New reptile on the block: A new agamid lizard species discovered in China

Measuring less than 9 cm with an orange tongue, it inhabits subtropical and tropical forests, thriving in various landscapes including urban areas.

A new agamid joins Asia’s rich reptile fauna, officially described as new to science in the open-access journal ZooKeys.

Calotes wangi.

“From 2009 to 2022, we conducted a series of field surveys in South China and collected a number of specimens of the Calotes versicolor species complex, and found that the population of what we thought was Calotes versicolor in South China and Northern Vietnam was a new undescribed species and two subspecies,” says Yong Huang, whose team described the new species.

Calotes wangi hainanensis, a newly discovered subspecies of Calotes wangi.

Wang’s garden lizard (Calotes wangi) is less than 9 cm long, and one of its distinguishing features is its orange tongue.

Calotes wangi is found in subtropical evergreen broad-leaved forests and tropical monsoon forests in southern China and northern Vietnam, mostly in mountainous areas, hills and plains on forest edges, arable land, shrub lands, and even urban green belts. It is active at the edge of the forest, and when it is in danger, it rushes into bushes or climbs tree trunks to hide. Investigations found that the lizards lie on sloping shrub branches at night, sleeping close to the branches,” says Yong Huang.

Calotes wangi.

It is active from April to October every year, while in the tropics it is active from March to November or even longer, and eats a variety of insects, spiders, and other arthropods.

For now, the researchers estimate that the new species is not threatened, but they do note that in some areas its habitat is fragmented.

Images of Calotes wangi’s habitat.

“In addition, their bodies are used medicinally and the lizards are also eaten,” they write in their research paper.

This is why they suggest that the local government strengthen the protection of their ecological environment and pay close attention to the population dynamics.

Research article:

Huang Y, Li H, Wang Y, Li M, Hou M, Cai B (2023) Taxonomic review of the Calotes versicolor complex (Agamidae, Sauria, Squamata) in China, with description of a new species and subspecies. ZooKeys 1187: 63-89. https://doi.org/10.3897/zookeys.1187.110704

Follow ZooKeys on Facebook and X.

Pensoft 2023 review: A year of pioneering research

To celebrate a successful year, Pensoft gives thanks and reflects on the achievements of key journals in 2023.

As the new year approaches, we take a moment to look back on a great year for several of Pensoft‘s key journals.

The following videos were created as part of the #Pensoft2023Review campaign and present the journals’ achievements this year.

ZooKeys

PhytoKeys

MycoKeys

Biodiversity Data Journal

NeoBiota

Nature Conservation

One Ecosystem

Metabarcoding and Metagenomics

Evolutionary Systematics

Looking forward to 2024

Despite the success of 2023, the Pensoft team is keener than ever to improve in every aspect in the coming year. A massive thank you to every author, editor, reviewer and reader of Pensoft’s journals, and a very happy New Year!

***

Follow Pensoft on social media:

Same and different: A new species of pit viper from Myanmar

In a collaborative study involving institutions from Singapore, Malaysia, Germany, and the UK, scientists have discovered a new species of pit viper from Myanmar that is both similar and different from its adjacent sister species.

Finding and describing new species can be a tricky endeavor. Scientists typically look for distinctive characters that can differentiate one species from another. However, variation is a continuum that is not always easy to quantify. At one extreme, multiple species can look alike even though they are different species—these are known as cryptic species. At the other extreme, a single species can be highly variable, creating an illusion of being different species. But what happens when you encounter both extremes simultaneously?

Herpetologist Dr Chan Kin Onn (previously at the Lee Kong Chian Natural History Museum, Singapore, now with the University of Kansas Biodiversity Institute and Natural History Museum, USA) led a study describing a new species of pit viper from Myanmar that is both similar and different from its sister species. The discovery is published in the open-access journal ZooKeys.

A specimen of Trimeresurus ayeyarwadyensis from the Yangon Region, Myanmar. Photo by Wolfgang Wüster

“Asian pit vipers of the genus Trimeresurus are notoriously difficult to tell apart, because they run the gamut of morphological variation. Some groups contain multiple species that look alike, while others may look very different but are actually the same species,” they say.

A specimen of Trimeresurus ayeyarwadyensis from the Yangon Region, Myanmar. Photo by Wolfgang Wüster

The redtail pit viper (Trimeresurus erythrurus) occurs along the northern coast of Myanmar and is invariably green with no markings on its body. A different species called the mangrove pit viper (Trimeresurus purpureomaculatus) occurs in southern Myanmar. This species typically has distinct dorsal blotches, and incredibly variable dorsal coloration including gray, yellow, brown, and black, but never green. Interestingly, in central Myanmar, sandwiched between the distribution of the redtail pit viper and the mangrove pit viper, a unique population exists that is green with varying degrees of blotchiness, which appears to be a blend between the redtail pit viper and the mangrove pit viper.

“This mysterious population in central Myanmar baffled us and we initially thought that it could be a hybrid population,” the researchers said. In a separate paper, Dr Chan used modern genomic techniques and determined that the population in central Myanmar was actually a distinct species and not a hybrid population.

But this was not the end of the story. The researchers discovered another surprise when they examined the snake’s morphological features: they found that the new species was also highly variable. Certain populations are dark green with distinct blotches, easily distinguishable from its closest relative, the redtail pit viper, which is bright green with no blotches. However, some populations of the new species are bright green with no blotches and look virtually identical to the redtail pit viper.

“This is an interesting phenomenon, where one species is simultaneously similar and different from its closest relative (the redtail pit viper). We think that at some point in the past, the new species may have exchanged genes with the redtail pit viper from the north and the mangrove pit viper from the south,” says Dr Chan.

The new species is called the Ayeyarwady pit viper (Trimeresurus ayeyarwadyensis) in reference to the Ayeyarwady River, which is the largest and one of the most important rivers in Myanmar. The river forms an expansive delta that is bounded by the Pathein River to the west and the Yangon River to the east. These rivers and their associated basins also mark the westernmost and easternmost distribution boundaries of the Ayeyarwady pit viper.

Research article:

Chan KO, Anuar S, Sankar A, Law IT, Law IS, Shivaram R, Christian C, Mulcahy DG, Malhotra A (2023) A new species of pit-viper from the Ayeyarwady and Yangon regions in Myanmar (Viperidae, Trimeresurus). ZooKeys 1186: 221-234. https://doi.org/10.3897/zookeys.1186.110422

Follow ZooKeys on X and Facebook.

Ecuador’s newest tarantulas: just discovered, two new species face imminent threats

In the depths of Ecuador’s wilderness, scientists have unveiled the presence of two new tarantula species from the slopes of the Andes in the western part of the country.

In the depths of Ecuador’s wilderness, scientists have unveiled the presence of two new tarantula species. Researchers of Universidad San Francisco de Quito found them on trees on the slopes of the Andes in the western part of the country.

Meet Ecuador’s newest tarantulas

One of them was found in late February 2023, 1.5 m above the forest floor in the foothill evergreen forest of the Cordillera Occidental . Just discovered, it is already seriously threatened as people use its habitat for mining and agriculture. Its scientific name reflects this vulnerability: the tarantula is called Psalmopoeus chronoarachne, from the Greek words for “time” and “spider.”

Psalmopoeus chronoarachne.

“The compound word refers to the adage that these spiders could ‘have their time counted’ or reduced by impactful anthropogenic activities. The name addresses conservation concerns about the survival and prevalence of spider species in natural environments,” they write in their paper, which was just published in the open-access journal ZooKeys.

The other newly discovered tarantula has an even more curious name: Psalmopoeus satanas. “It is appropriately named because the initial individual that was collected had an attitude!” says researcher Roberto J. León-E, who first spotted it in a bamboo fence in San José de Alluriquín. The spider immediately exhibited defensive behavior; “this behavior then transformed into fleeing, where the spider made quick sporadic movements, nearly too fast to see.”

Psalmopoeus satanas.

It was the first tarantula he ever caught.

“The members of the Mygalomorphae Research Group in the Laboratory of Terrestrial Zoology at Universidad San Francisco de Quito grew very fond of this individual during its care, in spite of the individual’s bad temperament and sporadic attacks (reason for the nickname),” he writes in the paper.

The species, which can be found in in the north of the Cordillera Occidental of the Andes at about 900 m above sea level, is facing serious threats as its habitat is degraded, ever declining, and severely fragmented by cropland and mining concessions and expanding urban and agricultural territories.

Critically endangered: threats to tarantula survival

“It is important to consider that the areas in which these arthropods live are not under legal protection. The implementation of protected areas in these localities is essential to maintain the remaining population of these endangered species and to encourage research on the remaining undescribed or unknown tarantula species in the area,” says Pedro Peñaherrera-R, who led the research on these animals.

Mining concessions in Ecuador.Credit José Manuel Falcón-Reibán

This makes the region highly vulnerable to both legal and illegal mining operations that extract metals such as copper, silver, and gold, introducing pollutants to its ecosystems.

The implementation of stricter regulations and penalties for illegal mining or other extracting-related activities, including specimen smuggling, might help these species survive. Likewise, the engaging and educating of local communities about the importance of biodiversity conservation is essential to avoid further extinction.

 “We encourage future work by Ecuadorian and international researchers, organisations, and governments to effectively understand the reality about the threat of tarantula smuggling and the required conservation status of each species in the country.” Says Roberto J. León-E.

Based on initial conservation assessments, both tarantulas meet the criteria for being considered Critically Endangered by International Union for Conservation of Nature.

Overview of the ecosystem of both species. Credit Naia Andrade Hoeneisen

“It is essential to consider the potential loss of both P. chronoarachne and P. satanas and the ecological consequences that would result from their extinctions. These species may serve essential roles in the stratified micro-ecosystems in their respective areas,” the researchers write in their paper.

The dark side: illegal trade in wild tarantulas

Illegal trade in wild tarantulas as pets is also a latent threat, not only to these two species, but to Ecuadorian tarantulas in general. Many tarantula species can be found for sale online on various websites and Facebook groups. “During the writing of this article and the publication of another article, we found that a species that we described (Neischnocolus cisnerosi) is currently in the illegal pet trade!” says Pedro Peñaherrera-R.

After studying papers on wild-caught pet-trade specimens, the researchers conclude that the issue has been going on for more than 30 years in the country. “Although this series of publications encouraged research on Ecuadorian tarantulas previously ignored for centuries, they also functioned as catalysts within the exotic pet-trade hobby, aiding in obtaining these species and further encouraging people to collect undescribed species,” says Pedro Peñaherrera-R with concern.

Original source:

Peñaherrera-R. P, León-E. RJ (2023) On Psalmopoeus Pocock, 1895 (Araneae, Theraphosidae) species and tarantula conservation in Ecuador. ZooKeys 1186: 185-205. https://doi.org/10.3897/zookeys.1186.108991

Novel bacteria identification methods might help speed up disease diagnosis

The technique, applied on turtle skin in this study, allows for the rapid detection of Pseudomonas bacteria, which can cause various human diseases.

Why is it important to study bacteria?

Pseudomonas aeruginosa is a bacterial strain that can be responsible for several human diseases: the most serious include malignant external otitis, endophthalmitis, endocarditis, meningitis, pneumonia, and septicemia.

The environments in which these bacteria are most frequently found include soil, plants, and water. They can even be found on human and animal skin, without causing illness, in a process known as bacterial colonisation. Microbiological research can help establish the cause of certain infectious diseases, making it easier to choose the best treatment. This is why it is important to find a quick and easy way to identify these bacteria. A new study, published in the open-access journal BioRisk, explored this by applying spectroscopic techniques for quick analysis directly from an object, which, in this case, was turtle skin.

Sampling of biological material from turtle skin before further microbiological analysis and Raman spectroscopy. Credit Inta Umbraško

“Microbial organisms play key roles in animal health and ecology. The European pond turtle often lives in city Zoo gardens and private houses. Often, the most commonly found bacteria from turtle skin surfaces was Pseudomonas species,” says Aleksandrs Petjukevics of Daugavpils University, whose team conducted the study.

What is Raman spectroscopy?

“Classical microbiological research techniques have several disadvantages: first of all, it is a rather lengthy process. The minimum period is 3-4 days, but many days and even weeks may pass before the isolated pathogen is accurately identified, and it uses expensive chemicals and resources,” says Aleksandrs Petjukevics. As an alternative, spectrometry makes it possible to identify a prepared sample of a microorganism while reducing the identification time to 5-30 minutes.

Renishaw inVia Raman Microscope. Credit Inta Umbraško 

Raman spectra represent an ensemble of signals that arise from the molecular vibrations of individual cell components of gram-negative bacteria, integrating over proteins, lipids, and carbohydrates. “This non-destructive chemical analysis technique provides detailed information about chemical structure, phase and polymorphy, crystallinity, and molecular interactions. It is based on the interaction of light with the chemical bonds within a material,” he says.

Research results and implications

The study’s findings showed that Pseudomonas bacteria can be quickly identified using this detection technology, with excellent analytical and diagnostic sensitivity, making it a dependable technique.

Unlike other methods, this technique does not require long-term bacterial sample preparation and expensive reagents, which makes it promising for studying other strains of bacteria.

“This study demonstrated the ability to obtain fast and high-quality Raman spectra of bacterial cells using vibrational spectroscopy,” says Aleksandrs Petjukevics. “Raman spectroscopy can be considered an express method for identifying microorganisms. It holds great potential for future research involving different microorganisms.”

Research article: 

Petjukevičs A, Umbraško I, Škute N (2023) Prospects and possibilities of using Raman spectroscopy for the identification of Pseudomonas aeruginosa from turtle Emys orbicularis (Linnaeus, 1758) skin. BioRisk 21: 19-28. https://doi.org/10.3897/biorisk.21.111983

Smithsonian’s Dr Torsten Dikow appointed Editor-in-Chief of ZooKeys

Dikow, an esteemed entomologist specialising in Diptera and cybertaxonomy, is the new Editor-in-Chief of the leading scholarly journal in systematic zoology and biodiversity

Esteemed entomologist specialising in true flies (order Diptera) and cybertaxonomy, Dr Torsten Dikow was appointed as the new Editor-in-Chief of the leading open-access peer-reviewed journal in systematic zoology and biodiversity ZooKeys.

Dikow is to step into the shoes of globally celebrated fellow entomologist and colleague at the Smithsonian and founding Editor-in-Chief of ZooKeys Dr Terry Erwin, who sadly passed away in May, 2020, leaving behind hefty scientific legacy and immeasurable admiration and fond memories

Today, Dikow is a Research Entomologist and Curator of Diptera and Aquatic Insects at the Smithsonian National Museum of Natural History (Washington, DC, USA), where his research interests encompass the diversity and evolutionary history of the superfamily Asiloidea – or asiloid flies – comprising curious insect groups, such as the assassin flies / robber flies and the mydas flies. Amongst an extensive list of research publications, Dikow’s studies on the diversity, biology, distribution and systematics of asiloid flies include the description of 60 species of assassin flies alone, and the redescription of even more through comprehensive taxonomic revisions.

Dikow obtained his M.S. in Zoology from the Universität Rostock (Germany) and Ph.D. in Entomology from Cornell University (New York, USA) with three years of dissertation research conducted at the American Museum of Natural History (AMNH). 

During his years as a postdoc at the Field Museum (Illinois, USA), Dikow was earnestly involved in the broader activities of the Encyclopedia of Life through its Biodiversity Synthesis Center (BioSynC) and the Biodiversity Heritage Library (BHL). There, he would personally establish contacts with smaller natural history museums and scientific societies, and encourage them to grant digitisation permissions to the BHL for in-copyright scientific publications. Dikow is a champion of cybertaxonomic tools and making biodiversity data accessible from both natural history collections and publications. He has been named a Biodiversity Open Data Ambassador by the Global Biodiversity Information Facility (GBIF).

Dikow is no stranger to ZooKeys and other journals published by the open-access scientific publisher and technology provider Pensoft. For the past 10 years, he has been amongst the most active editors and a regular author and reviewer at ZooKeysBiodiversity Data Journal and African Invertebrates.

“Publishing taxonomic revisions and species descriptions in an open-access, innovative journal to make data digitally accessible is one way we taxonomists can and need to add to the biodiversity knowledge base. ZooKeys has been a journal in support of this goal since day one. I am excited to lend my expertise and enthusiasm to further this goal and continue the development to publish foundational biodiversity research, species discoveries, and much more in the zoological field,”

said Dikow.

Dikow took on his new role at ZooKeys at a time when the journal had just turned 15 years on the scholarly publishing scene. In late 2020, the scientific outlet also marked the publication of its 1000th journal volume.

***

Visit the journal’s website and follow ZooKeys on X (formerly Twitter) and Facebook. You can also follow Torsten Dikow on X.

***

About ZooKeys:

ZooKeys is a peer-reviewed, open-access, rapidly disseminated journal launched to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. ZooKeys aims to apply the latest trends and methodologies in publishing and preservation of digital materials to meet the highest possible standards of the cybertaxonomy era.

ZooKeys publishes papers in systematic zoology containing taxonomic/faunistic data on any taxon of any geological age from any part of the world with no limit to manuscript size. To respond to the current trends in linking biodiversity information and synthesising the knowledge through technology advancements, ZooKeys also publishes papers across other taxon-based disciplines, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics, etc. 

All good things come from above! DNA-based food analysis in the Leisler’s bat

Through the analysis of DNA traces in the droppings of a Leisler’s bat colony, researchers at LIB have now identified over 350 different insect species that were consumed by the bats.

Adequate food supply is a fundamental need and requirement for survival. To protect a species, it is often very helpful to know what that species prefers and frequently consumes. Through the analysis of DNA traces in the droppings of a Leisler’s bat colony, researchers at LIB (Leibniz Institute for the Analysis of Biodiversity Change) have now identified an astonishingly high number —over 350— different insect species that were consumed by the bats.

Portrait of the studied species Nyctalus leisleri, Leisler’s bat. © M. Koch

Especially for small animal species and those that are nocturnal, it can be extremely difficult to determine what they feed on. Identifying small prey insects or their remains is also rarely possible down to the exact species or family. In the case of the studied bat species, there is the additional challenge that it is a forest bat species that needs to be located first. “Following bats equipped with radio transmitters in the forest at night is quite special,” says Martin Koch, co-initiator of the study.

Design and installation of the guano trap (3 m) and roost entrance (9 m).

Fortunately — but also complicating matters — there are about 13 different bat species living in the investigated area near Bonn, in the forests of the Natura 2000 area ‘Waldreservat Kottenforst.’ Initially, as part of an EU Life+ project, roosts — the trees where the bats live — of the Leisler’s bats were identified, from which the study’s starting material was then obtained. This was done using a specially developed “guano trap.” The trap consists of approximately 2.2 square meters of mosquito netting stretched rectangularly.

It was installed about 3 meters high on the tree trunk, below the entrance to the roosting cavity at about 9 meters high. During the so-called “twilight swarming” after the nightly insect hunt, the bats return to the roosting cavity and initially circle the tree. They frequently perch briefly next to the cavity entrance and stick a small guano pellet to the trunk. Regularly, pellets fall and land in the mosquito netting under the cavity entrance. This “bat guano” was collected, fixed, and further processed in the laboratory.

“It’s fascinating how much DNA you can extract from a small amount of droppings and how much information we can draw from the DNA: from which bat species does the droppings come, and what has the bat eaten?” explains Dr. Kathrin Langen. Using the DNA contained in the droppings, our researchers were able to determine nine samples from nine different nights when only the target species swarmed around the roosting tree. On six other nights, other bats and a species of mouse were also active around the roosting tree. From the nine samples containing only the guano of the evening bat, an astonishingly rich menu was then reconstructed: the group consumed at least 126 different species of moths, 86 different species of flies and mosquitoes, 48 species of beetles, and a few dozen other various species of bugs, mayflies, caddisflies, and lacewings. Occasionally, spiders, harvestmen, lice, and other small animals were also consumed.

Timeline showing arthropod community composition at order level in the guano of N. leisleri, all three markers combined (COImldg, COIArt, 16S). With the exception of plots showing RRA assigned to major groups depending on sampling date (4C and 4F), read counts were not taken into account. A, D Number of species of each arthropod order detected at each time point; B, E Relative number of species per arthropod order as a percentage of the diet; C, F Species detected in each arthropod order, based on relative read abundances.

From the results, the team was able to deduce which of the three molecular genetic markers used worked best and provided the most species detections, a total of 358. “It’s incredibly satisfying to see what species lists come out at the end of all the lab work and bioinformatics,” says Dr. Sarah Bourlat, Head of the Metabarcoding Section at LIB, Bonn. However, the temporal course of the composition of the consumed insects was also interesting to observe: from late March to late June, the number of species in the guano steadily increases, only to decrease again by mid-August. This aligns very well with the activity patterns of certain insect groups.

The beech moth was the most frequently consumed butterfly, and a mayfly known as the transient virgin or ‘Uferaas’, was the most frequently consumed mayfly. The author team has listed the most important ecological parameters for the 18 key prey species in the study to contribute to better protecting the Leisler’s bat and the habitats needed by its prey insects.

Research article:
Bourlat SJ, Koch M, Kirse A, Langen K, Espeland M, Giebner H, Decher J, Ssymank A, Fonseca VG (2023) Metabarcoding dietary analysis in the insectivorous bat Nyctalus leisleri and implications for conservation. Biodiversity Data Journal 11: e111146. https://doi.org/10.3897/BDJ.11.e111146

News announcement originally published by the Leibniz Institute for the Analysis of Biodiversity Change. Republished with permission.

Follow Biodiversity Data Journal on Facebook and X.

Conferences across the continents: Pensoft’s events in Autumn 2023

Pensoft participated in several events all around the world in October and November 2023.

October and November 2023 were active months for the Pensoft team, who represented the publisher’s journals and projects at conferences in Europe, North America, South America, Oceania and Asia.

Let’s take a look back at all the events of the past two months.

The Biodiversity Information Standards Conference 2023

The Biodiversity Information Standards (TDWG) Conference, held from October 9-13 in Tasmania, Australia, brought together experts and stakeholders from the global biodiversity research community.

The annual gathering is a crucial platform for sharing insights, innovations, and knowledge related to biodiversity data standards and practices. Key figures from Pensoft took part in the event, presenting new ways to improve the management, accessibility, and usability of biodiversity data. 

Prof. Lyubomir Penev, founder and Chief Executive Officer of Pensoft, gave two talks that highlighted the importance of data publishing. His presentation on “The Biodiversity Knowledge Hub (BKH): A Crosspoint and Knowledge Broker for FAIR and Linked Biodiversity Data” underscored the significance of FAIR (Findable, Accessible, Interoperable, and Reusable) data standards. BKH is the major output from the Horizon 2020 project BiCIKL (Biodiversity Community Integrated Knowledge Library) dedicated to linked and FAIR data in biodiversity, and coordinated by Pensoft.

Prof. Lyubomir Penev, Pensoft founder and CEO.

He also introduced the Nanopublications for Biodiversity workflow and format: a promising new tool developed by Knowledge Pixels and Pensoft to communicate key scientific statements in a way that is human-readable, machine-actionable, and in line with FAIR principles. Earlier this year, Biodiversity Data Journal integrated nanopublications into its workflow to allow authors to share their findings even more efficiently.

Chief Technology Officer of Pensoft Teodor Georgiev contributed to the conference by presenting “OpenBiodiv for Users: Applications and Approaches to Explore a Biodiversity Knowledge Graph.” His session highlighted the innovative approaches being taken to explore and leverage a biodiversity knowledge graph, showcasing the importance of technology in advancing biodiversity research.

Teodor Georgiev (right), Pensoft CTO.

Many authors and editors at Biodiversity Data Journal also spoke at the TDWG conference, including Vince Smith, the journal’s editor-in-chief, who is Head of Digital, Data, and Informatics at the Natural History Museum. He delivered insightful presentations on digitising natural science collections and utilising AI for insect collections.

GEO BON Global Conference 2023

GEO BON’s Global Conference on Biodiversity and Monitoring took place from 10-13 October 2023 in Montreal, Canada.

Metabarcoding and Metagenomics editor-in-chief, Florian Leese.

The theme of the conference was “Monitoring Biodiversity for Action” and there was particular emphasis on the development of best practices and new technologies for biodiversity observations and monitoring to support transformative policy and conservation action.

Metabarcoding & Metagenomics’ editor-in-chief, Florian Leese, was one of the organisers of the “Standardized eDNA-Based Biodiversity Monitoring to Inform Environmental Stewardship Programs” session. Furthermore, the journal was represented at Pensoft’s exhibition booth, where conference participants were able to discuss metabarcoding and metagenomics research.

Following the conference, Metabarcoding & Metagenomics announced a new special issue titled “Towards Standardized Molecular Biodiversity Monitoring.” The special issue is accepting submissions until 15th March 2024.

Asian Mycological Congress 2023

The Asian Mycological Congress welcomed researchers from around the world to Busan, Republic of Korea, for an exploration of all things fungi from 10-13 October. 

MycoKeys Best Talk award (winner not pictured).

Titled “Fungal World and Its Bioexploitation – in all areas of basic and applied mycology,” the conference covered a range of topics related to all theoretical and practical aspects of mycology. There was a particular emphasis on the development of mycology through various activities associated with mycological education, training, research, and service in countries and regions within Asia.

As one of the sponsors of the congress, Pensoft proudly presented a Best Talk award to Dr Sinang Hongsanan of Chiang Mai University, Thailand. The award entitles the winner to a free publication in Pensoft’s flagship mycology journal, MycoKeys.

Joint ESENIAS and DIAS Scientific Conference 2023

The ESENIAS and DIAS conference took place from 11-14 October and focused on “globalisation and invasive alien species in the Black Sea and Mediterranean regions.” Pensoft shared information on their NeoBiota journal and the important REST-COAST and B-Cubed projects.

Polina Nikova receiving the NeoBiota Best Talk Award.

Polina Nikova of the Bulgarian Academy of Sciences received the NeoBiota Best Talk Award for her presentation titled “First documented records in the wild of American mink (Neogale vision von Schreber, 1776) in Bulgaria.” The award entitles her to a free publication in the NeoBiota journal.

XII European Congress of Entomology

Pensoft took part in the XII European Congress of Entomology (ECE 2023) in Heraklion, Crete, from 16-20 October. The event provided a forum for entomologists from all over the world, bringing together over 900 scientists from 60 countries.

Carla Stoyanova, Teodor Metodiev and Boriana Ovcharova representing Pensoft.

The ECE 2023, organised by the Hellenic Entomological Society, addressed the pressing challenges facing entomology, including climate change, vector-borne diseases, biodiversity loss, and the need to sustainably feed a growing world population. The program featured symposia, lectures, poster sessions, and other types of activities aimed at fostering innovation in entomology. For Pensoft, they were a great opportunity to interact with scientists and share their commitment to advancing entomological research and addressing the critical challenges in the field.

Throughout the event, conference participants could find Pensoft’s team at thir booth, and learn more about the scholarly publisher’s open-access journals in entomology. In addition, the Pensoft team presented the latest outcomes from the Horizon 2020 projects B-GOOD, Safeguard, and PoshBee, where the publisher takes care of science communication and dissemination as a partner.

XIV International Congress of Orthopterology 2023

The XIV International Congress of Orthopterology, held from 16-19 October in Mérida, Yucatán, México, was a landmark event in the field of orthopterology.

Group photo of XIV International Congress of Orthopterology 2023 participants.

Hosted for the first time in Mexico, it attracted experts and enthusiasts from around the world. The congress featured plenary speakers who presented cutting-edge research and insights on various aspects of grasshoppers, crickets, and related insects.

Pensoft’s Journal of Orthoptera Research was represented by Tony Robillard, the editor-in-chief, who presented the latest developments of the journal to attendees.

Symposia, workshops, and meetings facilitated discussions on topics like climate change impacts, conservation, and management of Orthoptera. The event also included introductions to new digital and geospatial tools for Orthoptera research.

The 16th International Conference on Ecology and Management of Alien Plant Invasions

The 16th International Conference on Ecology and Management of Alien Plant Invasions (EMAPI 2023) took place in Pucón, Chile, from 23-25 October . The conference focused on the promotion of diversity in the science and management of biological invasions. Several NeoBiota authors ran sessions at the conference, and the journal also presented a Best Talk Award.

4th International ESP Latin America and Caribbean Conference

The 4th International ESP Latin America and Caribbean Conference (ESP LAC 2023) was held in La Serena, Chile, from 6-10 November. Focused on “Sharing knowledge about ecosystem services and natural capital to build a sustainable future,” the event attracted experts in ecosystem services, particularly from Latin America and the Caribbean.

Organised by the Ecosystem Services Partnership, this bi-annual conference was open to both ESP members and non-members, featuring a hybrid format in English and Spanish. Attendees enjoyed an excursion to La Serena’s historical center, adding a cultural dimension to the event.

The conference included diverse sessions and a special recognition by Pensoft’s One Ecosystem journal, which awarded full waivers for publication to the authors of the three best posters.

Magaly Aldave receiving the Best Poster Award.

Magaly Aldave of the Transdisciplinary Center for FES-Systemic Studies claimed first prize with “The voice of children in the conservation of the urban wetland and Ramsar Site Pantanos de Villa in Metropolitan Lima, Peru.” Ana Catalina Copier Guerrero and Gabriela Mallea-Rebolledo, both of the University of Chile, were awarded second and third prize respectively.

Biosystematics 2023

Biosystematics 2023, held from 26-30 November at the Australian National University in Canberra, was a collaborative effort of the Australian Biological Resources Study, Society of Australian Systematic Biologists, Australasian Mycological Society, and Australasian Systematic Botany Society. Themed “Celebrating the Past | Planning the Future,” the conference provided a platform for exploring advancements in biosystematics.

The event featured in-person and online participation, catering to a wide audience of researchers, academics, and students. It included workshops, presentations, and discussions, with a focus on enhancing understanding in biosystematics.

Pensoft awarded three student prizes at the event. Putter Tiatragu, Australian National University, received the Best Student Talk award and a free publication in any Pensoft journal for “A big burst of blindsnakes: Phylogenomics and historical biogeography of Australia’s most species-rich snake genus.”

Helen Armstrong, Murdoch University, received the Best Student Lightning Talk for “An enigmatic snapper parasite (Trematoda: Cryptogonimidae) found in an unexpected host.” Patricia Chan, University of Wisconsin-Madison, was the Best Student Lightning Talk runner-up for “Drivers of Diversity of Darwinia’s Common Scents and Inflorescences with Style: Phylogenomics, Pollination Biology, and Floral Chemical Ecology of Western Australian Darwinia (Myrtaceae).”

As we approach the end of 2023, Pensoft looks back on its most prolific and meaningful year of conferences and events. Thank you to everyone who contributed to or engaged with Pensoft’s open-access journals, and here’s to another year of attending events, rewarding important research, and connecting with the scientific community.

***

Follow Pensoft on social media:

Entangled “her”stories – How to create an open multi-linked dynamic dataset of plant genera named for women

Which plant genera do you know that are named for women? Who were/are they?

Guest blog post by  Siobhan Leachman, Sabine von Mering, Heather Lindon & Carmen Ulloa Ulloa

How it all began

A post on social media asked about plant genera named for women and sparked a lively discussion with many contributors. This simple question was not as easily answered as initially thought. The resulting informal working group tackled this topic remotely during the COVID-19 pandemic and beyond. The team was motivated by the desire to amplify the contribution of women to botany through eponymy. The work of this team has so far resulted in a paper in Biodiversity Data Journal, presentations at several conferences, and a linked open dataset.

Prior to our international collaboration, no dataset was available to answer these simple questions and the required information was scattered in many different data sources. We set out to bring these data together and in doing so developed and refined our workflow. Our data paper documents this innovative workflow bringing together the various data elements needed to answer our research questions. Ultimately we created a Linked Open Data (LOD) dataset that amplified the names of women and female mythological beings celebrated through generic names of flowering plants.

Linking the Data

During our research process we focused on pulling data from a wide variety of sources while at the same time proactively sharing the data generated as widely as possible. This was done by adding and linking it to multiple public databases and sources (push-pull) including the International Plant Name Index (hereafter IPNI), Tropicos®, Wikidata, Bionomia and the Biodiversity Heritage Library (hereafter BHL).

Visualisation of our workflow to create a working list of flowering plant genera named for women. 

For our list of genera, each of the protologues were reviewed to confirm the etymology or eponymy. To find the generic prologues, we searched botanical databases such as IPNI and Tropicos, openly accessible providers of digital publications and other digital libraries and websites that provide free access to such publications. Here the BHL was invaluable as the majority of protologues and many other relevant publications were openly accessible through this digital library. Where no digital publication was available we accessed scientific literature through our affiliated institutions.

For the women, our starting point was the “Index of Eponymic Plant Names – Extended Edition” by Lotte Burkhardt (2018). We manually extracted all genera honouring women.  This dataset was supplemented with other sources including IPNI (2023), Mari Mut (2017-2021), a 2022 updated version of Burkhardt’s document (Burkhardt 2022), as well as suggestions received from colleagues and generated from our own research.

We collected the following information as structured data: information on the woman honoured, the genera named in honour of the woman, the year and place of the protologue or original publication (the nomenclatural reference), the author(s) of the genus name, and the link to the protologue or original publication if available online.

Wikidata

Wikidata was the central data repository and linking mechanism for this project as it provided structured data that can be read and edited by humans and machines and it acts as a hub for other identifiers. As such Wikidata played a central role in semantic linking and enriching of our data.

Wikidata items for the plant genera were created or enriched with information about the name, the author(s) of the genus and the year of publication. Those statements were referenced using the original publication. If the protologue was available on BHL, the BHL bibliographic or page number was added to that reference, thus creating a digital link improving access to the protologue. While undertaking this work we also collated a list of all those public domain publications that appeared to be absent from BHL. We passed on this list to BHL and requested these texts be scanned and added to BHL for the benefit of everyone.

We then added a named after statement to the Wikidata item for the appropriate plant genera linking that item to the Wikidata item for the woman honoured. Wikidata items for the women honoured were newly created or enriched. We researched each person and her contributions, plus information on mythological figures where necessary, and added this information to Wikidata items. Our work also included disambiguating the woman from other people with identical or similar names. 

To amplify the women’s contributions to science and to enrich the wider (biodiversity) data ecosystem, we linked to other Wikidata items and websites or databases by adding other relevant identifiers. For example if the women were botanists, botanical collectors or other naturalists, we used the author property to link the women to publications written by them. In addition, we added the women to Bionomia and attributed specimens collected or identified by them to their profiles.

Our work also included enriching Wikidata items of taxon authors. IPNI and Tropicos were searched for these author names, and websites such as BHL, the Global Biodiversity Information Facility (GBIF) or other specialist databases were consulted. Corrections or newly researched information on taxon authors was placed not just in Wikidata but was also sent together with the corresponding references to IPNI and Tropicos. This information was then used by those organizations to update these databases accordingly. 

As a result of our data being placed in Wikidata it is available to be queried via the Wikidata Query Service.  

Our Goal Achieved

As a result of our project, we published a dataset of 728 genera honouring women or female beings. This was a nearly twenty-fold increase in the number of genera linked to women in Wikidata. Our analysis paper on this data is forthcoming.

Notable Women 

Monsonia L.

All of us came away from this research with a favourite story. One that stood out was Ann Monson, for whom Linnaeus named Monsonia. Linnaeus wrote a delightful letter to her about their creating, platonically of course, a kind of plant love-child between them, in the form of this new genus.

Translated from Latin : “….Lock these [seeds] in a pot, and place them in the window of the chamber towards the sun, when it bursts forth in February, and in the first summer the sun blooms and lasts the most beautiful Alstromeria, which no one has seen in England, and you bring forth no flowers. If it should come to pass, as I wish, if you offer our flames, I would only wish to beget with you an only child, as a pledge of my love, little Monsonia, by which you may perpetuate the fame of Lady in the kingdom of Flora, who was the Queen of Women.”

Fittonia Coem.

Two eponymous women with an interesting story are Sarah Mary Fitton and her sister Elizabeth. They wrote Conversations on Botany in 1817 accompanied by colour engravings of flowers which popularised botany with women. The genus Fittonia was named in their honour.

Chanekia Lundell

Another woman honoured in a plant genus was Mercedes Chanek, a Mayan plant collector who worked in the 1930’s for Cyrus Longworth Lundell and collected for the University of Michigan in British Honduras, today Belize. Very little is known about her life and work. However, her collections are detailed in Tropicos and Bionomia, and you can see the genus named for her by Lundell in IPNI under Chanekia.

Medusa Lour. and other genera

Medusa (c. 1597), by Caravaggio

An example of a mythological female being honoured in several plant names is that of Medusa, who has the most genera named after her, six, more than any real woman!

We hope that our data paper inspires others to use the methodology and workflow described to create other linked open datasets, e.g. celebrating and amplifying the contributions of underrepresented or marginalised groups in science.

Data paper: 

von Mering S, Gardiner LM, Knapp S, Lindon H, Leachman S, Ulloa Ulloa C, Vincent S, Vorontsova MS (2023) Creating a multi-linked dynamic dataset: a case study of plant genera named for women. Biodiversity Data Journal 11: e114408. https://doi.org/10.3897/BDJ.11.e114408

A new dawn for biological collections: The AI revolution in museums and herbaria

There are numerous uses for machine learning in digital collections, including an enormous potential to extract traits of organisms.

Guest blog post by Quentin Groom

Imagine having access to all the two billion biological collections of the world from your desktop! Not only to browse, but to search with artificial intelligence. We recently published a paper where we envisage what might be possible, such as searching all specimen labels for a person’s signature, studying the patterns of butterflies’ wings, or reconstructing a historic expedition.

Numbers of digital images from biodiversity collections are increasing exponentially. Herbariums have led the way with tens of millions of images available, but images of pinned insects will soon overtake plants.

Numbers of accessible images of specimens are increasing exponentially. Plants lead the way, but insects are increasing at the fastest rate. This graph was created from snapshots of the Global Biodiversity Information Facility and is undoubtedly an underestimate of the actual number of specimens for which images exist. See how this was created in Groom et al. (2023).

At one time, if you wanted access to biological collections, you had to travel. Now we are used to visiting collections online, where we can view images of specimens and their details on our desktops. Nevertheless, biological collection images are still dispersed and this limits their effective use, not just for people, but also for computers. One of the promises of making specimens digital is being able to apply machine learning to these images.  Yet the real benefits of machine access to specimens can only be realised through massive access to collection images and the ability to apply these techniques to hundreds of collections and millions of specimens.

Imagine examining collections globally for the variation and evolution of wing coloration in butterflies, or studying the size and shape of leaves in research that transverses habitats and gradients of latitude and altitude.

In our paper in Biodiversity Data Journal, we examined some of the numerous uses for machine learning in digital collections. These include an enormous potential to extract traits of organisms, from the size and shape of different organs, to their colours, patterns, and phenology. Imagine examining collections globally for the variation and evolution of wing coloration in butterflies, or studying the size and shape of leaves in research that transverses habitats and gradients of latitude and altitude. We would not only be able to study the intricacies of evolution, but also practical subjects, such as the mechanics of pollination in insects, adaptations to drought in plants, and adaptations to weediness in invasive species.

Machine access to these images will also provide an unparalleled view of the history of the biological sciences, the specimens used to describe species, the evidence for evolution, the people involved and institutions that contributed. Such transparency may reveal some amazing stories of scientific exploration, but will undoubtedly also shed light on some of the less exemplary actions of colonialism. Yet if we are to redress the injustices of the past we need to have a balanced view of collections, and we should do this openly.

Specimen labels provide numerous clues to their history often in the form of stamps and emblems. A BR0000013433048 Meise Botanic Garden (CC-BY-SA 4.0). B USCH0030719, A.C. Moore Herbarium at the University of South Carolina (public domain). C E00809288, Royal Botanic Garden Edinburgh (public domain). D USCH0030719, University of South Carolina (public domain). E E00919066, Royal Botanic Garden Edinburgh (public domain). F BR0000017682725, Meise Botanic Garden (CC-BY-SA 4.0). G P00605317, Museum National d’Histoire Naturelle, Paris (CC-BY 4.0). H LISC036829, Instituto de Investigação Científica Tropical (CC-BY-NC 4.0). l PC0702930, Muséum National d’Histoire Naturelle, Paris (CC-By 4.0). J same specimen as (B). K PC0702930 Muséum National d’Histoire Naturelle, Paris (CC-BY 4.0). L 101178648, Missouri Botanical Garden (CC-BY-SA 4.0).

With such unparalleled access to collections, we could travel vicariously to times and places that are hard to reach in any other way. Fieldwork is expensive and time-consuming, and can’t provide the historic perspective of collections, let alone the geographic extent. Furthermore, digital resources have the potential to democratise collections, allowing anyone the opportunity to study these collections irrespective of location.

Is such a vision of integrated digital collections possible? It certainly is! The technologies already exist, not just for machine learning, but also to create the infrastructure to provide access to millions of digital images and their metadata. Initiatives, such as DiSSCo in Europe and iDigBio in the USA are moving in this direction. Yet, we conclude that the main challenge to realising this vision of the future is a sociopolitical one. Can so many institutions and funders work together to pool their resources? Can collections in rich countries share the sovereignty of their collections with the countries where many of the specimens originated?

If you too share the dream, we encourage you to support or contribute to initiatives working in this direction, whether through funding, collaboration, or sharing knowledge. If the full potential of digital collections is to be realised, we need to think big and work together.

Research article:

Groom Q, Dillen M, Addink W, Ariño AHH, Bölling C, Bonnet P, Cecchi L, Ellwood ER, Figueira R, Gagnier P-Y, Grace OM, Güntsch A, Hardy H, Huybrechts P, Hyam R, Joly AAJ, Kommineni VK, Larridon I, Livermore L, Lopes RJ, Meeus S, Miller JA, Milleville K, Panda R, Pignal M, Poelen J, Ristevski B, Robertson T, Rufino AC, Santos J, Schermer M, Scott B, Seltmann KC, Teixeira H, Trekels M, Gaikwad J (2023) Envisaging a global infrastructure to exploit the potential of digitised collections. Biodiversity Data Journal 11: e109439. https://doi.org/10.3897/BDJ.11.e109439