Ecuador’s newest tarantulas: just discovered, two new species face imminent threats

In the depths of Ecuador’s wilderness, scientists have unveiled the presence of two new tarantula species from the slopes of the Andes in the western part of the country.

In the depths of Ecuador’s wilderness, scientists have unveiled the presence of two new tarantula species. Researchers of Universidad San Francisco de Quito found them on trees on the slopes of the Andes in the western part of the country.

Meet Ecuador’s newest tarantulas

One of them was found in late February 2023, 1.5 m above the forest floor in the foothill evergreen forest of the Cordillera Occidental . Just discovered, it is already seriously threatened as people use its habitat for mining and agriculture. Its scientific name reflects this vulnerability: the tarantula is called Psalmopoeus chronoarachne, from the Greek words for “time” and “spider.”

Psalmopoeus chronoarachne.

“The compound word refers to the adage that these spiders could ‘have their time counted’ or reduced by impactful anthropogenic activities. The name addresses conservation concerns about the survival and prevalence of spider species in natural environments,” they write in their paper, which was just published in the open-access journal ZooKeys.

The other newly discovered tarantula has an even more curious name: Psalmopoeus satanas. “It is appropriately named because the initial individual that was collected had an attitude!” says researcher Roberto J. León-E, who first spotted it in a bamboo fence in San José de Alluriquín. The spider immediately exhibited defensive behavior; “this behavior then transformed into fleeing, where the spider made quick sporadic movements, nearly too fast to see.”

Psalmopoeus satanas.

It was the first tarantula he ever caught.

“The members of the Mygalomorphae Research Group in the Laboratory of Terrestrial Zoology at Universidad San Francisco de Quito grew very fond of this individual during its care, in spite of the individual’s bad temperament and sporadic attacks (reason for the nickname),” he writes in the paper.

The species, which can be found in in the north of the Cordillera Occidental of the Andes at about 900 m above sea level, is facing serious threats as its habitat is degraded, ever declining, and severely fragmented by cropland and mining concessions and expanding urban and agricultural territories.

Critically endangered: threats to tarantula survival

“It is important to consider that the areas in which these arthropods live are not under legal protection. The implementation of protected areas in these localities is essential to maintain the remaining population of these endangered species and to encourage research on the remaining undescribed or unknown tarantula species in the area,” says Pedro Peñaherrera-R, who led the research on these animals.

Mining concessions in Ecuador.Credit José Manuel Falcón-Reibán

This makes the region highly vulnerable to both legal and illegal mining operations that extract metals such as copper, silver, and gold, introducing pollutants to its ecosystems.

The implementation of stricter regulations and penalties for illegal mining or other extracting-related activities, including specimen smuggling, might help these species survive. Likewise, the engaging and educating of local communities about the importance of biodiversity conservation is essential to avoid further extinction.

 “We encourage future work by Ecuadorian and international researchers, organisations, and governments to effectively understand the reality about the threat of tarantula smuggling and the required conservation status of each species in the country.” Says Roberto J. León-E.

Based on initial conservation assessments, both tarantulas meet the criteria for being considered Critically Endangered by International Union for Conservation of Nature.

Overview of the ecosystem of both species. Credit Naia Andrade Hoeneisen

“It is essential to consider the potential loss of both P. chronoarachne and P. satanas and the ecological consequences that would result from their extinctions. These species may serve essential roles in the stratified micro-ecosystems in their respective areas,” the researchers write in their paper.

The dark side: illegal trade in wild tarantulas

Illegal trade in wild tarantulas as pets is also a latent threat, not only to these two species, but to Ecuadorian tarantulas in general. Many tarantula species can be found for sale online on various websites and Facebook groups. “During the writing of this article and the publication of another article, we found that a species that we described (Neischnocolus cisnerosi) is currently in the illegal pet trade!” says Pedro Peñaherrera-R.

After studying papers on wild-caught pet-trade specimens, the researchers conclude that the issue has been going on for more than 30 years in the country. “Although this series of publications encouraged research on Ecuadorian tarantulas previously ignored for centuries, they also functioned as catalysts within the exotic pet-trade hobby, aiding in obtaining these species and further encouraging people to collect undescribed species,” says Pedro Peñaherrera-R with concern.

Original source:

Peñaherrera-R. P, León-E. RJ (2023) On Psalmopoeus Pocock, 1895 (Araneae, Theraphosidae) species and tarantula conservation in Ecuador. ZooKeys 1186: 185-205. https://doi.org/10.3897/zookeys.1186.108991

Smithsonian’s Dr Torsten Dikow appointed Editor-in-Chief of ZooKeys

Dikow, an esteemed entomologist specialising in Diptera and cybertaxonomy, is the new Editor-in-Chief of the leading scholarly journal in systematic zoology and biodiversity

Esteemed entomologist specialising in true flies (order Diptera) and cybertaxonomy, Dr Torsten Dikow was appointed as the new Editor-in-Chief of the leading open-access peer-reviewed journal in systematic zoology and biodiversity ZooKeys.

Dikow is to step into the shoes of globally celebrated fellow entomologist and colleague at the Smithsonian and founding Editor-in-Chief of ZooKeys Dr Terry Erwin, who sadly passed away in May, 2020, leaving behind hefty scientific legacy and immeasurable admiration and fond memories

Today, Dikow is a Research Entomologist and Curator of Diptera and Aquatic Insects at the Smithsonian National Museum of Natural History (Washington, DC, USA), where his research interests encompass the diversity and evolutionary history of the superfamily Asiloidea – or asiloid flies – comprising curious insect groups, such as the assassin flies / robber flies and the mydas flies. Amongst an extensive list of research publications, Dikow’s studies on the diversity, biology, distribution and systematics of asiloid flies include the description of 60 species of assassin flies alone, and the redescription of even more through comprehensive taxonomic revisions.

Dikow obtained his M.S. in Zoology from the Universität Rostock (Germany) and Ph.D. in Entomology from Cornell University (New York, USA) with three years of dissertation research conducted at the American Museum of Natural History (AMNH). 

During his years as a postdoc at the Field Museum (Illinois, USA), Dikow was earnestly involved in the broader activities of the Encyclopedia of Life through its Biodiversity Synthesis Center (BioSynC) and the Biodiversity Heritage Library (BHL). There, he would personally establish contacts with smaller natural history museums and scientific societies, and encourage them to grant digitisation permissions to the BHL for in-copyright scientific publications. Dikow is a champion of cybertaxonomic tools and making biodiversity data accessible from both natural history collections and publications. He has been named a Biodiversity Open Data Ambassador by the Global Biodiversity Information Facility (GBIF).

Dikow is no stranger to ZooKeys and other journals published by the open-access scientific publisher and technology provider Pensoft. For the past 10 years, he has been amongst the most active editors and a regular author and reviewer at ZooKeysBiodiversity Data Journal and African Invertebrates.

“Publishing taxonomic revisions and species descriptions in an open-access, innovative journal to make data digitally accessible is one way we taxonomists can and need to add to the biodiversity knowledge base. ZooKeys has been a journal in support of this goal since day one. I am excited to lend my expertise and enthusiasm to further this goal and continue the development to publish foundational biodiversity research, species discoveries, and much more in the zoological field,”

said Dikow.

Dikow took on his new role at ZooKeys at a time when the journal had just turned 15 years on the scholarly publishing scene. In late 2020, the scientific outlet also marked the publication of its 1000th journal volume.

***

Visit the journal’s website and follow ZooKeys on X (formerly Twitter) and Facebook. You can also follow Torsten Dikow on X.

***

About ZooKeys:

ZooKeys is a peer-reviewed, open-access, rapidly disseminated journal launched to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. ZooKeys aims to apply the latest trends and methodologies in publishing and preservation of digital materials to meet the highest possible standards of the cybertaxonomy era.

ZooKeys publishes papers in systematic zoology containing taxonomic/faunistic data on any taxon of any geological age from any part of the world with no limit to manuscript size. To respond to the current trends in linking biodiversity information and synthesising the knowledge through technology advancements, ZooKeys also publishes papers across other taxon-based disciplines, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics, etc. 

A new dawn for biological collections: The AI revolution in museums and herbaria

There are numerous uses for machine learning in digital collections, including an enormous potential to extract traits of organisms.

Guest blog post by Quentin Groom

Imagine having access to all the two billion biological collections of the world from your desktop! Not only to browse, but to search with artificial intelligence. We recently published a paper where we envisage what might be possible, such as searching all specimen labels for a person’s signature, studying the patterns of butterflies’ wings, or reconstructing a historic expedition.

Numbers of digital images from biodiversity collections are increasing exponentially. Herbariums have led the way with tens of millions of images available, but images of pinned insects will soon overtake plants.

Numbers of accessible images of specimens are increasing exponentially. Plants lead the way, but insects are increasing at the fastest rate. This graph was created from snapshots of the Global Biodiversity Information Facility and is undoubtedly an underestimate of the actual number of specimens for which images exist. See how this was created in Groom et al. (2023).

At one time, if you wanted access to biological collections, you had to travel. Now we are used to visiting collections online, where we can view images of specimens and their details on our desktops. Nevertheless, biological collection images are still dispersed and this limits their effective use, not just for people, but also for computers. One of the promises of making specimens digital is being able to apply machine learning to these images.  Yet the real benefits of machine access to specimens can only be realised through massive access to collection images and the ability to apply these techniques to hundreds of collections and millions of specimens.

Imagine examining collections globally for the variation and evolution of wing coloration in butterflies, or studying the size and shape of leaves in research that transverses habitats and gradients of latitude and altitude.

In our paper in Biodiversity Data Journal, we examined some of the numerous uses for machine learning in digital collections. These include an enormous potential to extract traits of organisms, from the size and shape of different organs, to their colours, patterns, and phenology. Imagine examining collections globally for the variation and evolution of wing coloration in butterflies, or studying the size and shape of leaves in research that transverses habitats and gradients of latitude and altitude. We would not only be able to study the intricacies of evolution, but also practical subjects, such as the mechanics of pollination in insects, adaptations to drought in plants, and adaptations to weediness in invasive species.

Machine access to these images will also provide an unparalleled view of the history of the biological sciences, the specimens used to describe species, the evidence for evolution, the people involved and institutions that contributed. Such transparency may reveal some amazing stories of scientific exploration, but will undoubtedly also shed light on some of the less exemplary actions of colonialism. Yet if we are to redress the injustices of the past we need to have a balanced view of collections, and we should do this openly.

Specimen labels provide numerous clues to their history often in the form of stamps and emblems. A BR0000013433048 Meise Botanic Garden (CC-BY-SA 4.0). B USCH0030719, A.C. Moore Herbarium at the University of South Carolina (public domain). C E00809288, Royal Botanic Garden Edinburgh (public domain). D USCH0030719, University of South Carolina (public domain). E E00919066, Royal Botanic Garden Edinburgh (public domain). F BR0000017682725, Meise Botanic Garden (CC-BY-SA 4.0). G P00605317, Museum National d’Histoire Naturelle, Paris (CC-BY 4.0). H LISC036829, Instituto de Investigação Científica Tropical (CC-BY-NC 4.0). l PC0702930, Muséum National d’Histoire Naturelle, Paris (CC-By 4.0). J same specimen as (B). K PC0702930 Muséum National d’Histoire Naturelle, Paris (CC-BY 4.0). L 101178648, Missouri Botanical Garden (CC-BY-SA 4.0).

With such unparalleled access to collections, we could travel vicariously to times and places that are hard to reach in any other way. Fieldwork is expensive and time-consuming, and can’t provide the historic perspective of collections, let alone the geographic extent. Furthermore, digital resources have the potential to democratise collections, allowing anyone the opportunity to study these collections irrespective of location.

Is such a vision of integrated digital collections possible? It certainly is! The technologies already exist, not just for machine learning, but also to create the infrastructure to provide access to millions of digital images and their metadata. Initiatives, such as DiSSCo in Europe and iDigBio in the USA are moving in this direction. Yet, we conclude that the main challenge to realising this vision of the future is a sociopolitical one. Can so many institutions and funders work together to pool their resources? Can collections in rich countries share the sovereignty of their collections with the countries where many of the specimens originated?

If you too share the dream, we encourage you to support or contribute to initiatives working in this direction, whether through funding, collaboration, or sharing knowledge. If the full potential of digital collections is to be realised, we need to think big and work together.

Research article:

Groom Q, Dillen M, Addink W, Ariño AHH, Bölling C, Bonnet P, Cecchi L, Ellwood ER, Figueira R, Gagnier P-Y, Grace OM, Güntsch A, Hardy H, Huybrechts P, Hyam R, Joly AAJ, Kommineni VK, Larridon I, Livermore L, Lopes RJ, Meeus S, Miller JA, Milleville K, Panda R, Pignal M, Poelen J, Ristevski B, Robertson T, Rufino AC, Santos J, Schermer M, Scott B, Seltmann KC, Teixeira H, Trekels M, Gaikwad J (2023) Envisaging a global infrastructure to exploit the potential of digitised collections. Biodiversity Data Journal 11: e109439. https://doi.org/10.3897/BDJ.11.e109439

Study reveals new records for the Serbian wild bee fauna

This new study not only presents new records of bee species in Serbia and confirms some old ones, but also provides additional information about European distribution.

Pollinators play a crucial role in our ecosystems by pollinating flowering plants and crops, contributing to the planetary and human well-being. During the past decade, the decline in insect pollinators has become a more and more disturbing issue that countless scientific and public communities are trying to tackle every day.

Published in the Journal of Hymenoptera Research, a new study aims to contribute to updating the knowledge on wild bee diversity in Serbia, necessary for determining conservation priorities and future endeavours at the national level, but also for improving the understanding of the status of European pollinators. The study is also making an attempt to upgrade the exciting data provided by the recently published checklist of European bees, European bees country records, and, focusing on Serbia, a preliminary list of 706 bee species.

Map of Serbia showing the localities where bee specimens were collected.

To do that, researchers used data from the implementation of the national project SPAS, and within the EU-funded project Safeguard. With the aim of monitoring the diversity and abundance of insect pollinators in Serbia, 54 sites were surveyed three times throughout the 2022 season.

The transect walks and pan traps used for the assessment led to the discovery of 312 bee species. Results show that 25 of these have not been previously recorded for Serbia. Furthermore, the study confirms the presence of 26 species, without any available records from the 21st century.

Graphic view of the number of species detected depending on the sampling methods A at all studied sites B at a subset of sites where both sampling methods were conducted.

The authors also share that 79 of the examined species were known only from literature-based data and six of the recorded species are considered threatened with 67 (10 newly recorded) assessed as Data Deficient in the European Red List of Bees. In addition, the study manages to achieve the goal of updating the current knowledge of bee species occurring in Serbia. By recording 25 new species, the Safeguard study successfully extends the national list with new recordings – from 706 to 731 species.

This new study not only presents new records of bee species in Serbia and confirms some old ones, but also provides additional information about European distribution, required for new assessment at the European level.

Research article:

Mudri-Stojnić S, Andrić A, Józan Z, Likov L, Tot T, Grković A, Vujić A (2023) New records for the wild bee fauna (Hymenoptera, Anthophila) of Serbia. Journal of Hymenoptera Research 96: 761-781. https://doi.org/10.3897/jhr.96.107595

AI-powered data-limited stock assessment method more accurate than ‘gold standard’ in predicting sustainable fisheries catches

A recent update introduced to the CMSY methodology used to assess the status of fish stocks has proven to more accurately predict the catch that a population can support than highly valued data-intensive models.

Article provided by Valentina Ruiz, Sea Around Us.

In a paper published in the journal Acta Ichthyologica et Piscatoria, the international team of researchers that shaped the improved CMSY++ model noted that its results better correspond with what is, in reality, the highest catch that a fish stock can support in the long-term, given that environmental conditions do not change much.

Now powered by an artificial neural network that has been trained with catch and biomass data of 400 stocks to identify plausible ranges of the initial and final state of the stocks being assessed, CMSY++ allows managers and scientists to input only catch data to estimate how much fish is left in a given stock and how much fishing pressure can be applied.

CMSY model

Schematic representation of the surplus production model used by CMSY, with indication of impaired recruitment due to small stock size, where FMSY is reduced linearly with decline in biomass.

Maximum sustainable catches or yield (MSY) is a concept developed in the 1950s by US fisheries scientist M.B. Schaefer who proposed that if fishers left in the water a biomass equivalent to at least 50 per cent of the unexploited fish population, that is, of the biomass it had before being commercially exploited, then the highest possible catches could be sustained over time.

“By comparing the results of CMSY++ to models that are considered superior because they require large amounts of initial data inputs, such as the Fox surplus-production model and the Stock Synthesis (SS3) age-structured model, we noticed that these models badly overpredicted the catch that a population can support when previous overfishing has reduced it to a small fraction of its natural size, as is the case with most exploited fish populations in the world.”

Dr. Rainer Froese, lead author of the study and a senior scientist at the GEOMAR Helmholtz Centre for Ocean Research.

In other words, the model underlying the CMSY++ method fitted the observed data, while the predictions of the ‘gold standard’ models were too optimistic in estimating sustainable catches.

CMSY model
Examples of graphical output of CMSY++, here for European plaice (Pleuronectes platessa) in the eastern English Channel.

“These models tend to estimate the biomass required to produce maximum sustainable yields as less than half of unexploited biomass, which is lower than M.B. Schaefer originally proposed based on the widely observed S-shaped growth curve of unexploited populations or population size that the ecosystem would normally accommodate.

“This finding could explain the often-observed failure of fisheries managers to maintain or rebuild depleted stocks even when the predictions of the gold standard models were followed.”

Daniel Pauly, co-author of the study and principal investigator of the Sea Around Us initiative at the University of British Columbia.

Research article:

Froese R, Winker H, Coro G, Palomares MLD, Tsikliras AC, Dimarchopoulou D, Touloumis K, Demirel N, Vianna GMS, Scarcella G, Schijns R, Liang C, Pauly D (2023) New developments in the analysis of catch time series as the basis for fish stock assessments: The CMSY++ method. Acta Ichthyologica et Piscatoria 53: 173-189. https://doi.org/10.3897/aiep.53.e105910

MOBIOS+: An extensive database for advancing Mindanao Island’s biodiversity

The database is a groundbreaking and pioneering initiative set to revolutionise our understanding of the rich biodiversity of Mindanao, the second-largest island group in the Philippines.

The Philippine Archipelago, with more than 7,100 islands, has one of the highest levels of endemism globally and is a hotspot for biodiversity conservation. Mindanao, the second largest group of islands in the country, is a treasure trove of terrestrial species, boasting one of the highest densities of unique flora and fauna on the planet. However, despite its ecological significance, comprehensive biodiversity records and data for the region have remained inaccessible until now.

The Mindanao Open Biodiversity Information (MOBIOS+) database aims to bridge these critical data gaps by compiling biodiversity information from the 21st century. This monumental undertaking seeks to enhance our understanding of Mindanao’s biodiversity trends, while establishing a database that is openly accessible to researchers and conservationists worldwide.

MOBIOS+ is the first of its kind and, currently, the most comprehensive attempt to create a consolidated database for the biodiversity of Mindanao based on publicly available literature. With a vast collection of biodiversity data, this database will be an invaluable resource to advance regional biodiversity research and analysis.

“It will further facilitate the identification of species and areas that require immediate conservation prioritisation and action, addressing the urgent challenges posed by our rapidly changing planet,” the researchers behind the project write in their data paper, published in the open-access, peer-reviewed Biodiversity Data Journal.

Team members of the MOBIOS+ consortium curating the dataset.

The MOBIOS+ database, available through the Global Biodiversity Information Facility (GBIF) platform, currently comprises an impressive 12,813 georeferenced specimen occurrences representing 1,907 unique taxa. These span across ten animal classes inhabiting terrestrial and freshwater environments within the Mindanao faunal region. The project aims to continuously update the species database, complementing on-ground biodiversity efforts in Mindanao.

Diversity and distribution of species occurrence records across taxonomic groups included in the first version of the MOBIOS+ database. The diversity of species (percentage, %) according to class compared to the overall number of species recorded in the MOBIOS+ database (a); and the total number of species and the number of georeferenced occurrences per animal class (b).

Associate Professor Krizler Tanalgo of the Ecology and Conservation Research Laboratory at the University of Southern Mindanao, the project leader behind MOBIOS+, shared his thoughts on this initiative, saying:

We aim to democratise biodiversity information, making it readily available to researchers, policymakers, and conservation biologists. By doing so, we hope to facilitate well-informed decisions to address pressing environmental challenges, with a particular focus on the often underrepresented Mindanao region, which tends to receive limited attention in terms of research and funding.”

Distribution of biodiversity records across taxonomic groups from published papers.

“The MOBIOS+ database is not only a testament to the dedication of the scientific community, but also a beacon of hope for the future of biodiversity conservation in Mindanao and beyond. It will support researchers and conservationists in identifying species and areas that require immediate prioritisation and action, safeguarding the unique and fragile ecosystems of this extraordinary region.”

The Biodiversity Community Integrated Knowledge Library (BiCIKL) project, funded by the European Union Horizon 2020 Research and Innovation Action under grant agreement No 101007492, has supported the publication of this work. The work is part of a special collection supported by the project and looking to demonstrate the advantages and novel approaches in accessing and (re-)using linked biodiversity data.

Research article:
Tanalgo KC, Dela Cruz KC, Agduma AR, Respicio JMV, Abdullah SS, Alvaro-Ele RJ, Hilario-Husain BA, Manampan-Rubio M, Murray SA, Casim LF, Pantog AMM, Balase SMP, Abdulkasan RMA, Aguirre CAS, Banto NL, Broncate SMM, Dimacaling AD, Fabrero GVN, Lidasan AK, Lingcob AA, Millondaga AM, Panilla KFL, Sinadjan CQM, Unte ND (2023) The MOBIOS+: A FAIR (Findable, Accessible, Interoperable and Reusable) database for Mindanao’s terrestrial biodiversity. Biodiversity Data Journal 11: e110016. https://doi.org/10.3897/BDJ.11.e110016

***

You can find all contributions published in the “Linking FAIR biodiversity data through publications: The BiCIKL approach” article collection in the open-access, peer-reviewed Biodiversity Data Journal on: https://doi.org/10.3897/bdj.coll.209.

Maximising the impact of standardised biodiversity data: Pensoft’s role in the EU project B-Cubed

In line with its commitment to providing open-access biodiversity data, Pensoft has joined forces with 12 organisations to form the B-Cubed project.

The problem at hand

Measuring the extent and dynamics of the global biodiversity crisis is a challenging task that demands rapid, reliable and repeatable biodiversity monitoring data. Such data is essential for policymakers to be able to assess policy options effectively and accurately. To achieve this, however, there is a need to enhance the integration of biodiversity data from various sources, including citizen scientists, museums, herbaria, and researchers.

B-Cubed’s response

B-Cubed (Biodiversity Building Blocks for policy) hopes to tackle this challenge by reimagining the process of biodiversity monitoring, making it more adaptable and responsive. 

B-Cubed’s approach rests on six pillars: 

  • Improved alignment between policy and biodiversity data. Working closely with existing biodiversity initiatives to identify and meet policy needs.
  • Evidence base. Leveraging data cubes to standardise access to biodiversity data using the Essential Biodiversity Variables framework. These cubes are the basis for models and indicators of biodiversity.
  • Cloud computing environment. Providing users with access to the models in real-time and on demand.
  • Automated workflows. Developing exemplary automated workflows for modelling using biodiversity data cubes and for calculating change indicators.
  • Case studies. Demonstrating the effectiveness of B-Cubed’s tools.
  • Capacity building. Ensuring that the solutions meet openness standards and training end-users to employ them.

Pensoft’s role

Harnessing its experience in the communication, dissemination and exploitation of numerous EU projects, Pensoft focuses on maximising B-Cubed’s impact and ensuring the adoption and long-term legacy of its results. This encompasses a wide array of activities, ranging all the way from building the project’s visual and online presence to translating its results into policy recommendations. Pensoft also oversees B-Cubed’s data management by developing a Data Management Plan which ensures the implementation of the FAIR data principles and maximises the access to and re-use of the project’s research outputs.

Full list of partners

Visit B-Cubed’s website at https://b-cubed.eu/. You can also follow the project on X @BCubedProject and LinkedIn /B-Cubed Project, as well as by subscribing to its newsletter here.

Newly established Bulgarian Barcode of Life to support biodiversity conservation in the country

As the latest national node to join the International Barcode of Life Consortium (iBOL), its main task is to coordinate, support, and promote DNA barcoding research in Bulgaria.

On 27 September 2023, during a specialised symposium on DNA barcoding at the Bulgarian Academy of Sciences, the Bulgarian Barcode of Life (BgBOL), a Bulgarian DNA barcoding consortium, was founded. 

Logo of the Bulgarian Barcode of Life (BgBOL), a Bulgarian DNA barcoding consortium and the latest national node to join the International Barcode of Life Consortium (iBOL).

By becoming the latest national node to join the International Barcode of Life Consortium (iBOL), the main task before BgBOL will be to coordinate, support, and promote DNA barcoding research in Bulgaria, with a primary focus on the study and preservation of the country’s biodiversity.

“The Bulgarian Barcode of Life opens up new horizons and opportunities to study and understand the biodiversity in Bulgaria,”

says Dr Georgi Bonchev, Institute of Plant Physiology and Genetics at the Bulgarian Academy of Sciences (BAS).

DNA barcoding is a method to identify individual organisms based on nucleotide sequences captured from short, predefined and standardised segments of DNA.

Dr Georgi Bonchev explains the DNA barcoding method at the specialised symposium held on 27 September 2023 at the Bulgarian Academy of Sciences. 
Photo by the Bulgarian Academy of Sciences.

The formation of the BgBOL consortium is expected to strengthen the network of collaborations, ultimately contributing to the broader dissemination and popularisation of DNA barcoding research in the region.BgBOL was created by seven academic institutions: Institute of Plant Physiology and Genetics (BAS), Institute of Biodiversity and Ecosystem Research, National Museum of Natural History (BAS), Sofia University “St. Kliment Ohridski”, AgroBioInstitute (Agricultural Academy), University of Forestry, and Pensoft in its role of a scientific publisher and tech innovator well-known in the field of biodiversity science.

Prof. Lyubomir Penev joined the symposium with a talk on the publication, dissemination and management of DNA barcoding data. His presentation also touched on the relevant biodiversity data workflows and tools currently in development at Pensoft with the support of the Horizon 2020-funded project BiCIKL.
Photo by the Bulgarian Academy of Sciences.

As part of the event, Pensoft’s founder and CEO Prof. Lyubomir Penev led a discussion on the publication, dissemination and management of DNA barcoding data. His presentation also touched on the relevant biodiversity data workflows and tools currently in development at Pensoft with the support of the Horizon 2020-funded project BiCIKL (abbreviation for Biodiversity Community Integrated Knowledge Library).

“I’d like to congratulate everyone involved in the establishment of the Bulgarian Barcode of Life! This is a huge step forward in advancing DNA barcoding research in Bulgaria and, ultimately, the preservation of the country’s amazing biodiversity,”

comments Prof. Lyubomir Penev.

***

About the International Barcode of Life:

The International Barcode of Life Consortium is a research alliance undertaking the largest global biodiversity science initiative: create a digital identification system for life that is accessible to everyone.

iBOL is working to establish an Earth observation system that will discover species, reveal their interactions, and establish biodiversity baselines. The consortium is tracking ecosystems across the planet and exploring symbiomes – the distinct fungal, plant, and animal species associated with host organisms. Our goal is to complete this research and establish baseline data for science and society’s benefit.

Biodiversity in a bird’s nest: DNA as a tool for bird conservation

Researchers employ eDNA to investigate ‘fascinating microcosms’ inside birds’ nests.

Researchers have found that advanced DNA technologies can get a detailed snapshot of insect diversity within a bird’s nest, showing everything from the bird’s last meal to disease-causing parasites.

A bird’s nest. Photo by Farrini

“Birds’ nests are fascinating microcosms, but until now, studies have only examined the living insects that can be seen crawling and flying around the nests,” says Valerie Levesque-Beaudin, lead author on the study and a leading expert in Diptera taxonomy at the Centre for Biodiversity Genomics (CBG) at the University of Guelph (U of G).

With newer DNA-based methods, researchers can pick up traces of environmental DNA to get a snapshot of all the species in these tiny ecosystems. “The analysis of nest contents and environmental DNA, or ‘eDNA’ as it’s called, via metabarcoding helps us to gain more insight into a bird’s diet, parasites, and other factors that could impact a bird’s health and breeding success,” says Levesque-Beaudin.

For the study, published in Metabarcoding and Metagenomics, researchers collected 20 birds’ nests from the 162-hectare Arboretum at U of G. They examined the nests using DNA barcoding to identify insects to species and DNA metabarcoding to look at the entire nest ecosystem.

Organisms leave traces of DNA behind as they move through the environment, and researchers can use metabarcoding to build a comprehensive picture of life in the nest. Metabarcoding pulls all DNA traces in a bulk sample – in this case, parts of dead insects, debris, and dust from birds’ nests. This method differs from DNA barcoding, where a single specimen – an insect in this case – is DNA sequenced to identify it to species level.

The CBG team used emergence traps for a first sweep of the nest’s contents followed by a second, deeper probe using DNA metabarcoding to identify all the species encountered in the nest. Researchers passed the nests through a sieve, collecting insect remains and the dust for DNA extraction. “We not only found insects making a living in the nest, but traces of prey, parasites, and many other things,” says Levesque-Beaudin. “The most unexpected was the amount of information gained on other birds’ species whose feathers were either used for nest building or whose nests were essentially overbuilt by the nesting species.”

A tent-like emergence trap is used to contain and collect insects living inside the nest debris. PHOTO: VALERIE LEVESQUE-BEAUDIN

“This approach has the potential to revolutionize how we study bird nests as a micro-ecosystem. It unravels connections between different ecological guilds within the nest and connections of the birds with their environment, which would otherwise remain hidden,” says Dr. Bettina Thalinger, senior author of the study.

The CBG’s Associate Director of Analytics, Dr. Dirk Steinke, says the study has positive implications for bird conservation efforts. He says his students have already begun looking at American Kestrels, a threatened bird of prey, to find out if there are clues in the nest communities via metabarcoding and if DNA can help scientists determine if lack of prey or increased parasitism could be among the causes of nestling mortalities.

Darwin’s finch, also called Galápagos finch. PHOTO BY CHRIS HO, CENTRE FOR BIODIVERSITY GENOMICS.

Galapagos finches are another species threatened by the avian vampire fly – a parasite that attacks nestlings – and treatments include pesticides. Steinke notes that one of his graduate students has begun using DNA metabarcoding in the finches’ nests to understand better the potential impact of pesticide treatment on the entire arthropod nest community.

Research article:

Levesque-Beaudin V, Steinke D, Böcker M, Thalinger B (2023) Unravelling bird nest arthropod community structure using metabarcoding. Metabarcoding and Metagenomics 7: e103279. https://doi.org/10.3897/mbmg.7.103279

News piece originally published by the Centre of Biodiversity Genomics. Republished with permission.

A decade of empowering biodiversity science: celebrating 10 years of Biodiversity Data Journal

Together, we have redefined scientific communication, and we will continue to push the boundaries of knowledge.

Today, 16 September 2023, we are celebrating our tenth anniversary: an important milestone that has prompted us to reflect on the incredible journey that Biodiversity Data Journal (BDJ) has been through.

From the very beginning, our mission was clear: to revolutionise the way biodiversity data is shared, accessed, and harnessed. This journey has been one of innovation, collaboration, and a relentless commitment to making biodiversity data FAIR – Findable, Accessible, Interoperable, and Reusable.

Over the past 10 years, BDJ, under the auspices of our esteemed publisher Pensoft, has emerged as a trailblazing force in biodiversity science. Our open-access platform has empowered researchers from around the world to publish comprehensive papers that seamlessly blend text with morphological descriptions, occurrences, data tables, and more. This holistic approach has enriched the depth of research articles and contributed to the creation of an interconnected web of biodiversity information.

In addition, by utilising ARPHA Writing Tool and ARPHA Platform as our entirely online manuscript authoring and submission interface, we have simplified the integration of structured data and narrative, reinforcing our commitment to simplifying the research process.

One of our most significant achievements is democratising access to biodiversity data. By dismantling access barriers, we have catalysed the emergence of novel research directions, equipping scientists with the tools to combat critical global challenges such as biodiversity loss, habitat degradation, and climate fluctuations.

We firmly believe that data should be openly accessible to all, fostering collaboration and accelerating scientific discovery. By upholding the FAIR principles, we ensure that the datasets accompanying our articles are not only discoverable and accessible, but also easy to integrate and reusable across diverse fields.

As we reflect on the past decade, we are invigorated by the boundless prospects on the horizon. We will continue working on to steer the global research community towards a future where biodiversity data is open, accessible, and harnessed to tackle global challenges.

Ten years of biodiversity research

To celebrate our anniversary, we have curated some of our most interesting and memorable BDJ studies from the past decade.

  • Recently, news outlets were quick to cover a new species of ‘snug’ published in our journal.
  • This Golden Retriever trained to monitor hermit beetle larvae proved once again the incredible capabilities of our canine friends.
Teseo, the Golden Retriever monitoring hermit beetle larvae
  • Who could forget this tiny fly named after the former Governor of California?
  • Or this snail named after climate activist Greta Thunberg?
Craspedotropis gretathunbergae

New discoveries are always exciting, but some of our favourite research focuses on formerly lost species, back where they belong.

  • Like the griffon vulture, successfully reintroduced to Bulgaria after fifty years.

Citizen science has shown time and time again that it holds an important position in biodiversity research.

  • This group, for example, who found a beetle the size of a pinhead in Borneo.
“Life Beneath the Ice”, a short musical film about light and life beneath the Antarctic sea-ice by Dr. Emiliano Cimoli

We extend our heartfelt gratitude to our authors, reviewers, readers, and the entire biodiversity science community for being integral parts of this transformative journey. Together, we have redefined scientific communication, and we will continue to push the boundaries of knowledge.

Follow BDJ on social media: