Last week, on Friday, 6 October 2023, a research article entitled “One new genus and four new species of Liocranidae Simon, 1897 (Arachnida, Araneae) from China and Vietnam” by Chang Chu, Shuqiang Li, Yanbin Yao, Zhiyuan Yao was published. This is the 100th paper published in ZooKeys co-authored by Shuqiang Li, a leading spider specialist from the Chinese Academy of Sciences in Beijing, China. Shuqiang’s first ZooKeys paper was published on December 18, 2012. Until last Friday, Shuqiang has published 51 new genera and 677 new species in 100 ZooKeys papers.
Shuqiang started his scientific career as a spider taxonomist, with his first paper on the Linyphiidae of China published in 1987, followed by a series of revisions of known Chinese and Asia spider species. To date, he has documented more than 2,000 new species.
He is also a proficient professor in the University of Chinese Academy of Sciences and has mentored more than 30 PhD students from China, Vietnam, and Italy, and another three M.Sc. students from Kenya and Malaysia. Most of his former Chinese PhD students have since become full professors. Shuqiang has been the Secretary of the Asian Society of Arachnology since 2012 and President of the Arachnology Society of China since 2018.
Many people see spiders as ugly due to their multiple legs, hairy bodies, and sometimes venomous fangs, but this appearance serves a purpose in their survival and adaptation to their environment. “Spiders are lovely animals”, Shuqiang said to us. He focuses mostly on fine spider structures. For example, he used spider copulatory organs (male palp and female epigyne) to study species taxonomy. “Interspecies mating is not easy due to difference in copulatory organs,” he says. He and his team members are also focusing on the origin of spider organs.
Thanks to recently collected samples, it was described and named after its preferred habitat, the boulders surrounded by the last remaining forests at these sites.
Named after its habitat preference, Paroedura manongavato, from the Malagasy words “manonga” (to climb) and “vato” (rock), is a bouldering expert. Part of its “home range” is also very well-known to rock climbers for its massive granitic domes. “Its description represents another step into the crux (in climbing jargon, the most difficult section of a bouldering problem) of resolving the taxonomy of the recently revised P. bastardi group, where the new species belongs, and reaching a total of 25 described species in this genus, all exclusively living in Madagascar and Comoros,” says C. Piccoli from CIBIO – Research Center in Biodiversity and Genetic Resources, Portugal. She and her team just published a paper describing the new gecko.
Thus far, this species has only been found in Anja Reserve and Tsaranoro, both of which are isolated forest patches in the arid south-central plateau of Madagascar. These sites, at a distance of ca. 25 km, have a peculiar conformation, with huge granitic boulders close to rocky cliffs and surrounded by vegetation. The survival of P. manongavato, defined as microendemic for being restricted to a very narrow distributional range, thus depends on the preservation of these small forest patches. Subsequently, the authors proposed an evaluation of its conservation status as Critically Endangered, a category designated for species threatened of extinction by the International Union for Conservation of Nature.
Its discovery history is long, starting during the Malagasy summer of 2010, when the first evidence of another Paroedura species was found in Anja, together with the recently described P. rennerae in 2021. Distinguishing these two species on the field is a difficult task. Both species have prominent dorsal-enlarged keeled scales and a similar dorsal pattern, although adults of P. manongavato have an overall less spiky appearance, less contrasted dorsal markings, and a smaller body size compared to P. rennerae. The need to collect more samples brought researchers A. Crottini, F. Andreone, and G. M. Rosa to return to Anja in 2014, and collect the future holotype (i.e. the name-bearing and description reference individual) of this new species. Later in 2018, F. Belluardo, J. Lobón-Rovira, and M. Rasoazanany, visited Anja and Tsaranoro again and were able to collect several tissue samples and high-resolution photos of the reptiles living in the area, including the new gecko species. This cumulative data collection was fundamental to advance with its description.
Published in the open access journalZooKeys, this study highlights the importance of conducting herpetological inventories in Madagascar to improve our understanding of species diversity and progress with species conservation assessments. “The description of this species shows the importance of collaborative efforts when documenting biodiversity, especially for those range-restricted and isolated species at greatest risk of disappearing,” points out the leading author of this study C. Piccoli.
Research article:
Piccoli C, Belluardo F, Lobón-Rovira J, Oliveira Alves I, Rasoazanany M, Andreone F, Rosa GM, Crottini A (2023) Another step through the crux: a new microendemic rock-dwelling Paroedura (Squamata, Gekkonidae) from south-central Madagascar. ZooKeys 1181: 125-154. https://doi.org/10.3897/zookeys.1181.108134
After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats.
Porcupines of the genus Coendou are arboreal, herbivorous, nocturnal rodents distributed in tropical and subtropical regions of the Americas. Most of what we currently know on them is restricted to species that occur near urban areas, and we still have a lot to learn about these fascinating animals.
Recently, a new study shed light on a very unknown neotropical porcupine species. Roosmalens’ dwarf porcupine (Coendou roosmalenorum) is the smallest porcupine species we know, with blackish monocolored bristles on the tail which confers a blackish color to it, but apart from its appearance, we didn’t know much about it until recently.
“This species was described in 2001 and our paper is the first scientific report after this date, which means nothing was discovered about Roosmalen’s porcupine in a 22-year period,” says Fernando Heberson Menezes, the lead author of a study that was just published in the open-access journal ZooKeys.
“Before our research, we had only a morphological description of the species, with a little information about its distribution and natural history, and nothing about population ecology or conservation threats.”
Using DNA sequencing and exploring data on its occurrences, Fernando and his team were able to uncover new facts about the enigmatic animal.
Thanks to their study, we now know more about its distribution in the Madeira biogeographical province in the Amazon Forest. “With this information, we raised the hypothesis this species is endemic to Madeira Province, which is important for predicting where we can find this species and the possible threats affecting its population or its distribution,” says Fernando.
At the same time, they found Roosmalens’ dwarf porcupine at new locations in the Amazon rainforest, which suggests that its distribution in southern Amazonia is wider than suspected.
Their phylogenetic analysis – the study of the species’ evolutionary history and relationships with other species – confirmed that the species is a member of the subgenus Caaporamys . This is important, the researchers say, because the classification of the genus Coendou had been “historically chaotic” until the last few years.
The information in this study opens up numerous opportunities for further researching this species. “We can think of ways to answer very basic scientific questions such as ‘how does Roosmalen’s porcupine use space?’ or ‘what does it eat?’, some more advanced questions such as ‘how did it evolve?,’ or applied questions such as ‘what are the major threats for its conservation?,’ or ‘how can we use it as a model to know more about the health of the Amazon forest?’, says Fernando in conclusion.
Original source:
Menezes FH, Semedo TBF, Saldanha J, Garbino GST, Fernandes-Ferreira H, Cordeiro-Estrela P, da Costa IR (2023) Phylogenetic relationships, distribution, and conservation of Roosmalens’ dwarf porcupine, Coendou roosmalenorum Voss & da Silva, 2001 (Rodentia, Erethizontidae). ZooKeys 1179: 139-155. https://doi.org/10.3897/zookeys.1179.108766
The Strange Big-eared Brown Bat, Histiotus alienus, was first described by science in 1916, by the British zoologist Oldfield Thomas. The description of the species was based on a single specimen captured in Joinville, Paraná, in southern Brazil.
For more than 100 years, the species had never been captured, being known only by its holotype—the specimen that bears the name, and represents morphological and molecular traits of a species—deposited in The Natural History Museum in London, United Kingdom. Now, after a century, the species has been rediscovered. Scientists Dr Vinícius C. Cláudio, Msc Brunna Almeida, Dr Roberto L.M. Novaes, and Dr Ricardo Moratelli, Fundação Oswaldo Cruz, Brazil and Dr Liliani M. Tiepolo, and Msc Marcos A. Navarro, Universidade Federal do Paraná, Brazil have published details on the sighting in a paper in the open access journal ZooKeys.
During field expeditions of the research project Promasto (Mammals from Campos Gerais National Park and Palmas Grasslands Wildlife Refuge) in 2018, the researchers captured one specimen of big-eared bat at Palmas Grassland Wildlife Refuge. To catch it, they used mist-nets—equipment employed during the capture of bats and birds—set at the edge of a forest patch. When they compared it to the Tropical Big-eared Brown Bat (Histiotus velatus), commonly captured in the region, they found it was nothing like it.
The unidentified big-eared bat specimen was then collected and deposited at the Museu Nacional in Rio de Janeiro, Brazil, for further studies.
After comparing this puzzling specimen against hundreds of other big-eared brown bats from almost all the species in the genus, the researchers were able to conclusively identify the bat as a Strange Big-eared Brown Bat and confirm its second known record. “Since the description of several the species within the genus is more than one hundred years old and somewhat vague, comparisons and data presented by us will aid the correct identification of big-eared brown bats,” they say.
The Strange Big-eared Brown Bat has oval, enlarged ears that are connected by a very low membrane; general dark brown coloration in both dorsal and ventral fur; and about 100 to 120 mm in total length. This combination of characters most resembles the Southern Big-eared Brown Bat (Histiotus magellanicus), in which the membrane connecting ears is almost absent.
The only known record of the Strange Big-eared Brown Bat until now was from Joinville, Santa Catarina state, southern Brazil, which is about 280 kilometers away from where it was spotted in 2018. So far, the species is known to occur in diverse terrains, from dense rainforests to araucaria and riparian forests and grasslands, at altitudes from sea level to over 1200 m a.s.l.
This increase in the distribution of the species, however, does not represent an improvement on its conservation status: the species is currently classified as Data Deficient by the International Union for the Conservation of Nature. Its habitat, the highly fragmented Atlantic Forest, is currently under pressure from agricultural activity.
But there is still hope: “The new record of H. alienus in Palmas is in a protected area, which indicates that at least one population of the species may be protected,” the researchers write in their study.
Research article:
Cláudio VC, Almeida B, Novaes RLM, Navarro MA, Tiepolo LM, Moratelli R (2023) Rediscovery of Histiotusalienus Thomas, 1916 a century after its description (Chiroptera, Vespertilionidae): distribution extension and redescription. ZooKeys, 1174, 273–287. doi: 10.3897/zookeys.1174.108553
For the Pensoft team, September 2023 was a busy and exciting month filled with conferences. Travelling across Europe, they promoted journals, connected with the scientific community, and rewarded exceptional research with free article publications.
Let’s take a look back at all the events of the past month.
The conference looked at evolutionary adaptations from the perspective of behavioural ecology, reproduction biology, genetics, physiology, as well as nature conservation. It particularly focused on the pressing issues of wildlife research and species conservation in the context of global environmental change. Most of the ≈100 participants were young scientists from more than 30 countries.
The Pensoft team greeted fellow attendees with an exhibition stand and presented the conservation and ecology-focused journals Neobiota, Nature Conservation, One Ecosystem, and Biodiversity Data Journal. Pensoft also advocated for EuropaBon, who are designing an EU-wide framework for monitoring biodiversity and ecosystem services, and REST-COAST, whose mission is to provide the tools to restore environmental degradation of rivers and coasts. Within both European-funded initiatives, Pensoft is a key dissemination partner that contributes expertise in science communication, scholarly publishing, and the development of digital tools and platforms.
Pensoft presented Joao Pedro Meireles from Utrecht University with the Best Poster Award for his research on pair compatibility in okapis, entitling him to a free publication in one of Pensoft’s open-access journals.
“My study looked at pair compatibility in the zoo breeding programme of Okapi. During breeding introductions, sometimes the male becomes aggressive towards the female and we decided to investigate the potential factors. We ran a survey among all zoos that house the species in Europe and we found that differences in husbandry were linked to the aggressiveness performed by the males.”
Joao Pedro Meireles, Utrecht University
GfÖ Annual Meeting 2023
From the 12th to 16th of September, the German Centre for Integrative Biodiversity Research hosted the 52nd Annual Meeting of the Ecological Society of Germany, Austria and Switzerlandin Leipzig, Germany. The meeting welcomed more than 1,100 participants from around the world, including scientists, policymakers, educators, and environmental enthusiasts.
This year’s meeting was held with the theme: “The future of biodiversity – overcoming barriers of taxa, realms and scales.” There was a particular emphasis on future challenges and opportunities facing biodiversity, and how to address and manage these in an interdisciplinary and integrative way.
Conference participants were welcomed at the Pensoft stand, where they could learn more about the projects EuropaBon and SELINA, which deal with biodiversity, ecosystem and natural capital topics.
Also in Leipzig, the European Conference on Ecological Modellingtook place between the 4th and 8th of September. The event focused on the transformation of how societies deal with natural resources in a world where biodiversity and ecosystem services are at high risk.
The ECEM 2023 continued a series of conferences launched by the European chapter of ISEM, the International Society for Ecological Modelling. ISEM promotes the international exchange of ideas, scientific results, and general knowledge in the areas of systems’ analysis and simulations in ecology, and the application of ecological modelling for natural resource management.
The Bundesinstitut für Risikobewertung team presented a poster on the Formal Model format and potential new MiDox formats, unique publication types that can be submitted to Pensoft’s Food and Ecological Modelling Journal.
118th Congress of the Italian Botanical Society
Pensoft was proud to sponsor the 118th Congress of the Italian Botanical Society, which took place in Pisa, Italy from the 13th to 16th of September. Experts in various fields of Botany gathered to share their research on the following topics:
Summer may be well and truly over, but as a new academic year begins, Pensoft looks forward to attending more conferences, rewarding more incredible research, and connecting with more of the scientific community. Thank you to everyone who contributed to or engaged with Pensoft’s open-access journals this year, and here’s to a successful final quarter of 2023.
We look back on this incredible journey with pride and appreciation for the countless researchers, authors, reviewers, and supporters who have helped make this dream a reality.
Today, we are thrilled to share with you the celebration of a remarkable milestone in our journey. In July, we marked our 15th birthday – a decade and a half of fostering the free exchange of ideas, data, and knowledge in the vast realm of zoology.
We look back on this incredible journey with pride and appreciation for the countless researchers, authors, reviewers, and supporters who have helped make this dream a reality. From the very inception, our goal has been to create a platform where zoological discoveries can shine brightly, accessible to all who share a passion for the wonders of the animal kingdom.
ZooKeys was born out of our collective desire to push the boundaries of scientific publishing, to embrace innovation, and to provide a space where the brightest minds in zoology could come together. Over the years, we have not only achieved this but, thanks to our publisher Pensoft, have also become pioneers in implementing cutting-edge technologies to enhance the way knowledge is shared and absorbed.
ZooKeys was the first of Pensoft’s open-access journals, set up to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. Starting as a taxonomic journal, it quickly expanded to other zoology-related sciences, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics etc… The journal has been thriving since its inception and is currently considered as one of the most prolific and liked Open Access journals in zoology.
Erwin T, Stoev P, Penev L (2018) ZooKeys anniversary: 10 years of leadership toward open-access publishing of zoological data and establishment at Pensoft of like-minded sister journals across the biodiversity spectrum. ZooKeys 770: 1-8. https://doi.org/10.3897/zookeys.770.28105
One of our proudest achievements was being the first taxonomic journal to introduce semantic tagging and content enhancements, revolutionizing the way information is presented and accessed. This endeavor, which began with our 50th issue in 2010, marked a turning point in scholarly publishing.
As of today, we’ve published more than 180,000 pages of research in almost 7,000 articles that have amassed more than 3 million views. Here is a Top 5 of our most popular articles ever:
Helgen K, Pinto M, Kays R, Helgen L, Tsuchiya M, Quinn A, Wilson D, Maldonado J (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324: 1-83. https://doi.org/10.3897/zookeys.324.5827, with 80,500 views,
Bousquet Y (2016) Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1-776. https://doi.org/10.3897/zookeys.583.7084 with 69,543 views,
Ledford J, Griswold C, Audisio T (2012) An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae, new family). ZooKeys 215: 77-102. https://doi.org/10.3897/zookeys.215.3547 with 65,446 views,
Ibrahim N, Sereno PC, Varricchio DJ, Martill DM, Dutheil DB, Unwin DM, Baidder L, Larsson HCE, Zouhri S, Kaoukaya A (2020) Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys 928: 1-216. https://doi.org/10.3897/zookeys.928.47517 with 64,456 views,
Bouchard P, Bousquet Y, Davies A, Alonso-Zarazaga M, Lawrence J, Lyal C, Newton A, Reid C, Schmitt M, Slipinski A, Smith A (2011) Family-Group Names In Coleoptera (Insecta). ZooKeys 88: 1-972. https://doi.org/10.3897/zookeys.88.807 with 63,524 views.
Our journey would have been incomplete without you – our avid readers and supporters. Your hunger for knowledge, your curiosity, and your unwavering support have been the wind beneath our wings, motivating us to do better, and reinforcing the importance of what we do. As we celebrate our 15th birthday, we extend our deepest gratitude to each one of you who has been a part of our history.
Looking ahead, the future of ZooKeys looks as bright as ever. We are committed to continuing our legacy of innovation, collaboration, and accessibility. Our goal remains steadfast – to be a beacon of knowledge, a platform that fosters discoveries, and a source of inspiration for the next generation of zoological minds.
As we celebrate our 15th anniversary, we are filled with a sense of awe and wonder at the remarkable achievements we have collectively made. Thank you for being a part of this incredible journey. Here’s to the next 15 years and beyond, as we continue to explore, discover, and celebrate the extraordinary diversity of life on Earth.
The species was previously known on the commercial tarantula market as the “Chilobrachys sp. Electric Blue Tarantula” but no documentation existed describing its distinctive features or natural habitat.
In an exciting discovery, a new species of tarantula with electric blue coloration was found in Thailand.
“In 2022, the bamboo culm tarantula was discovered, marking the first known instance of a tarantula species living inside bamboo stalks. Thanks to this discovery, we were inspired to rejoin the team for a fantastic expedition, during which we encountered a captivating new species of electric blue tarantula” researcher Dr. Narin Chomphuphuang said.
Following the announcement of Taksinus bambus in Thailand, he and his research team, along with JoCho Sippawat, a local wildlife YouTuber, embarked on a survey expedition in the Phang-Nga province. During their survey, they not only identified this new tarantula species by its distinctive electric-blue coloration but also discovered its unique natural history. This is the first tarantula species ever found in a Thai mangrove forest.
“The first specimen we found was on a tree in the mangrove forest. Collecting them was challenging due to the muddy and waterlogged ground. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions. During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them,” Narin said.
“The first specimen we found was on a tree in the mangrove forest. Collecting them was challenging due to the muddy and waterlogged ground. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions. During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them,” Narin said.
“Allow us to introduce our exciting discovery: a new species of tarantula that exhibits a mesmerizing blue-violet hue, reminiscent of electric blue sparks. The secret behind the vivid blue coloration of our tarantula lies not in the presence of blue pigments, but rather in the unique structure of their hair, which incorporates nanostructures that manipulate light to create this striking blue appearance,” Narin said.
Blue is one of the rarest colors to appear in nature, which makes blue coloration in animals particularly fascinating. The scarcity of the color blue in nature can be attributed to the challenges associated with absorbing and reflecting specific wavelengths of light. Blue is difficult to produce in nature because, to appear blue, an object needs to absorb very small amounts of energy while reflecting high-energy blue light. This is challenging, because blue light has shorter wavelengths and higher energy compared to other colors. Generating molecules capable of absorbing this energy is complex, making blue in nature relatively rare.
In essence, what we perceive as a blue tarantula is, in fact, a result of how light interacts with the nanostructure-covered hairs on the tarantula’s body, causing some colors to cancel each other out and allowing only blue to be reflected. These biological photonic nanostructures create a remarkable iridescent effect that changes as you alter your viewing angle, making the tarantula even more captivating.
What’s even more fascinating is its ability to not only display blue but also a beautiful violet hue. Violet light occupies only a small portion of the visible light spectrum, and there are very few nanostructures precise enough to exclusively scatter violet light. Moreover, violet wavelengths are even more energetic than blue.
The violet hue of the top view depends on the viewing angle due to the iridescent effect from biological photonic nanostructures. Photo by Yuranan Nanthaisong
In terms of coloration, female and juvenile male C. natanicharum exhibit unique characteristics attributed to the presence of two distinct types of hair. Notably, they possess a more pronounced metallic-blue coloration on various parts of their bodies, while violet hues are predominantly observed in specific areas such as the chelicera, carapace, and certain leg segments. In adult male C. natanicharum, a similar coloration pattern is retained on the chelicera, carapace, and legs, although it appears less intense compared to females. Furthermore, there is a notable shift in coloration on their legs and body, transitioning to white due to the increased density of white setae.
Juvenile C. natanicharum Photo by Yuranan NanthaisongAdult male C. natanicharumPhoto by Paveen Piyatrakulchai
“This species was previously found on the commercial tarantula market. There, it was known as the “Chilobrachys sp. Electric Blue Tarantula” but no documentation existed describing its distinctive features or natural habitat. The exact location where the Electric Blue Tarantula lived remained a mystery until our recent discovery. This has led us to speculate that C. natanicharum may be present in the southern region of Thailand, especially in the remaining forest areas close to where it was found,” Narin said.
The habitat of C. natanicharum includes mangrove forests (left) and highland (right) Photos by Narin Chomphuphuang
According to a study just published in the journal ZooKeys, C. natanicharum exhibits adaptability in inhabiting evergreen and mangrove forests, where tarantulas live inside tree hollows. They can be found at elevations ranging from sea level to highland areas, and live in both arboreal and terrestrial burrows within evergreen forests, at elevations of up to 57 m.
“Unlike our previous discovery, the bamboo culm tarantula, which is specifically associated with bamboo, the electric blue tarantula demonstrates remarkable adaptability. These tarantulas can thrive in arboreal as well as terrestrial burrows in evergreen forests. However, when it comes to mangrove forests, their habitat is restricted to residing inside tree hollows due to the influence of tides, and they cannot be found living terrestrially within mangroves.” Narin said.
Photo by Narin Chomphuphuang
The scientific name of Chilobrachys natanicharum was chosen after an auction campaign for naming the new species. The winner of the auction campaign was Nichada Properties Co., Ltd., Thailand, which suggested a combination of the names of Mr. Natakorn Changrew and Ms. Nichada Changrew, who are company executives.
All proceeds from the auction were donated to support the education of Lahu children in Thailand and poor cancer patients.
“The Lahu people are an indigenous hill tribe in northern Thailand (Musoe) and are known for their vibrant culture and traditional way of life. Unfortunately, many Lahu children are denied access to education due to poverty, leaving them with limited opportunities for their future. The goal is to help change this by providing educational opportunities for Lahu children, giving them a chance to break out of the cycle of poverty. Additionally, cancer remains a significant public health issue globally, affecting millions of people each year. Many cancer patients struggle with financial hardship, which can make accessing quality care even more difficult. We believe that everyone deserves access to quality healthcare, regardless of their financial situation,” the researchers write in their paper.
The proceeds from the auction campaign to choose the scientific name of the new species C. natanicharum were used to support Lahu children in Thailand. Photo by JoCho Sippawat
“We often encounter the question, ‘What are the benefits of studying new species of tarantulas?’ It’s essential for the general public to understand the significance of taxonomy as a fundamental aspect of research. Taxonomy serves a vital role, ranging from the basic, such as when people inquire on social media about the name of a spider, to conducting crucial research aimed at preserving these species from extinction.” Narin said.
These mangrove forest areas serve as the habitat for the electric-blue tarantula C. natanicharum. Photo by Narin Chomphuphuang.
Mangrove forests are invaluable ecosystems offering numerous benefits. However, they face the looming threat of deforestation, which is a destructive process caused by activities such as logging, commercial development, pollution, overfishing, and the impacts of climate change. The electric blue tarantula, the first tarantula species discovered in the mangrove forests of Thailand, is also one of the world’s rarest tarantulas. “When we examine the causes behind the decline of mangrove forests, it becomes apparent that many of these threats are human-induced, both directly and indirectly. This raises a critical question: Are we unintentionally contributing to the destruction of their natural habitats, pushing these unique creatures out of their homes? Or should we advocate for the protection of mangrove forests, not only for the sake of the Electric-Blue Tarantula but also for the preservation of this remarkable jewel of the forest?,” the researchers ask.
Research article:
Chomphuphuang N, Sippawat Z, Sriranan P, Piyatrakulchai P, Songsangchote C (2023) A new electric-blue tarantula species of the genus Chilobrachys Karsh, 1892 from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1180: 105-128. https://doi.org/10.3897/zookeys.1180.106278
Nine years ago, University of Wyoming entomologist Scott Shaw and colleague Eduardo Shimbori gained a moment of fame by naming several newly discovered South American insect species for celebrities — including a wasp for singer and musician Shakira (Aleiodes shakirae).
Today, the Shakira wasp is one of only 18 animal species featured in a museum exhibition in Denmark. “From Rock Fossils to Pop Insects” at the Naturama Museum in Svendborg, Denmark, highlights species named after famous rock musicians and pop stars, including an ancient mammal for Mick Jagger (Jaggermeryx) and a deep-sea crab named for Metallica (Macrostylis metallicola).
This is the panel in an exhibition at the Naturama Museum in Svendborg, Denmark, that highlights the naming of the Shakira wasp (Aleiodes shakirae) by UW Professor Scott Shaw and colleague Eduardo Shimbori.
The exhibition was planned and created by Thomas Berg, a senior scientist and curator at the museum.
“Discover the fascinating old fossils, listen to the music and find out why scientists use rock music when naming fossils,” says a Naturama website promoting the exhibition, which is open to the public for viewing through November.
The Shakira wasp is a parasite of caterpillars, feeding and developing inside them — and causing them to bend and twist their abdomens in a distinctive way, which reminded Shaw and Shimbori of belly dancing, for which the Colombia-born singer also is famous. The Shakira wasp and other insect species were described in a 2014 volume of the international research journal ZooKeys, which is dedicated to advancing studies of the taxonomy, phylogeny, biogeography and evolution of animals.
“It’s gratifying to see our discovery included in this exhibition in such a creative and artistic way,” Shaw says. “I hope this public attention will help to draw new students to studies of tropical insects and the urgent field of tropical forest conservation.”
Aleiodesshakirae.
Berg says he chose the Shakira wasp for the exhibition because Shakira is a world-class singer and musician — and because of the researchers’ story behind the naming of the insect.
“Shaw and Shimbori’s personal story was captivating, with clear references to the parasitic wasp’s effect on its victim,” Berg says. “I’ll also admit that I’m a huge fan of Shakira, and it was such a gift to have the world’s best argument to include Aleiodes shakirae in the exhibition.”
National Science Foundation-funded fieldwork conducted in the cloud forests of eastern Ecuador by Shaw and colleagues led to the discovery of 24 new species of Aleiodes wasps that mummify caterpillars. Some of these were named for other celebrities, including Jimmy Fallon, Jon Stewart, Stephen Colbert and Ellen DeGeneres. One of these, Aleiodes colberti — named after Colbert — was featured on the Jan. 22, 2022, segment of Colbert’s “Late Show” on CBS.
A UW faculty member since 1989, Shaw is the curator of UW’s Insect Museum in the College of Agriculture, Life Sciences and Natural Resources. He received that college’s Vanvig Lifetime Achievement Award in 2018. He has published more than 200 scientific publications about insects as well as a book, “Planet of the Bugs: Evolution and the Rise of Insects,” which tells of dominant insect species and how they shaped life on Earth.
News piece originally by the University of Wyoming. Republished with permission.
A new species of spiny mouse has been discovered in Ecuador, making it the 14th of its genus to be identified in the past five years. Neacomys marci, which was previously confused with another species, is around the length of a tennis ball, with a long tail, pale suede belly fur and a white throat.
Live specimen of new species Neacomys marci in its natural habitat. Photo by: Jorge Brito
Discovered in the Chocó biogeographic region in northwestern Ecuador, it is the 24th formally recognised species in its genus, which has seen significant upheaval in recent years.
Neacomys is a widely distributed genus of small spiny or bristly rodents that occupy habitats in eastern Panama and the northern half of South America. Since 2017, studies of the genus have been remarkably dynamic, resulting in the description of several new species.
Live specimen of new species Neacomys marci in its natural habitat. Photo by: Jorge Brito
However, as there are still many unexplored areas in South America and adjacent Central America (Panama), some of the currently recognised species have not been studied thoroughly, and the true diversity of the genus may be underestimated.
The Chocó biogeographic region is considered one of the most diverse biodiversity hotspots in South America, but one of the least studied despite its great size (along the Pacific coasts of Panama, Colombia and Ecuador). The rainforests of northwestern Ecuador have high biodiversity and endemism due to the influence of the Chocó and the Andes Mountains.
Habitat where specimens of Neacomys marci were collected in the study. Photo by: Jorge Brito
Major reviews of museum collections and increased field collection efforts have helped scientists understand Neacomys marci and other species. Molecular analysis is also being used to assist with more accurate animal group identification.
The new species was named after Marc Hoogeslag of Amsterdam, the Netherlands, who was co-founder and leader of the International Union for Conservation of Nature – Netherlands Land Acquisition Fund, which helps local groups around the world establish new ecological reserves and conserve endangered species. The EcoMinga Foundation‘s Manduriacu Reserve, home to this new species, is one of many reserves that have benefited from Hoogeslag’s program.
Original Source:
Tinoco N, Koch C, Colmenares-Pinzón JE, Castellanos FX, Brito J (2023) New species of the Spiny Mouse genus Neacomys (Cricetidae, Sigmodontinae) from northwestern Ecuador. ZooKeys 1175: 187-221. https://doi.org/10.3897/zookeys.1175.106113
An international research team including the University of Göttingen has described seven previously unknown species of leaf insects, also known as walking leaves. The insects belong to the stick and leaf insect order, which are known for their unusual appearance: they look confusingly similar to parts of plants such as twigs, bark or – in the case of leaf insects – leaves.
An adult female of Pulchriphyllium anangu, one of the newly described species, observed July 2016 at Kadumane Estate, India by iNaturalist user @ashwinv (Ashwin Viswanathan) https://www.inaturalist.org/observations/29374627)
This sophisticated camouflage provides excellent protection from predators as well as presenting a challenge to researchers. Genetic analysis enabled the researchers to discover “cryptic species”, which cannot be distinguished by their external appearance alone. The findings are not only important for the systematic study of leaf insects, but also for the protection of their diversity. The results were published in the scientific journal ZooKeys.
Taxonomy – meaning the naming, description and classification of species – is difficult in the case of leaf insects: individuals of different species can be difficult to tell apart, yet there can be huge variations within a species. “Individuals of different species are often counted as belonging to the same species based on their appearance. We were only able to identify some of the new species by their genetic characteristics,” explains the Project Lead, Dr Sarah Bank-Aubin, Göttingen University’s Animal Evolution and Biodiversity Department.
An adult female of Pulchriphyllium crurifolium, observed September 2019 at Sans Souci, Mahé, Seychelles, by Juan Jose Areso uploaded by iNaturalist user @liahg (Amalia Herrera Grau) (https://www.inaturalist.org/observations/76082181)
Some individual insects from India were previously thought to belong to a species that is widespread in Southeast Asia. But now the researchers have found out that they are a completely new species of leaf insects. Bank-Aubin emphasises: “The finding is important for species conservation: if all the individuals die out in India, it is not just a group within a species that is reduced, as was previously thought. In fact, a whole distinct species is being wiped out. This means that the Indian species is particularly important to protect.” Other newly discovered species come from Vietnam, Borneo, Java and the Philippines.
Three of the newly discovered leaf insect species. Left to right: A female of Phyllium ortizi, an adult male of Pulchriphyllium anangu observed November 2019 in Pakkalakunja, Karnataka, India by iNaturalist user @sanath_ramesh_manimoole (Sanath R M) (https://www.inaturalist.org/observations/103401996), and a female of Pulchriphyllium bhaskarai.
The researchers from Göttingen University worked with leaf insect expert Royce Cumming, City University New York. This research collaboration has led to the identification of over twenty new species. Dr Sven Bradler, who has been researching the evolution of stick and leaf insects at the University of Göttingen for more than 20 years, explains: “There are around 3,500 known species of stick and leaf insects and there are currently just over 100 described species of leaf insect. Although they only make up a small fraction of this diverse family of insects, their spectacular and unexpected appearance makes them unique.”
Research article:
Cumming RT, Le Tirant S, Linde JB, Solan ME, Foley EM, Eulin NEC, Lavado R, Whiting MF, Bradler S, Bank S (2023) On seven undescribed leaf insect species revealed within the recent “Tree of Leaves” (Phasmatodea, Phylliidae). ZooKeys 1173: 145-229. https://doi.org/10.3897/zookeys.1173.104413