Discovery of the first moth species to mine the leaves of the highly poisonous Alpine rose
Rust-red alpine rose, one of the most popular alpine plants. Photo by Ingrid Huemer
An Austrian-Swiss research team was able to find a previously unknown glacial relic in the Alps, the Alpine rose leaf-miner moth. It is the first known species to have its caterpillars specializing on the rust-red alpine rose, a very poisonous, widely distributed plant that most animals, including moths and butterflies, strictly avoid. The extraordinary record was just published in the peer-reviewed scientific journal Alpine Entomology.
Poisonous host plant
The rust-red alpine rose (Rhododendron ferrugineum) is among the best-known and most attractive plants due to its flowering splendor – at least for humans. It is, in fact, a highly poisonous plant, strictly avoided by grazing animals. For insects, the alpine rose is attractive at most as a nectar plant; insect larvae, on the other hand, develop on it only in exceptional cases. This also applies to Alpine butterflies and moths, which leave Alpine roses largely untouched despite their wide distribution. Therefore, the discovery of a highly specialized species in the Alps came as a complete surprise.
Chance find
Alpine rose leaf-miner moth adults resting on leaves of the host-plant in Ardez, Graubünden, Switzerland. Photos by Jürg Schmid
Since alpine roses are unattractive to caterpillars and no insect the entire Alpine region was previously known to specialize on them, butterfly and moth experts had considered them rather uninteresting and ignored them in their research. The discovery of the alpine rose leaf-miner wasn’t the result of a targeted search: it was a pure stroke of luck.
During a cloudy spell in July this year, researchers surveying the butterflies in Ardez in the Engadine valley, Switzerland, happened to take a break exactly at an infested alpine rose bush.
“The accidental sighting of the first caterpillar in an alpine rose leaf was an absolute adrenaline rush, it was immediately clear that this must be an extraordinary species,”
Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums
Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums, and Swiss butterfly and moth expert Jürg Schmid came back in late July and early August to look for caterpillars and pupae and find out more about this curious insect. The extended search yielded evidence of a stable population of a species that was initially a complete enigma.
Life in the leaf
Leaf-mines of the alpine rose leaf-miner moth on Rhododendron ferrugineum in Ardez, Graubünden, Switzerland. Photos by Peter Huemer
The alpine rose leaf-miner moth drills through the upper leaf skin and into the leaf interior immediately after the caterpillar hatches. The caterpillar then spends its entire life until pupation between the intact leaf skins, eating the leaf from the inside. Thanks to this behavior, the caterpillar is just as well protected from bad weather as from many predators such as birds, spiders, or some carnivore insects. The feeding trail, called a leaf mine, begins with a long corridor and ends in a large square-like mine section. The feces are deposited inside this mine. When the time comes for pupation, the caterpillar leaves the infested leaf and makes a typical web on the underside or a nearby leaf. With the help of several fine silk threads, it produces an elaborate “hammock”, in which the pupation finally takes place. In the laboratory, after about 10 days, the successful breeding to a moth succeeded, with a striking result.
Enigmatic glacial relic
Final instar larva of the alpine rose leaf-miner moth on Rhododendron ferrugineum in Ardez, Graubünden, Switzerland. Photo by Jürg Schmid
Huemer and Schmid were surprised to find out that the moths belonged to a species that was widespread in northern Europe, northern Asia and North America – the swamp porst leaf-miner butterfly Lyonetia ledi. By looking at its morphological features, such as wing color and pattern, and comparing its DNA barcodes to those of northern European specimens, they were able to confirm its identity.
Habitat of the alpine rose leaf-miner moth in Engadine/Switzerland with Rhododendron ferrugineum. Photo by Jürg Schmid
The Engadine population, however, is located more than 400 km away from the nearest other known populations, which are on the border of Austria and the Czech Republic. Furthermore, the species lives in northern Europe exclusively on swamp porst and Gagel bush – two shrubs that are typical for raised bogs and absent from the Alps. However, the researchers suggest that in earlier cold phases – some 22,000 years ago – the swamp porst and the alpine rose did share a habitat in perialpine lowland habitats north of the Alps. It is very likely that after the last cold period and the melting of the glaciers, some populations of the species shifted their host preference from the swamp porst to the alpine rose. The separation of the distribution areas of the two plants caused by subsequent warm phases inevitably led to the separation of the moth populations.
Extinction risk
Characteristic cocoon with final instar larva and pupa of the alpine rose leaf-miner moth on Rhododendron ferrugineum in Ardez, Graubünden, Switzerland. Photos by Jürg Schmid
The Alpine Rose Leaf-miner Moth is so far only known from the Lower Engadine. It lives in a steep, north-exposed, spruce-larch-pine forest at about 1,800 m above sea level. The high snow coverage in winter and the largely shady conditions in summer mean that alpine roses don’t get to bloom there. The scientists suspect that the moth species can still be discovered in places with similar conditions in the northern Alps, such as in neighboring Tyrol and Vorarlberg. Since the moth is likely nocturnal and flies late in the year, probably hibernating in the adult stage, the search for the caterpillars and pupae is more promising. However, the special microclimate of the Swiss location does not suggest that this species, which has so far been overlooked despite 250 years of research, is widespread. On the contrary, there are legitimate concerns that it could be one of the first victims of climate change.
Research article:
Huemer P, Schmid J (2021) Relict populations of Lyonetia ledi Wocke, 1859 (Lepidoptera, Lyonetiidae) from the Alps indicate postglacial host-plant shift to the famous Alpenrose (Rhododendron ferrugineum L.). Alpine Entomology 5: 101-106. https://doi.org/10.3897/alpento.5.76930
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper from Tibet, and the Glacier pit viper found west of the Nujiang River and Heishui, Sichuan.
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor Universitypublished the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.
Glacier pit viper (Gloydius swild)
The Nujiang pit viper has a greyish brown back with irregular black ring-shaped crossbands, wide, greyish-brown stripes behind the eyes, and relativity short fangs, while the Glacier pit viper is blueish-grey, with zigzag stripes on its back, and has relatively narrow stripes behind its eyes.
Nujiang pit viper (Gloydius lipipengi)
Interestingly, the Glacier pit viper was found under the Dagu Holy-glacier National Park: the glacier lake lies 2000 meters higher than the habitat of the snakes, at more than 4,880 m above sea level. This discovery suggests that the glaciers might be a key factor to the isolation and speciation of alpine pit vipers in southwest China.
The glacier lake on top of the mountain near the type locality of Glacier pit viper.
The stories behind the snakes’ scientific names are interesting too: with the new species from Tibet, Gloydius lipipengi, the name is dedicated to my Master’s supervisor, Professor Pi-Peng Li from the Institute of Herpetology at Shenyang Normal University, just in time for Li’s sixtieth birthday. Prof. Li has devoted himself to the study of the herpetological diversity of the Qinghai-Tibet Plateau, and it was under his guidance that I became an Asian pit viper enthusiast and professional herpetological researcher.
Gloydius swild, the new species from Heishui, Sichuan, is in turn named after the SWILD Group, which studies the fauna and biodiversity of southewst China. They discovered and collected the snake during an expedition to the Dagu Holy-glacier.
A misty morning near the habitat of Glacier pit viper.
We are equally impressed by the sceneries we encountered during our field work: throughout our journey, we got to look at sacred, crystal-like glacier lakes embraced by the mountains, morning mist falling over the village, and colorful broadleaf-conifer forests. During our expedition, we met a lot of hospitable Tibetan inhabitants and enjoyed their kindness and treats, which made the expedition all the more unforgettable.
Research article:
Shi J-S, Liu J-C, Giri R, Owens JB, Santra V, Kuttalam S, Selvan M, Guo K-J, Malhotra A (2021) Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87-108. https://doi.org/10.3897/zookeys.1061.70420
A new species of endemic, troglobiont centipede was discovered by an international team of scientists in the Romanian cave Movile: a unique underground ecosystem, isolated several millions years ago during the Neogene, whose animal life only exists because of the chemosynthetic bacteria. As the largest Movile’s inhabitant, the new species can easily be crowned as the ‘king’ of this ‘hellish’ ecosystem. Aptly named Cryptops speleorex, the cave-dweller is described in the open-access, peer-reviewed journal ZooKeys.
A photo of the newly discovered species (Cryptops speleorex), the largest inhabitant of the Movile cave (Romania) known to date Photo by Mihai Baciu
Deemed to never see the light of the day, a new species of endemic, troglobiont centipede was discovered by an international team of scientists in the Romanian cave Movile: a unique underground ecosystem, where the oxygen in the air might be half of the amount of what we’re used to, yet the sulphurous abounds; and where the animal life only exists because of chemosynthetic bacteria feeding on carbon dioxide and methane.
This hellish ecosystem–where breathing alone could be lethal for most of us–seems to have finally crowned its king. At a size of between 46 and 52 mm in length, the centipede Cryptops speleorex is the largest of the cave’s inhabitants known to date. The new species is described in the open-access, peer-reviewed journal ZooKeys.
Already isolated from the outside world several millions years ago during the Neogene, the Movile cave has been drawing the attention of scientists ever since its unexpected discovery in 1986 by Romanian workers, searching for locations suitable for building a power plant in the southeastern parts of the country.
Surprisingly enough, despite its harsh living conditions, the Movile ecosystem was soon found to harbor a diverse and unique fauna, characterised by exceptional species endemism and specific trophic links. So far, the cave has been known to give home to the troglobiont water scorpion, liocranid and nesticid spiders, cave leeches and certainly many more yet to be discovered.
In fact, it was long thought that this unique underground ecosystem was also inhabited by surface-dwelling species widespread in Europe. Convinced that this scenario is highly unlikely, scientists Dr Varpu Vahtera (University of Turku, Finland), Prof Pavel Stoev (National Museum of Natural History, Bulgaria) and Dr Nesrine Akkari (Museum of Natural History Vienna, Austria) decided to examine a curious centipede, collected by speleologists Serban Sarbu and Alexandra Maria Hillebrand, during their recent expedition to Movile.
“Our results confirmed our doubts and revealed that the Movile centipede is morphologically and genetically different, suggesting that it has been evolving from its closest surface-dwelling relative over the course of millions of years into an entirely new taxon that is better adapted to life in the never-ending darkness,” explain the researchers.
“The centipede we described is a venomous predator, by far the largest of the previously described animals from this cave. Thinking of its top rank in this subterranean system, we decided to name the species Cryptops speleorex, which can be translated to the “King of the cave”, they add.
The scientists exploring the Movile cave (Romania) Photo by Mihai Baciu
###
Original Source:
Vahtera V, Stoev P, Akkari N (2020) Five million years in the darkness: A new troglomorphic species of Cryptops Leach, 1814 (Chilopoda, Scolopendromorpha) from Movile Cave, Romania. ZooKeys 1004: 1-26. https://doi.org/10.3897/zookeys.1004.58537
With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!
With the 1,000thZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!
In fact, the cause for celebration is two-fold: this year, it’s also the 10th anniversary of ZooKeys’ very special 50th issue, which marked a new era for biodiversity data publishing by introducing several innovative workflows and tools. This is when ZooKeys became an example to follow globally: a title the journal still takes pride to be holding to this day.
Articles published in ZooKeys since the journal’s launch in 2008 (data from 3/12/2020).
Today, we shall reminisce about everything along the way: from that sunny Californian morning at the Entomological Society of America meeting in 2007, where the idea about a new-age taxonomic journal in zoology sprang up in a breakfast chat between renowned entomologists and future founders of ZooKeys: Prof Lyubomir Penev and Dr Terry Erwin, to this very moment, where we’re counting over 5,500 published articles, authored by more than 8,000 researchers from 144 countries and comprising ~150,000 pages. Thus, we saw the description of one supertribe, seven tribes, five subtribes, 27 families, over 800 genera and more than 12,000 species previously unknown to science. In this journey, ZooKeys climbed up the ladder of academic rigour and trustability to become today’s most prolific open-access journal of zoology.
Even though today is the time to feel exalted and look back on our achievements and conquered milestones with ear-to-ear smiles, it is with heavy hearts that we’ll be raising our glasses tonight, as we won’t be joined by our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, whom we lost on 11th May 2020. While his place in our hearts and ZooKeys’ Editorial board will never be filled, we accept our duty to help for his legacy to persist for the future generations of scientists by taking a vow to never lower our standards or cease to improve our services and care for our readers, authors, reviewers and editors alike.
In honour of Terry, who will be remembered for his splendid personality and zealous enthusiasm for carabid beetles and the world’s immense biodiversity, we’ve opened up a special memorial volume to be published on 11th May 2021.
In fact, we have thousands of people to thank for the place ZooKeys is at right now: these are our authors, who have trusted us with their research work time and time again; our reviewers and editors, who have taken their invaluable time to promptly process submitted manuscripts; and, of course, our readers, who are using ZooKeys content to expand the world’s knowledge, either by learning and building on the findings in their own research, or by spreading the knowledge to those who will.
With a thought for our authors & readers
We’ve been striving to implement the latest and most convenient scholarly publishing technologies and innovations, and also develop some of our own to make sure that ZooKeys users enjoy their experience with our flagship journal.
In hindsight, ZooKeys was the first journal to pioneer a lot of scholarly publishing technologies, which back in the time were quite revolutionary. Notable examples from 2008-2016 include:
Semantic tagging and enhancements of taxonomic articles, in order to provide extensive background information about each taxon mentioned in a paper at a click.
Automated export of species descriptions and other taxon treatments to data aggregators (e.g. EOL, Plazi, Species ID) on the day of publication;
Software tool to automate the mandatory registration of all new taxa in ZooBank.
Yet, this was only the beginning. Fast forward to December 2020, we’re working even harder to build up on our achievements and evolve, so that we stay on top of our game and the scholarly publishing scene. Here are the key innovations we recently implemented in ZooKeys:
Routine data auditing for each submitted data paper, in order to ensure that datasets described in ZooKeys are using data that are FAIR: Findable, Accessible, Interoperable and Reusable;
A standard appendix template for primary biodiversity data to provide direct harvesting and conversion to interlinked FAIR data, thus enabling a convenient link between various data items concerning, for example, a single species, regardless of those items’ locations. The approach was recently piloted in ZooKeys, where a free-to-publish special issue on the biology of bats and pangolins is meant to demonstrate how such linked biodiversity data can help identify important biotic interactions;
The Pensoft Annotator, which matches free text to ontological terms for the use of biodiversity research.
With a thought for our editors
Besides revolutionising research publishing, at Pensoft, we’re also deeply devoted to facilitating our editors in their day-to-day editorial work, as well as their long-term engagement with the journal and its progress.
Recently, we expanded journal performance reporting services, in order to keep our editors on track with the most recent trends in their journal’s performance. Meanwhile, we’ve also taken care after the continuous improvement in those stats by implementing several features meant to facilitate and expedite the handling of manuscripts.
Follow ARPHA’s blog to keep up with the new features available to users of Pensoft’s journals and all journals hosted on ARPHA Platform.
With a thought for the community
Naturally, research outputs are only as valuable to publish as they are valuable to the community: within and beyond academia. Ultimately, their merit is best measured by citations and readership. This is why, we shall now have a look back at the most impactful papers published in ZooKeys to date.
Author’s delight
Thanks to the indexation of ZooKeys in the research citation database of Dimensions, following the collaboration between ARPHA and Digital Science, which started in 2018, we’re now able to explore the all-time most cited publications in our flagship journal. Detailed information and links to the papers where each of those studies has been cited is available on the webpage of the article.
Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool (DOI: 10.3897/zookeys.150.2109)
Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication (DOI: 10.3897/zookeys.219.3944)
Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation (DOI: 10.3897/zookeys.100.1523)
Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions (DOI: 10.3897/zookeys.100.1533)
Reader’s delight
Thanks to ARPHA Platform’s all-roundedness and transparency, we get to explore the most read papers ever published in ZooKeys straight from the Articles section on the journal’s website.
Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito (DOI: 10.3897/zookeys.324.5827)
In 2013, ZooKeys had the honour to announce the first carnivore found in the Western Hemisphere in over three decades. Further, that wasn’t ANY carnivore, but the olinguito, which National Geographic rightfully called a “fuzzy fog-dweller with a face like a teddy bear”.
An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae) (DOI: 10.3897/zookeys.215.3547)
A year prior to the description of the olinguito, a brand new family of “cave robbing” spiders emerged from the pages of ZooKeys, after US scientists found a previously unknown to science spider with “unique, toothed claws at the end of each leg” in Oregon.
A huge, first-of-its-kind catalogue containing data on all family-group names for all known extant and fossil beetles (order Coleoptera) was published in ZooKeys in an exemplary research collaboration, spanning three continents in 2011.
Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)
In a truly world-wide sensation, a new species of tiny moth inhabiting a narrow stretch of extremely fragile habitat running between the USA and Mexico, was named after then President-elect Donald Trump in a desperate call to protect this and other similarly vulnerable ecosystems in North America. The species currently goes by the name Neopalpa donaldtrumpi.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)
In 2016, US scientists described a total of 14 new to science tarantula species from what many would think to be one the best-researched countries: the United States of America. Curiously enough, one of those tarantula species, found in California near Folsom Prison – a place best known from Cash’s song “Folsom Prison Blues”, was aptly named Aphonopelmajohnnycashi.
Public’s delight
As visionaries, we’ve long realised that scientific impact goes beyond citations and journal subscribers. Communicating science to the community beyond academia is, in fact, one of the strongest components in research dissemination, as it lets the laypeople make sense of the wider world and where exactly they stand in the bigger picture. This is why we’ve been putting that special extra effort to promote research published in our journals–including ZooKeys–using press releases, blog posts and social media content (follow ZooKeys on Twitter and Facebook).
Thanks to our partnership with Altmetric, we’re able to identify the top five most popular papers from ZooKeys for all times. These are the ones that have sparkled the most online discussions via social media, big news headlines, blog posts, Wikipedia and more.
Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)
Not only was the previously undescribed species of moth subject to a serious threat of extinction, having been exclusively known from a fragmented area along the Mexico–United States border, but the insect’s “hairstyle” was pointed out to bear a striking resemblance to the golden locks of the 45th U.S. President Donald Trump.
Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco (DOI: 10.3897/zookeys.928.47517)
Published in ZooKeys earlier this year, this extensive geology and paleontology monograph presents an unprecedented in its volume and scientific value account of a large portion of the most important prehistoric vertebrate fossils ever unearthed from the famous Kem Kem beds in Morocco. “A monograph larger than Paralititan,” as a Reddit user justly pointed out.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)
On top of taking pride in becoming the discoverer of as many as 14 tarantula species living “right under our noses” in the US, Dr Chris Hamilton enjoyed the spotlight of Live television in his appearance on Sky News. So did a lucky specimen of the newly described species: Aphonopelma johnnycashi! Suffice it to say, the tarantula was named after the legendary American singer-songwriter for all the right reasons.
Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group (DOI: 10.3897/zookeys.751.22661)
Apparently, ants that rip their bodies apart in a self-sacrificial attempt to save their colonies from enemies, weren’t something new by the time PhD student Alice Laciny and her team described the new to science species Colobopsis explodens from Brunei. However, the study published in ZooKeys in 2018 was the first to conduct and film experiments on the peculiar exploding behaviour. Although not the very first for science, C. explodens was the first “T-ant-T” species to be described since 1935.
Mapping the expansion of coyotes (Canis latrans) across North and Central America (DOI: 10.3897/zookeys.759.15149)
Today, coyotes live all around North America: from Alaska to Panama, California to Maine. Once upon a time, or rather, between the Holocene and the early 1900s, their range used to be restricted to the arid west of North America. So, how did the coyotes turn up at the doorstep of South America? North Carolina scientists reached to natural history collections to map the historic colonisation of the coyotes all the way to our days.
In our final remarks on this special occasion, it’s the time to say a special Thank you! to our most prolific authors:
Dr Shuqiang Li, expert on spider taxonomy and systematics at the Chinese Academy of Sciences, who’s also a reviewer and a subject editor at ZooKeys (64 publications).
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, who is also amongst the top five most active reviewers and the three most active subject editors in ZooKeys (59 publications).
Dr Li-Zhen Li, coleopterist at Shanghai Normal University (57 publications).
Dr Reginald Webster, coleopterist at Natural Resources Canada and a reviewer at ZooKeys (57 publications).
Dr Sergei Golovatch, myriapodologist at the Russian Academy of Sciences, and a reviewer and a subject editor at ZooKeys (53 publications).
Dr Yuri Marusik, arachnologist at the Russian Academy of Sciences and the University of Free State, Magadan, South Africa. He is also a subject editor at ZooKeys.
Dr Donald Lafontaine, entomologist at the Canadian National Collection of Insects, Arachnids, and Nematodes and Agriculture and Agri-Food Canada. He is also a subject editor at ZooKeys.
Dr Ivan H. Tuf, ecologist at Palacký University (Czech Republic) and a subject editor at ZooKeys.
Dr Viatcheslav Ivanenko, taxonomist at the Lomonosov Moscow State University.
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active subject editors at ZooKeys.
Prof Pavel Stoev, taxonomist, ecologist, and director at the National Natural History Museum (Bulgaria), and managing editor at ZooKeys.
Prof Lyubomir Penev, entomologist, ecologist at the Bulgarian Academy of Sciences and founder of ZooKeys.
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active reviewers at ZooKeys.
Dr Nina Bogutskaya, hydrobiologist and ichthyologist at the Museum of Natural History Vienna, and also a reviewer at ZooKeys.
Dr Jeremy Miller, taxonomist and arachnologist at the Naturalis Biodiversity Center (Netherlands), and also a reviewer at ZooKeys.
Looking forward to sharing with you our next milestones and celebrations!
Meanwhile, make sure to follow ZooKeys on Twitter and Facebook to stay in touch!
“We thought that it was a good idea to remember this extraordinary year through the name of one remarkable species of Darwin wasp found in seven Mexican States (including Tamaulipas, where the UAT campus is located) and also Guatemala,” comment the researchers who discovered the previously unknown species.
Scientists at the Autonomous University of Tamaulipas (UAT) in Mexico recently discovered five new species of parasitoid wasps in Mexico, but the name of one of them sounds a bit weird: covida. Why this name?
In fact, the reason is quite simple. The thing is that the team of Andrey Khalaim (also a researcher at the Zoological Institute of Russian Academy of Sciences in Saint Petersburg, Russia) and Enrique Ruíz Cancino discovered the new to science species during the 2020 global quarantine period, imposed due to the COVID-19 pandemic. Their findings are described in a newly published research article, in the peer-reviewed, open-access scientific journal ZooKeys.
“We thought that it was a good idea to remember this extraordinary year through the name of one remarkable species of Darwin wasp found in seven Mexican States (including Tamaulipas, where the UAT campus is located) and also Guatemala,”
explain the scientists.
The new species, which goes by the official scientific name Stethantyx covida, belongs to the Darwin wasp family Ichneumonidae, one of the most species-rich insect families, which comprises more than 25,000 species worldwide.
“Darwin wasps are abundant and well-known almost everywhere in the world because of their beauty, gracility, and because they are used in biological control of insect pests in orchards and forests. Many Darwin wasp species attack the larvae or pupae of butterflies and moths. Yet, some species are particularly interesting, as their larvae feed on spider eggs and others, even more bizarre, develop on living spiders!”
further explain the authors of the new study.
Stethantyx covida is a small wasp that measures merely 3.5 mm in length. It is predominantly dark in colour, whereas parts of its body and legs are yellow or brown. It is highly polished and shining, and the ovipositor of the female is very long and slender.Along with Stethantyx covida, the authors also described four other Mexican species of Darwin wasps from three different genera (Stethantyx, Meggoleus, Phradis), all belonging to the subfamily Tersilochinae. Some tersilochines are common on flowers in springtime. While the majority of them are parasitoids of larvae of various beetles, some Mexican species attack sawflies, inhabiting the forests.
***
Original source:
Khalaim AI, Ruíz-Cancino E (2020) Contribution to the taxonomy of Mexican Tersilochinae (Hymenoptera, Ichneumonidae), with descriptions of five new species. ZooKeys 974: 1-21. https://doi.org/10.3897/zookeys.974.54536
An isolated population of the rarest Palaearctic butterfly species: the Arctic Apollo (Parnassius arcticus), turned out to be a new to science subspecies with distinct looks as well as DNA. Named Parnassius arcticus arbugaevi, the butterfly is described in a recent paper, published in the peer-reviewed, open-access scientific journal Acta Biologica Sibirica.
“Thanks to the field studies of our colleague and friend Yuri Bakhaev, we obtained unique butterfly specimens from the Momsky Range in North-Eastern Yakutia. This mountain range, which is about 500 km long, has until now been a real ‘blank spot’ in terms of biodiversity research,”
“With the kind permission of Mikhail Ivanov, Director of the Momsky National Park, entomological collections were carried out in various parts of the park. Hard-to-reach areas were visited with the help of inspector Innokenty Fedorov,”
he adds.
Then, amongst the specimens, the scientists spotted butterflies that at first they thought to be the rarest species for the entire Palaearctic: the Arctic Apollo, a species endemic to Russia and North-Eastern Yakutia, which had only been known from the Suntar-Khayata and Verkhoyansk mountains.
Later, however, the team noticed that the curious specimens were larger on average, had more elongated wings compared to the Arctic Apollo, and were also missing the distinct dark spot on the wings. At that moment, they thought they were rather looking at a species currently unknown to science, and belonging to the Parnassius tenedius species group.
Eventually, following in-depth morphological and molecular genetic analyses, the scientists concluded that the population from the Momsky Range was in fact a new subspecies of the Arctic Apollo and can be distinguished by a number of external and DNA differences. They named the new subspecies Parnassius arcticus arbugaevi after German Arbugaev, Director of the ecological-ethnographic complex Chochur Muran, who provided comprehensive assistance to one of the co-authors of the study, Yu.I. Bakhaev, in his research in Yakutia.
The new subspecies inhabits dry scree slopes with poor vegetation at an elevation of 1,400 m. So far, it is only known from the type locality, Momsky Range, North-Eastern Yakutia, where butterflies can be seen from early June to July. The wingspan in males range between 39 and 45 mm.
“Thus, we obtained significant new data on the distribution and taxonomy of one of the rarest butterflies in the North Palaearctic,”
say the researchers in conclusion.
Original source:
Yakovlev RV, Shapoval NA, Bakhaev YI, Kuftina GN, Khramov BA (2020) A new subspecies of Parnassius arcticus (Eisner, 1968) (Lepidoptera, Papilionidae) from the Momsky Range (Yakutia, Russia). Acta Biologica Sibirica 6: 93-105. https://doi.org/10.3897/abs.6.e55925
The newly described Ball’s stange-combed beetle (Nototylus balli) Photo by Terry L. Erwin
For 157 years, scientists have wished they could understand the evolutionary relationships of a curious South American ground beetle that was missing a distinctive feature of the huge family of ground beetles (Carabidae). Could it be that this rare species was indeed lacking a characteristic trait known in over 40,000 species worldwide and how could that be? Was that species assigned to the wrong family from the very beginning?
The species, Nototylus fryi,or Fry’s strange-combed beetle, is known so far only from a single, damaged specimen found in 1863 in the Brazilian State of Espíritu Santo, which today is kept in the Natural History Museum of London. So rare and unusual, due to its lack of “antennal cleaners” – specialised “combing” structures located on the forelegs and used by carabids to keep their antennae clean, it also prompted the description of its own genus: Nototylus, now colloquially called strange-combed beetles.
Left foreleg showing antennal grooming organs in the newly described Ball’s stange-combed beetle (Nototylus balli) Photo by Terry L. Erwin
No mention of the structure was made in the original description of the species, so, at one point, scientists even started to wonder whether the beetle they were looking at was in fact a carabid at all.
Because the area where Fry’s strange-combed beetle had been found was once Southern Atlantic Forest, but today is mostly sugar cane fields, cacao plantations, and cattle ranches, scientists have feared that additional specimens of strange-combed beetles might never be collected again and that the group was already extinct. Recently, however, a US team of entomologists have reported the discovery of a second specimen, one also representing a second species of strange-combed beetles new to science.
Following a careful study of this second, poorly preserved specimen, collected in French Guiana in 2014, the team of Dr Terry Erwin (Smithsonian Institution), Dr David Kavanaugh (California Academy of Sciences) and Dr David Maddison (Oregon State University) described the species, Nototylus balli, or Ball’s strange-combed beetle, in a paper that they published in the open-access scholarly journal ZooKeys. The entomologists named the species in honour of their academic leader and renowned carabidologist George E. Ball, after presenting it to him in September 2016 around the time of his 90th birthday.
Despite its poor, yet relatively better condition, the new specimen shows that probable antennal grooming organs are indeed present in strange-combed beetles. However, they looked nothing like those seen in other genera of ground beetles and they are located on a different part of the front legs. Rather than stout and barely movable, the setae (hair-like structures) in the grooming organs of strange-combed beetles are slender, flexible and very differently shaped, which led the researchers to suggest that the structure had a different role in strange-combed beetles.
Judging from the shapes of the setae in the grooming organs, the scientists point out that they are best suited for painting or coating the antennae, rather than scraping or cleaning them. Their hypothesis is that these rare carabids use these grooming structures to cohabitate with ants or termites, where they use them to apply specific substances to their antennae, so that the host colony recognises them as a friendly species, a kind of behaviour already known in some beetles.
However, the mystery around the strange-combed beetle remains, as the scientists found no evidence of special secretory structures in the specimen studied. It turns out that the only way to test their hypothesis, as well as to better understand the evolutionary relationships of these beetles with other carabids is finding and observing additional, preferably live, specimens in their natural habitat. Fortunately, this new discovery shows that the continued search for these beetles may yield good results because strange-combed beetles are not extinct.
***
Original source:
Erwin TL, Kavanaugh DH, Maddison DR (2020) After 157 years, a second specimen and species of the phylogenetically enigmatic and previously monobasic genus Nototylus Gemminger & Harold, 1868 (Coleoptera, Carabidae, Nototylini). ZooKeys 927: 65-74. https://doi.org/10.3897/zookeys.927.49584
Between now and 31 August 2020, the article processing fee (normally €450) will be waived for the first 20 papers, provided that the publications are accepted and meet the following criteria that the data paper describes a dataset:
The manuscript must be prepared in English and is submitted in accordance with BDJ’s instructions to authors by 31 August 2020. Late submissions will not be eligible for APC waivers.
Sponsorship is limited to the first 20 accepted submissions meeting these criteria on a first-come, first-served basis. The call for submissions can therefore close prior to the stated deadline of 31 August. Authors may contribute to more than one manuscript, but artificial division of the logically uniform data and data stories, or “salami publishing”, is not allowed.
BDJ will publish a special issue including the selected papers by the end of 2020. The journal is indexed by Web of Science (Impact Factor 1.029), Scopus (CiteScore: 1.24) and listed in РИНЦ / eLibrary.ru
For non-native speakers, please ensure that your English is checked either by native speakers or by professional English-language editors prior to submission. You may credit these individuals as a “Contributor” through the AWT interface. Contributors are not listed as co-authors but can help you improve your manuscripts.
In addition to the BDJ instruction to authors, it is required that datasets referenced from the data paper a) cite the dataset’s DOI and b) appear in the paper’s list of references.
Questions may be directed either to Dmitry Schigel, GBIF scientific officer, or Yasen Mutafchiev, managing editor of Biodiversity Data Journal.
Definition of terms
Datasets with more than 5,000 records that are new to GBIF.org
Datasets should contain at a minimum 5,000 new records that are new to GBIF.org. While the focus is on additional records for the region, records already published in GBIF may meet the criteria of ‘new’ if they are substantially improved, particularly through the addition of georeferenced locations.
Justification for publishing datasets with fewer records (e.g. sampling-event datasets, sequence-based data, checklists with endemics etc.) will be considered on a case-by-case basis.
Datasets with high-quality data and metadata
Authors should start by publishing a dataset comprised of data and metadata that meets GBIF’s stated data quality requirement. This effort will involve work on an installation of the GBIF Integrated Publishing Toolkit.
Only when the dataset is prepared should authors then turn to working on the manuscript text. The extended metadata you enter in the IPT while describing your dataset can be converted into manuscript with a single-click of a button in the ARPHA Writing Tool (see also Creation and Publication of Data Papers from Ecological Metadata Language (EML) Metadata. Authors can then complete, edit and submit manuscripts to BDJ for review.
Datasets with geographic coverage in European Russia west of the Ural mountains
In correspondence with the funding priorities of this programme, at least 80% of the records in a dataset should have coordinates that fall within the priority area of European Russia west of the Ural mountains. However, authors of the paper may be affiliated with institutions anywhere in the world.
#####
Data audit at Pensoft’s biodiversity journals
Data papers submitted to Biodiversity Data Journal, as well as all relevant biodiversity-themed journals in Pensoft’s portfolio, undergo a mandatory data auditing workflow before being passed down to a subject editor.
About 120 clusters of 19th-century orchid bee nests were found during restoration work on the altarpiece of Basilica Cathedral in Casco Viejo (Panamá). Having conducted the first pollen analysis for these extremely secretive insects, the researchers identified the presence of 48 plant species, representing 23 families.
Casco Viejo, Panamá in 1875, as seen from the summit of Cerro Ancón. A white tower of the Cathedral where bees were nesting is visible in the distant background in the centre of the peninsula. Photo by Eadweard Muybridge, courtesy of the Smithsonian American Art Museum; gift of Mitchell and Nancy Steir.
Despite being “neotropical-forest-loving creatures,” some orchid bees are known to tolerate habitats disturbed by human activity. However, little did the research team of Paola Galgani-Barraza (Smithsonian Tropical Research Institute) expect to find as many as 120 clusters of nearly two-centuries-old orchid bee nests built on the altarpiece of the Basilica Cathedral in Casco Viejo (Panamá). Their findings are published in the open-access Journal of Hymenoptera Research.
Locations of nest cell aggregations of Eufriesea surinamensis within the Cathedral in Casco Viejo, Panamá Photo by Paola Galgani-Barraza
This happened after restoration work, completed in 2018 in preparation for the consecration of a new altar by Pope Francis, revealed the nests. Interestingly, many cells were covered with gold leaf and other golden material applied during an earlier restoration following an 1870 fire, thus aiding the reliable determination of the age of the clusters. The cells were dated to the years prior to 1871-1876.
The bee species, that had once constructed the nests, was identified as the extremely secretive Eufriesea surinamensis. Females are known to build their nests distant from each other, making them very difficult to locate in the field. As a result, there is not much known about them: neither about the floral resources they collect for food, nor about the materials they use to build their nests, nor about the plants they pollinate.
However, by analysing the preserved pollen for the first time for this species, the researchers successfully detected the presence of 48 plant species, representing 43 genera and 23 families. Hence, they concluded that late-nineteenth century Panama City was surrounded by a patchwork of tropical forests, sufficient to sustain nesting populations of what today is a forest-dwelling species of bee.
Not only did the scientists unveil important knowledge about the biology of orchid bees and the local floral diversity in the 19th century, but they also began to uncover key information about the functions of natural ecosystems and their component species, where bees play a crucial role as primary pollinators. Thus, the researchers hope to reveal how these environments are being modified by collective human behaviour, which is especially crucial with the rapidly changing environment that we witness today.
The orchid bee Eufriesea surinamensis Photo by Paola Galgani-Barraza
Original source:
Galgani-Barraza P, Moreno JE, Lobo S, Tribaldos W, Roubik DW, Wcislo WT (2019) Flower use by late nineteenth-century orchid bees (Eufriesea surinamensis, Hymenoptera, Apidae) nesting in the Catedral Basílica Santa María la Antigua de Panamá. Journal of Hymenoptera Research 74: 65-81. https://doi.org/10.3897/jhr.74.39191
A novel approach relying on a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen was proposed to greatly accelerate species identification and description, especially when it comes to hyperdiverse taxa, such as parasitic wasps.
At today’s rate, it could take another two millennia for science to document all currently existing species of multicellular life
Two hundred and sixty-one years ago, Linnaeus formalized binomial nomenclature and the modern system of naming organisms. Since the time of his first publication, taxonomists have managed to describe 1.8 million of the estimated 8 to 25 million extant species of multicellular life, somewhere between 7% and 22%. At this rate, the task of treating all species would be accomplished sometime before the year 4,000. In an age of alarming environmental crises, where taking measures for the preservation of our planet’s ecosystems through efficient knowledge is becoming increasingly urgent, humanity cannot afford such dawdling.
“Clearly something needs to change to accelerate this rate, and in this publication we propose a novel approach that employs only a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen,”
Description rate of parasitic wasps species (superfamily Ichneumonoidea). Data from Taxapad (Yu et al. 2016).
In standardized practices, it is required that experts conduct plenty of time- and labor-consuming analyses, in order to provide thorough descriptions of both the morphology and genetics of individual species, as well as a long list of characteristic features found to differentiate each from any previously known ones. However, the scientists argue, at this stage, it is impossible to pinpoint distinct morphological characters setting apart all currently known species from the numerous ones not yet encountered. To make matters worse, finding human and financial resources for performing this kind of detailed research is increasingly problematic.
This holds especially true when it comes to hyperdiverse groups, such as ichneumonoid parasitoid wasps: a group of tiny insects believed to comprise up to 1,000,000 species, of which only 44,000 were recognised as valid, according to 2016 data. In their role of parasitoids, these wasps have a key impact on ecosystem stability and diversity. Additionally, many species parasitise the larvae of commercially important pests, so understanding their diversity could help resolve essential issues in agriculture.
Meanwhile, providing a specific species-unique snippet of DNA alongside an image of the specimen used for the description of the species (i.e. holotype) could significantly accelerate the process. By providing a name for a species through a formal description, researchers would allow for their successors to easily build on their discoveries and eventually reach crucial scientific conclusions.
“If this style were to be adopted by a large portion of the taxonomic community, the mission of documenting Earth’s multicellular life could be accomplished in a few generations, provided these organisms are still here,”
say the authors of the study.
To exemplify their revolutionary approach, the scientists use their paper to also describe a total of 18 new species of wasps in two genera (Zelomorpha and Hemichoma) known from Área de Conservación Guanacaste, Costa Rica. Currently, the team works on the treatment of related species, which still comprise only a portion of the hundreds of thousands that remain unnamed.
###
Original source:
Meierotto S, Sharkey MJ, Janzen DH, Hallwachs W, Hebert PDN, Chapman EG, Smith MA (2019) A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Deutsche Entomologische Zeitschrift 66(2): 119-145. https://doi.org/10.3897/dez.66.34683