vectors of diseases such as COVID-19 (Coronavirus). This crucial knowledge could’ve been easier for us to grasp had we only obtained the needed details about those species on time.
Aligning with the efforts of the biodiversity community, such as the recently announced DiSSCo and CETAF COVID-19 Task Force, who intend to create an efficient network of taxonomists, collection curators and other experts from around the globe and equip them with the tools and large datasets needed to combat the unceasing pandemic, the open-access peer-reviewed scholarly journal ZooKeys invites researchers from across the globe to submit their work on the biology of bats and pangolins to a free-to-publish special issue.
The effort will be coordinated with the literature digitisation provider Plazi, who will extract and liberate data on potential hosts from various journals and publishers. In this way, these otherwise hardly accessible data will be re-used to support researchers in generation of new hypotheses and knowledge on this urgent topic.
By providing further knowledge on these sources and vectors of zoonotic diseases, this collection of publications could contribute with priceless insights to make the world better prepared for epidemics like the Coronavirus and even prevent such from happening in the future.
Furthermore, by means of its technologically advanced infrastructure and services, including expedite peer review and publication processes, in addition to a long list of indexers and databases where publications are registered, ZooKeys will ensure the rapid publication of those crucial findings, and will also take care that once they get online, they will immediately become easy to discover, cite and built on by any researcher, anywhere in the world.
***
The upcoming “Biology of bats and pangolins” special issue is to add up to some excellent examples of previous research on the systematics, biology and distribution of pangolins and bats published in ZooKeys.
In their review paper from 2015, Chinese scientists looked into the issues and prospects around captive breeding of pangolins. A year later, their colleagues at South China Normal University provided further insights into captive breeding, in addition to new data on the reproductive parameters of Chinese pangolins.
Back in 2013, a Micronesian-US research studied the taxonomy, distribution and natural history of flying fox bats inhabiting the Caroline Islands (Micronesia). A 2018 joint study on bat diversity in Sri Lanka focused on chiropteran conservation and management; while a more recent article on the cryptic diversity and range extension of the big-eyed bats in the genus Chiroderma.
Buden D, Helgen K, Wiles G (2013) Taxonomy, distribution, and natural history of flying foxes (Chiroptera, Pteropodidae) in the Mortlock Islands and Chuuk State, Caroline Islands. ZooKeys 345: 97-135. https://doi.org/10.3897/zookeys.345.5840
Edirisinghe G, Surasinghe T, Gabadage D, Botejue M, Perera K, Madawala M, Weerakoon D, Karunarathna S (2018) Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: insights for conservation and management. ZooKeys 784: 139-162. https://doi.org/10.3897/zookeys.784.25562
Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507: 99-114. https://doi.org/10.3897/zookeys.507.6970
Lim BK, Loureiro LO, Garbino GST (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). ZooKeys 918: 41-63. https://doi.org/10.3897/zookeys.918.48786
Zhang F, Wu S, Zou C, Wang Q, Li S, Sun R (2016) A note on captive breeding and reproductive parameters of the Chinese pangolin, Manis pentadactyla Linnaeus, 1758. ZooKeys 618: 129-144. https://doi.org/10.3897/zookeys.618.8886
With 3,000 known species and thousands more left to describe, the wasps of the subfamily Microgastrinae are the single most important group of parasitoids attacking the larvae of butterflies and moths, many of which are economically important pests. Consequently, these wasps have a significant impact on both the world’s economy and biodiversity.
Due to their affinities, these wasps are widely used in biological control programs to manage agricultural and forestry pests around the globe. Further, they have also been prominently featured in many basic and applied scientific research (e.g. chemical ecology, biodiversity studies, conservation biology, genomics, behavioural ecology). However, the information about Microgastrinae species is scattered across hundreds of papers, some of which are difficult to find. To make matters worse, there has never been an authoritative checklist of the group at a planetary scale.
All currently available information about the group is now brought together in a large monograph of 1,089 pages, published in the open-access, peer-reviewed journal ZooKeys. The publication presents a total of 2,999 valid extant species belonging to 82 genera. On top of that, the monograph features fossil species and genera, unavailable names and the institutions that store the primary types of all listed species.
Moreover, the researchers have included extensive colour illustrations of all genera and many species (thousands of images in 250 image plates); brief characterisation and diagnosis of all genera; detailed species distributions (within biogeographical regions and per individual country); synopsis of what is known on host-parasitoid associations; summary of available DNA barcodes; estimations of the group diversity at world and regional levels; as well as notes on individual species upon request.
“Compiling this annotated checklist was, more than anything, a labour of love,”
“For the past six or seven years, we have spent thousands of hours pouring through hundreds of publications, reading original descriptions in old manuscripts, checking type specimens in many collections worldwide, exchanging information with colleagues from all continents. For the past year or so, I basically stopped all other ongoing research projects I was involved with, to focus solely (almost obsessively!) on finishing this manuscript. The work was often tedious and mind-numbing, and many times I had the temptation to delay the completion of the paper for a later time. However, I was lucky that the other co-authors were just as passionate as myself, and we all pushed each other to finish the task when energy ran low.”
“For the past few years, the Microgastrinae wasps have been one of the most intensively studied groups of insects, at least from a taxonomic perspective,” he adds. “Just to give you an idea: between 2014 and 2019 a total of 720 new species of Microgastrinae were described worldwide. That is an average of one new species every three days, sustained over a six-year period and showing no signs of slowing down.”
He also points out that many scientists from many different countries and biogeographical regions have been involved in the description of the new species. The paper recognises them all and their contributions in the Acknowledgements section.
“You could even say that we are witnessing a renaissance in the study of this group of wasps. However, even then, what has been done is only the tip of the iceberg, as we estimated that only 5 to 10% of all Microgastrinae species have been described. That means that we do not have a name, let alone detailed knowledge, for 90-95% of the remaining species out there. Perhaps, there could be up to 50,000 Microgastrinae wasp species worldwide. It is truly humbling when you consider the magnitude of the work that lies ahead.”
Yet, it is not only a matter of counting huge numbers of species. More importantly, many of those species either have already been put in use as biocontrol agents against a wide range of agricultural and forestry pests, or have the potential to be in the future.
For applied scientists, working with hyperdiverse and poorly known groups such as Microgastrinae is even more perplexing. Navigating the maze of old names, synonyms (species described more than one time under different names), homonyms (same names applied to different species), or unavailable names (names that do not conform to the rules of the International Commission of Zoological Nomenclature) is a daunting task. Often, that results in the same species being referred to in several different ways by different authors and academic works. Consequently, many historical references are full of misleading or even plainly wrong information. Meanwhile, it is very difficult to seek out the useful and correct information.
The present annotated checklist could work as a basic reference for anyone working with or interested in the parasitoid wasps of the subfamily Microgastrinae. In the future, the authors hope to produce revised editions, thus continuing to incorporate new information as it is generated, and to also correct possible mistakes.
“We welcome all kinds of criticisms and suggestions. And we hope that biocontrol practitioners will also help us, the taxonomists, to improve future versions of this work. However, for the time being, let me say that it is a tremendous relief to get this first version out!”
concludes Dr. Fernandez-Triana.
***
Original source:
Fernandez-Triana J, Shaw MR, Boudreault C, Beaudin M, Broad GR (2020) Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae). ZooKeys 920: 1-1089. https://doi.org/10.3897/zookeys.920.39128.
The False Coral Snake (Oxyrhopus rhombifer) may be capable of recognising various threat levels and demonstrates ten different defensive behaviours, seven of which are registered for the first time for the species. Scientists from the Federal University of Viçosa (Brazil) published their laboratory observation results based on a juvenile specimen in the open-access journal Neotropical Biology and Conservation.
Evolution shaped anti-predator mechanisms in preys, which can be displayed either with avoidance or defensive behaviours. The current knowledge about such mechanisms are still scarce for many snake species, but it is constantly increasing over the last years. These data are helpful for better understanding of the species ecology, biology and evolution.
The False Coral Snake (O. rhombifer) is a terrestrial snake species with a colouration like the true coral snake . The species has a wide geographic distribution, occurring in Argentina, Paraguay, Uruguay, Bolivia and all Brazilian biomes. Among its previously known anti-predator mechanisms, this species has already shown cloacal discharge, body flattening, struggling, erratic movements and hiding the head.
However, these behaviors were only a small part of what this species is capable of doing to defend itself! In November 2017, a juvenile male captured in the Atlantic Forest of southeastern Brazil was observed under laboratory settings, where the scientists would simulate a predation attempt with an increasing threat level.
We released the snake on to the laboratory bench and let it notice our presence. The animal remained motionless at first, then performed a pronounced dorsoventral flattening of the anterior part of the body, raised its tail, adopted an S-shaped posture, raised the first third of the body and performed brief body vibrations. Then we approached the snake, which remained with the same posture and body vibrations. When we touched the animal (not handling), it remained with the S-shaped posture, keeping the first third of the body elevated and the dorsoventral flattening (however, less accentuated) and started to display erratic movements, false strikes and locomotor escape. When handled, the snake only struggled,
shares the lead scientist Mr. Clodoaldo Lopes de Assis.
Amongst ten recorded behaviour types only three were among those already registered for this species. Since defensive responses in snakes decrease as body size increases, juveniles exhibit a broader set of defensive behaviour than adults. Because of that, some types of behaviour described in this study might be explained either by physical constraints or stage of development of the individual.
Some types of behaviour resemble the ones of true coral snakes of the genus Micrurus, a group of extremely venomous snakes. Thus, this similarity may be linked with the mimicry hypothesis between these two groups, where harmless false coral snakes take advantage of their similar appearance to the true coral snakes to defend themselves.
Another type of anti-predation mechanism shown — body vibrations — is yet an unknown behaviour for Brazilian snakes and has been recorded for the first time. This type of behaviour is difficult to interpret, but could represent a defensive signal against non-visually orientated predators.
Finally, defensive strategies of the specimen differed according to the threat level imposed: starting from discouraging behaviour up to false bites, erratic movements and locomotor escape.
O. rhombifer may be capable of recognising different threat levels imposed by predators and adjusting its defensive behaviour accordingly,
highlights Mr. Clodoaldo Lopes de Assis.
Through such simple laboratory observations we can get a sense of how Brazilian snakes are yet poorly known regarding their natural history, where even common species like the false coral snake O. rhombifer can surprise us!
Mr. Clodoaldo Lopes de Assis adds in conclusion.
***
Original source: Lopes de Assis C, José Magalhães Guedes J, Miriam Gomes de Jesus L, Neves Feio R (2020) New defensive behaviour of the false coral snake Oxyrhopus rhombifer Duméril, Bibron & Duméril, 1854 (Serpentes, Dipsadidae) in south-eastern Brazil. Neotropical Biology and Conservation 15(1): 71-76. https://doi.org/10.3897/neotropical.15.e48564
In what has also already become a tradition we are particularly proud of, it’s not one, but several species described as new to science in Pensoft journals that make it to the renowned list! Even if it’s a slight step back from last year’s five entries, this year, we see a total of three species making it to the list: the Vibranium Fairy Wrasse (Cirrhilabrus wakanda) and the Green Rat Clingfish (Barryichthys algicola), both published in ZooKeys, and Thiel’s Boring Amphipod (Bircenna thieli) first known from the pages of Evolutionary Systematics.
Struggling to put a face to the name? Let us bring the stories behind these fantastic discoveries for you:
The real-life fairy wrasse, whose scales shine bright like sci-fi vibranium
Even if the “twilight zone” – the ocean depths from 60 to 150 meters underneath the water surface, are long known to be teeming with all sorts of fascinating reef-dwelling lifeforms that still await discovery, California Academy of Sciences’ (CAS) initiative Hope for Reefs and partners are already concerned with the protection of these fragile habitats. One of the ways they do this is by deploying the taxonomic approach: recording and defining every creature the current environmental crisis could be putting in danger.
One of the latest discoveries made by the CAS team and Yi-Kai Tea, lead author and PhD student at the University of Sydney, is a stunning wrasse species with colours so mesmerising and vibrant that immediately triggered the creativity of the scientists. Discovered amongst the dusky coral reefs of eastern Zanzibar, off the coast of Tanzania, the species received the scientific name Cirrhilabrus wakanda in a nod to the Marvel Entertainment comics and movie Black Panther, where Wakanda is a mythical nation.
The fish also goes under its common name: Vibranium Fairy Wrasse, because of its hypnotising scales reminiscent of the fictional metal. In the franchise, the vibranium is a rare, robust and versatile ore capable of manipulating energy. In its turn, the scales of the Vibranium Fairy Wrasse have a pigment so strong, their shades survive even when preserved.
“When we thought about the secretive and isolated nature of these unexplored African reefs, we knew we had to name this new species after Wakanda,”
Conway KW, Moore GI, Summers AP (2019) A new genus and two new species of miniature clingfishes from temperate southern Australia (Teleostei, Gobiesocidae). ZooKeys 864: 35-65. https://doi.org/10.3897/zookeys.864.34521
The clingy, yet long unknown green fish
You might think that a common name for a genus of tiny, less than 21 mm long marine inhabitants, such as ‘Rat Clingfish’ is way too unusual already, but it’s getting even more curious when you find out about those species’ mind-boggling lifestyle.
These two miniature clingfishes were first spotted around microalgae in Australia back in the 1980s and since then they would puzzle scientists so much they would simply refer to them as “Genus B”. However, this was about to change, when in 2019, the US-Australian research team of Drs Kevin W. Conway, Glenn I. Moore and Adam P. Summers collected and studied enough specimens found in dense stands of macroalgae in intertidal and shallow subtidal areas along the coast of southern Australia. There, the two clingfishes use their well-developed adhesive discs located on their tummies to attach to the microalgae. Because of their miniature size, they have evolved multiple reduced and novel distinctive features.
As a result of their study, we now have the genus Barryichthys, whose common name is Rat Clingfish, and two new to science species assigned to it: the Brown Rat Clingfish (Barryichthys hutchinsi) and the Green Rat Clingfish (Barryichthys algicola), where the latter was found to be particularly intriguing thanks to its peculiar green colouration and a species name translated to “one who inhabits the algae”.
Conway KW, Moore GI, Summers AP (2019) A new genus and two new species of miniature clingfishes from temperate southern Australia (Teleostei, Gobiesocidae). ZooKeys 864: 35-65. https://doi.org/10.3897/zookeys.864.34521
The boring vegetarian amphipod
Another impressive creature with a taste for algae described in 2019 from Australia is the Thiel’s Boring Amphipod, which is indeed boring. The tiny crustacean, which can be found in colonies of hundreds in Tasmania, eats its way through its favourite bull kelp leaving behind tunnels.
Another peculiarity about the species is its head, which when seen from the front resembles that of an ant!
With its species name: Bircenna thieli, the scientists behind the study – Drs Elizabeth Hughes (Natural History Museum of London, UK) and Anne-Nina Lörz (University of Hamburg, Germany) pay tribute to respected crustacean expert Prof. Dr. Martin Thiel, who had originally collected some of the studied specimens.
Between now and 31 August 2020, the article processing fee (normally €450) will be waived for the first 20 papers, provided that the publications are accepted and meet the following criteria that the data paper describes a dataset:
The manuscript must be prepared in English and is submitted in accordance with BDJ’s instructions to authors by 31 August 2020. Late submissions will not be eligible for APC waivers.
Sponsorship is limited to the first 20 accepted submissions meeting these criteria on a first-come, first-served basis. The call for submissions can therefore close prior to the stated deadline of 31 August. Authors may contribute to more than one manuscript, but artificial division of the logically uniform data and data stories, or “salami publishing”, is not allowed.
BDJ will publish a special issue including the selected papers by the end of 2020. The journal is indexed by Web of Science (Impact Factor 1.029), Scopus (CiteScore: 1.24) and listed in РИНЦ / eLibrary.ru
For non-native speakers, please ensure that your English is checked either by native speakers or by professional English-language editors prior to submission. You may credit these individuals as a “Contributor” through the AWT interface. Contributors are not listed as co-authors but can help you improve your manuscripts.
In addition to the BDJ instruction to authors, it is required that datasets referenced from the data paper a) cite the dataset’s DOI and b) appear in the paper’s list of references.
Questions may be directed either to Dmitry Schigel, GBIF scientific officer, or Yasen Mutafchiev, managing editor of Biodiversity Data Journal.
Definition of terms
Datasets with more than 5,000 records that are new to GBIF.org
Datasets should contain at a minimum 5,000 new records that are new to GBIF.org. While the focus is on additional records for the region, records already published in GBIF may meet the criteria of ‘new’ if they are substantially improved, particularly through the addition of georeferenced locations.
Justification for publishing datasets with fewer records (e.g. sampling-event datasets, sequence-based data, checklists with endemics etc.) will be considered on a case-by-case basis.
Datasets with high-quality data and metadata
Authors should start by publishing a dataset comprised of data and metadata that meets GBIF’s stated data quality requirement. This effort will involve work on an installation of the GBIF Integrated Publishing Toolkit.
Only when the dataset is prepared should authors then turn to working on the manuscript text. The extended metadata you enter in the IPT while describing your dataset can be converted into manuscript with a single-click of a button in the ARPHA Writing Tool (see also Creation and Publication of Data Papers from Ecological Metadata Language (EML) Metadata. Authors can then complete, edit and submit manuscripts to BDJ for review.
Datasets with geographic coverage in European Russia west of the Ural mountains
In correspondence with the funding priorities of this programme, at least 80% of the records in a dataset should have coordinates that fall within the priority area of European Russia west of the Ural mountains. However, authors of the paper may be affiliated with institutions anywhere in the world.
#####
Data audit at Pensoft’s biodiversity journals
Data papers submitted to Biodiversity Data Journal, as well as all relevant biodiversity-themed journals in Pensoft’s portfolio, undergo a mandatory data auditing workflow before being passed down to a subject editor.
Check out the case study below to see how the data audit workflow works in practice.